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1. Introduction 
 

There are two types of magneto-rheological (MR) 

dampers categorized by their motion types, i.e. linear MR 

damper and rotary MR damper. The former has been 

extensively investigated from comprehensive angles, i.e., 

structural design (Christie et al. 2019, Hong et al. 2005, 

Sohn et al. 2015, Sun et al. 2015), experimental 

characterization (Dyke et al. 1998), parametric/non-

parametric modeling (Nguyen and Choi 2010, Yu et al. 

2013, Yang et al. 2002, 2004, Wang and Liao 2011, Spencer 

Jr et al. 1997, Truong and Ahn 2010, Chen et al. 2015), 

semi-active control strategies (Zhou et al. 2006, Braz-César 

and Barros 2018, Muthalif et al. 2017, Zhou et al. 2012, Li 

et al. 2002, Dyke et al. 1996), etc. Compared with its 

brother, the rotary MR damper has not been in the main 

spotlight (Imaduddin et al. 2013), despite it conquers some 

of the disadvantages of linear MR damper, i.e., large 

installation requirement, potential buckle of the rod at high 

speed, vulnerable to external contamination due to exposed 

rod and higher volume demand for MR fluid. 
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Huang et al. (2002) and Li and Du (2003) are among the 

early pioneers exploring the design and development of MR 

rotary dampers. Since then, extensive discussions and 

investigations on the device design have been conducted in 

the field, including single-disk type (Li and Du 2003), 

multiple-disk type (Park et al. 2006), use of multiple coils 

(Nguyen and Choi 2011), tailored disk surface (Nam and 

Ahn 2009), and magnetic circuit design (Nam et al. 2007). 

In review of the performance of MR rotary damper, most of 

the experimental testing is to examine the output torque of 

the damper against various constant rotation speeds with 

different applied currents. Experimental investigations have 

revealed that the generated torque of MR rotary damper is 

less sensitive to rotary speed which indicates that the MR 

rotary damper can be treated as variable stiffness device, 

though with small damping variation. As a consequence, the 

modeling efforts are focused on describing the performance 

of the MR rotary damper, i.e. output torque, with regard to a 

set of physical parameters (i.e. MR fluid property, disk 

radius, rod radius and gap size) and external stimulations 

(i.e., applied current and rotary speed) (Imaduddin et al. 

2013). Those models, based on either Bingham plastic 

model (Song et al. 2013, Ehrgott and Masri 1992) or 

Herschel-Bulkley model (Wang and Gordaninejad 1999), 

are particularly useful for device design and controller 

design since they describe the steady behavior of MR rotary 

damper, i.e., constant rotary speed and applied current. 

As a rotational variable stiffness device, MR rotary 

damper can also be used to mitigate the oscillatory 
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vibrations (Gong et al. 2012, Li et al. 2003), shown in Fig. 

1, as vibration isolator. Real-time varying rotational 

stiffness offers potential to isolate the transmission of the 

external vibration disturbance and therefore to protect the 

machinery and other equipment that is vulnerable to 

external vibrations. However, the exploration on this aspect 

especially the dynamic characteristics of MR rotary damper 

has been rarely reported. Tse and Chang (2004) proposed to 

use MR rotary damper for small-scale wind control 

application. They conducted oscillating experimental testing 

on a shear-mode MR rotary damper to capture its hysteric 

behavior. The original Bouc-Wen model was proposed to 

portray its nonlinear behavior. Li and Li (2014) proposed its 

use in structural control application, i.e. connecting the 

column and beam to adjust the structural stiffness, and 

experimentally tested the performance of a disk-type MR 

rotary damper under oscillating vibrations. A rotational 

hyperbolic model and a hybrid hysteresis model (Royel et 

al. 2015) were proposed to describe the behavior of the MR 

rotary damper. Furthermore, by „locking‟ and „unlocking‟ 

the connection, they demonstrated that the natural 

frequency of the structure equipped with MR rotary damper 

as joint element is capable of being shifted from 0.7 Hz to 

1.2 Hz (72% change). 

Although existing models are capable of describing 

dynamic behavior of MR-based rotary device in oscillatory 

motion, they still suffer from several problems in the 

engineering applications. First, the proposed Bouc-Wen-

based model in (Tse and Chang 2004) has a total of 11 

parameters to be identified, which requires a heavy 

computation resource to achieve high-accuracy 

identification results. Also, too many parameters will 

definitely affect the robustness of the designed controller, 

finally influencing the control effect in structural vibration 

mitigation. To lower the complexity of the model for MR 

rotary damper, a hybrid model was proposed in (Royel et al. 

2015), consisting of a Gaussian function and a tangent 

hyperbolic function. Compared with the original Bouc-Wen 

model, this model just has as smallest as five parameters to 

be identified, avoiding a large number of parameters and 

nonlinear differential equation in the model expression. 

However, this model is not able to accurately capture the 

yielding points at the higher velocities when the loading 

frequency is over 2 Hz. Since the main seismic frequencies 

are generally in the range of 1-5 Hz, the hybrid hysteresis 

model is not suitable for the application of the device in the 

structural vibration control due to the earthquakes. One the 

other hand, the model parameter identification is also 

challenging if the proposed model structure is complex. 

Generally, the procedure of model parameter identification 

for MR rotary devices is considered as solving a global 

optimization problem, which can be implemented using 

evolutionary algorithms in the way that errors between 

experimental data and model predictions are minimized. 

Therefore, the model accuracy is closely associated with the 

model complexity and selected parameter identification 

algorithm. If the configuration of the model to be identified 

is too complicated, the optimization algorithm may fail to 

converge to optimal values of model parameters.  

 

 

Fig. 1 MR rotary damper under rotation and oscillation 

 

 

 

Furthermore, the priori information on the scales of 

parameters is desirable to enhance the algorithm 

convergence. In view of these issues, it is absolutely 

requisite to develop a simpler and more accurate model that 

is able to describe the nonlinear dynamics of MR rotary 

damper via the regulation of different model parameters. 

In this study, dynamic tests on an MR fluid (MRF)-

based variable stiffness device (VSD) are conducted under 

various loading conditions. Based on experimental results, a 

rotational hysteresis model, consisting of a rotational 

spring, a viscous dashpot and a hysteresis component, is 

proposed to characterize the dynamic response of MRF 

VSD. Compared with conventional models of MRF devices 

such as Bouc-Wen model (Spencer Jr et al. 1997) and 

LuGre friction model (Jiménez and Á lvarez-Icaza 2005), 

the proposed model does not contain any differential 

equation and just has five parameters to be identified. Then, 

a newly developed swarm-based algorithm, whale 

optimization algorithm (WOA), is introduced to be 

considered as an ideal candidate for model parameter 

identification. To improve the convergence rate of 

parameter identification and avoid the local optimum of 

solution, a nonlinear updating strategy is adopted to balance 

the global and local search abilities of the algorithm. 

Moreover, the immune operation is added into the algorithm 

to realize optimal whale individual selection, improving the 

identification accuracy of WOA. The relationships between 

model parameters and supplying current are also 

investigated to set up a generalized field-dependent model, 

which is finally proved to be feasible in the control 

application using MRF VSD. 

The reminder of this paper is given as following. The 

design description and dynamic tests of MRF VSD will be 

introduced in Section 2 together with the analysis of 

captured nonlinear responses. Section 3 presents the 

rotational hysteresis model as well as problem statement for 

model parameter identification. A modified WOA and its 

procedure for parameter identification are described in 

detail in Section 4. Section 5 assesses the performance of 

the proposed model, and discusses the effectiveness of the 

modified WOA through the comparison with other 

homologous optimization algorithms. Eventually, a 

conclusion is addressed in Section 6. 
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2. Variable rotational stiffness device 
 

2.1 Design of MRF VSD  
 

A disk-type MRF VSD was developed and prototyped 

as an intelligent structural component, in which the torque 

resistance of the device is able to be instantaneously tuned 

according to the applied electricity current (Li and Li 2014). 

It is principally made up of two matching housings to 

construct the empty hole, the rounded coils to generate the 

magnetic fields for the magnetization of MRFs, a shaft that 

is connected with a rotational thin plate therein to transmit 

the torque of the device and smart materials (MRFs) 

between the plate and housing, which is shown in Fig. 2 (a) 

and (b). Two bearings are installed between the housing and 

shaft to guarantee the rotational movement of the device. 

The gap between the housing and the plate is around 1 mm 

to support the MRFs (MRF140GG, Lord Corp) inside the 

device, which are capable of providing the yield stress as 

high as 60,000 Pa at the saturated magnetic field of 1 T. 

Accordingly, the device is able to generate around 15 Nm of 

torque with the saturated current of 2 A because of good 

shear performance of MRFs. 

Due to the distinct characteristics of MRF, the MRF 

VSD can change the torque resistance in real-time given the 

changeable magnetic fields. In addition, this device has the 

benefits of low energy consumption (Zhu et al. 2012), easy 

installation and quick response, which make the physical 

properties of the intelligent structure with the smart device, 

such as damping and stiffness, instantly field-controllable. 

 

2.2 Dynamic test of MRF VSD 
 
To evaluate and characterize the nonlinear torque-

angular/angular velocity responses of MRF VSD, a series of 

tests are carried out in the Structures Laboratory at 

University of Technology Sydney. Because this device is 

generally used as a joint connector, it is of great necessity to 

evaluate its dynamic performance against horizontal 

loadings. When the structure is experiencing hazard 

external loading, i.e. strong wind, earthquake, etc., the 

major movement in the structural elements attached to the 

MRF VSD is the horizontal movement of the adjacent 

beam. Therefore, a uniaxial shake table, with the capacity of 

10 T and scale of 3×3 m
2
, is utilized to simulate the 

horizontal motion of the floor plate. Additionally, unlike 

conventional MR rotary dampers, the angular movement in 

MRF VSD as a joint is relatively small (less than 15 

degrees), so the proposed experimental setup (shown in Fig. 

3) is more favourable, in which the MRF VSD is installed 

on the ground by a supporter. Two steel plates and a steel 

rod are utilized to attach the device to the shake table. The 

load cell (Model No CSBA-500L, Curiosity Technology 

Co. Ltd), connected to the rod, is used to gauge the 

generated forces to the smart device. The current amplifier 

(Model No ADA4312, ANALOG DEVICES) is employed 

to generate the current to the electromagnetic coil of the 

device to produce satisfying magnetic field. Two LPS 

displacement transducers (Model No LIPS 117, POSITEK), 

with the scale of 5-350 mm, are also adopted to respectively 

gauge the vertical and horizontal displacements of the rod 

tip. The dSPACE is employed to control and monitor the 

generated electricity current. 

During the tests, various sinusoid excitations are chosen 

to drive the MRF VSD. The loading amplitude ranges from 

7.06 mm to 28.20 mm, corresponding to the maximal 

rotatory angles of 2, 5 and 8 degrees. The excitation 

frequencies are selected as 0.5 Hz, 1 Hz, 2 Hz and 3 Hz, 

because the dominant seismic frequencies are in the range 

of 0.1-5 Hz. To evaluate the current-dependent capacity of 

the device, five current levels are used to energize the MRF 

VSD, i.e. 0 A, 0.5 A, 1 A, 1.5 A and 2 A. 
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(a) Cross-section view (b) Real objective  

Fig. 2 Design and prototype of MRF VSD 
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(a) Sketch of experimental setup 
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(b) Setup in the laboratory 

Fig. 3 Experimental setup for dynamic testing of MRF 

VSD 

305



 

Yang Yu, Yancheng Li, Jianchun Li and Xiaoyu Gu 

During the test, the sampling frequency is set as 2048 Hz to 

fully get the dynamic characteristics of the device. The data 

collected during the testing are recorded by a local 

computer for model development and validation. To 

guarantee a stable performance of the MRF VSD, more than 

5 cycles are gauged for every loading condition. 

Temperature of the device is controlled as the same level for 

each test. 

 

2.3 Nonlinear response of MRF VSD 
 

Fig. 4 shows an example of measured dynamic 

responses of MRF VSD with different current levels when it 

is excited by the harmonic loadings with 2 Hz frequency 

and 17.54 mm amplitude. The torque-angular displacement 

responses are described in Fig. 4(a) while Fig. 4(b) presents 

the relationships between torques and angular velocities. It 

is clearly seen that the hysteresis loops steadily increase 

with the adding current level, reflecting in the enclosed area 

of the responses. When there is no current applied to the 

device, the relationship between the torque and angular 

displacement shows almost elliptic, which signifies the 

device with viscous characteristic. With the increase of 

applied current level, it is evident that the slopes of both 

torque-angular displacement and torque-angular velocity 

loops linearly ascend. 
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(b) Torque-angular velocity responses 

Fig. 4 Nonlinear responses of MRF VSD supplied with 

different current levels (2Hz-17.65 mm) 

 

 

3. Dynamic modeling of MRF VSD 
 

3.1 The rotational hysteresis model  
 

The main challenge of modeling this device is how to 

account for highly nonlinear and hysteretic behavior of 

MRF material. As described in Fig. 4, the MRF VSD 

exhibits the response features of MRF with close linearity at 

pre-yield regions, torque roll off phenomenon at low 

angular velocities and hysteretic effect at post-yield regions. 

Accordingly, the characterization of MRF VSD can refer to 

existing models of MRF or other MRF-based device. In 

(Wereley et al. 1999, Hu and Wereley 2008), to perfectly 

portray the unique behaviors of MRF damper at pre-yield 

and post-yield regions, a stiffness-viscosity-elasto-slide 

model was proposed, consisting of the linear combination 

of a linear stiffness component, a linear viscous dashpot 

component and a nonlinear elasto-slide component. In this 

model, the dashpot and spring components are used to 

provide linear damping and essential slope to the hysteretic 

responses of MRF damper while the elasto-slide component 

is employed to describe the stiffness in the area where the 

velocity varies the sign. 

In the same way, the developed model for MRF VSD 

will follow the structure of the stiffness-viscosity-elasto-

slide model due to similar features of response curve caused 

by MRF material. Fig. 5 gives the response decomposition 

of a typical torque-angular velocity loop of MRF VSD. It is 

noticeable that the response curve can be decomposed into 

three separate sub-curves associated with different 

components in the model: rotational stiffness component, 

rotational damping component and an S-shape component. 

Therefore, the developed model with such type of structure 

is feasible to describe the nonlinear and hysteretic responses 

of MRF VSD. However, there are a large number of 

functions that can be selected to illustrate the S-shape curve, 

such as hyperbolic tangent function, arctangent function, 

the Gauss error function, algebraic function and logistic 

function. Fig. 6 gives the curve shapes of different S-curve 

functions. In this work, the Gauss error function is selected 

due to the steepest slope among all the curves, which fits 

well with the change tendency of torque-angular velocity 

response of MRF VSD under harmonic excitations. As a 

result, the specific model configuration and expression can 

be demonstrated by Fig. 7 and Eqs. (1) and (2): 

𝑇(𝑡) = 𝑘(𝑓, 𝐴, 𝐼) ⋅ 𝜃(𝑡) + 𝑐(𝑓, 𝐴, 𝐼) ⋅ �̇�(𝑡) + 𝛼(𝑓, 𝐴, 𝐼) ⋅ 𝑦 + 𝑇0 (1) 

𝑦 = erf[𝛽(𝑓, 𝐴, 𝐼) ⋅ �̇�(𝑡) + 𝛾(𝑓, 𝐴, 𝐼) ⋅ 𝑠𝑖𝑔𝑛(𝜃(𝑡))] (2) 

where f, A and I denote excitation frequency, amplitude and 

applied current, respectively; θ and �̇� denote the angular 

displacement and angular velocity, respectively; T denotes 

the device torque resistance; T0 denotes the initial torque 

resistance of the device, which can be calculated via 

averaging the maximum and minimum values of captured 

torques under each excitation condition; k and c denote the 

rotational stiffness and damping coefficients, respectively; α 

denotes the hysteretic scale coefficient; β is a parameter to 

determine the slope of torque-angular velocity response; γ is  
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a parameter that is used together with sign of angular 

displacement to define the width of the S-shape hysteresis; 

erf(·) denotes the Gauss error function with the following 

expression 

21
erf ( )

x
t

x
x e dt






   (3) 

In this model, the term k∙θ accounts for the opening 

observed from the area of zero angular velocity in the 

response; the term c∙�̇� is used to describe the post yield 

relationship between angular velocity and joint torque 

resistance; α is designed to scale the whole hysteresis via 

adjusting the height of the hysteretic loop; β is a coefficient 

of the angular velocity of MRF VSD to regulate the slope of 

the hysteresis loop; γ is a parameter to control the width of 

the hysteresis loop via the angular displacement sign 

(sign(θ(t)). Among them, k, c, α, β and γ are parameters to 

be identified, the values of which are associated with 

external loading conditions such as excitation frequency f, 

amplitude A and applied current level I to the device. 
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Fig. 6 S-shape performances of different functions 
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Fig. 7 The proposed rotational hysteresis model 

 

 

3.2 Model identification 
 

Parameter identification of the proposed model is 

deemed as solving a global optimization problem, in which 

the optimal values of model parameters can be obtained via 

minimizing the errors between experimental measurements 

and model predictions. In this work, the procedure of model 

identification will be divided into two phases. In the first 

phase, model parameters, considered as constant values, are 

identified under each loading condition. In the second 

phase, the relationships between parameters and excitation 

frequency and amplitude as well as applied current are 

investigated, contributing to a generalized rotational 

hysteresis model. Here, mean square error (MSE) between 

testing data and model outputs in one sampling cycle is 

selected as the objective function H(X), shown as follows 

2

exp

1

1
( ) [ ( ) ( )]

N

i

H X T i T i
N 

   (4) 
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Fig. 5 Decomposition of the output response of MRF VSD 
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𝑇(𝑖) = 𝑘 ⋅ 𝜃(𝑖) + 𝑐 ⋅ �̇�(𝑖) + 𝛼 ⋅ 𝑦(𝑖) + 𝑇0 (5) 

𝑦(𝑖) = erf[𝛽 ⋅ �̇�(𝑖) + 𝛾 ⋅ 𝑠𝑖𝑔𝑛(𝜃(𝑖))] (6) 

where Texp(i), θ(i) and �̇� (i) denote the captured torque 

resistance, angular displacement and angular velocity at 

time ti, respectively. If the value of the objective function is 

minimized to 0, the corresponding solution X=[k, c, α, β, γ] 

will be the optimal values of model parameters for MRF 

VSD. Due to the nonlinear relationships among identified 

parameters, the optimization algorithm is employed to 

calculate the optimal solution and the proposed method will 

be detailed in the next section. The schematic of model 

parameter identification for MRF VSD is shown in Fig. 8. 

 

 

4. Methodology 
 

4.1 Outline of whale optimization algorithm  

 

Inspired by the foraging behavior of humpback whale 

swarm, Mirjalili and Lewis (2016) developed a meta-

heuristic algorithm – whale optimization algorithm (WOA) 

as an effective tool to solve engineering optimization 

problems. Since humpback whales like hunting small fish 

herds and krill near the surface, they can produce unusual 

bubbles in a spiral shaped way close to the prey and in the 

meantime swim towards the preys. The WOA has three 

operations to imitate the humpback whales‟ behaviors of 

shrinking encircling prey, bubble-net attacking and search 

for prey. The detailed description and formulation of each 

operation is proved as follows. 

1) Encircling prey. In the whale swarm, the present 

optimal individual is regarded as the objective of prey and 

other candidates will swim towards it via updating their 

locations according to the following equations. 

( 1) ( )optn n   X X A D  (7) 

( ) ( )opt n n  D C X X  (8) 

2  A a r a  (9) 

2 C r  (10) 
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Fig. 8 Schematic of model parameter identification for 

MRF VSD 

 

where n denotes the current iteration number, X denotes the 

location vector, Xopt denotes the location vector of best 

individual at present, A and C denote coefficient vectors, a 

denotes the vector with linearly declining elements from 2 

to 0 during the algorithm iteration, and r denotes the 

random number vector with the element values between 0 

and 1. 

2) Bubble-net attacking. Two methods are utilized to 

simulate this exploitation behavior of whales. First, a 

shrinking encircling mechanism is introduced based on 

random numbers in the sector A as illustrated in Eq. (9). 

The new location of a whale is able to be determined 

anywhere between original location of this whale and the 

location of current best one. Second, a spiral strategy is 

employed to update the locations of whales to simulate a 

helix shaped activity of whale swarm, shown in the 

following equation 

( 1) cos(2 ) ( )bl

optn e l n    X D X  (11) 

( ) ( )opt n n  D X X  (12) 

where D′ denotes the distance between whale and the prey 

(currently optimal solution), b denotes a constant parameter 

that is used to regulate the shape of the logarithmic spiral, 

and l denotes the random number between -1 and 1. To 

obtain an optimal performance, a probability of 0.5 is 

selected to optimize the locations of humpback whales 

between shrinking encircling operation and spiral strategy. 

3) Search for prey. In this phase, the vector A with 

random values will be evaluated. If the A is more than 1 or 

less than -1, the locations of whales will be updated in 

accordance with a randomly selected individual rather than 

the optimal agent at present. The corresponding equations 

are given as follows 

( 1) ( )randn n   X X A D  (13) 

( ) ( )rand n n  D C X X  (14) 

where Xrand is randomly selected from the whale swarm at 

the present iteration. The further details on WOA can be 

found in (Mirjalili and Lewis 2016). 

 

4.2 Modified whale optimization algorithm  

 

Although standard WOA is simple and easy to 

understand and implement, it always suffers from the 

problem of premature that may make the algorithm fall into 

the local optimum when dealing with the complicated 

global optimization problems (Su et al. 2018). The main 

reason contributing to this phenomenon is the diversity of 

the whale swarm. Because the initial locations of humpback 

whales are randomly selected, it may generate non-uniform 

distribution of the whale swarm, leading to poor global 

search ability of the algorithm. In this study, to solve this 

problem and improve the accuracy of the solution, a 

modified WOA (MWOA) is proposed, in which two 

significant improvements have been made and incorporated 

into the standard WOA. 
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Fig. 9 Comparison between linear and nonlinear 

decreasing functions 

 

 

The first modification is to replace the linearly 

decreasing coefficient a with a nonlinear updating 

mechanism, in which coefficient a is defined as a nonlinear 

function of iteration number. Fig. 9 gives an example of the 

comparison between linear and nonlinear decreasing 

functions. It is noticeable that compared with linear 

function, the nonlinear one can keep a slowly descending 

speed in the early stage of iteration and reach its minimal 

value much quickly in the later stage. In that case, elements 

in vector A generally have the big values initially and have 

small values at the end of algorithm iteration. As a 

consequence, in the initial iterations, the humpback whales 

have more chances to conduct the exploration behavior and 

search for prey (|A|≥1) so that it benefits the algorithm with 

a big search space to easily find the rough location of global 

optimum and avoid the search in the local region. However, 

in the later stage of evolution, the whales have more 

opportunities to conduct the exploitation behavior (|A|<1) 

so that the local research ability of WOA will be enhanced 

which can guarantee the algorithm accurately find the 

global optimum with faster convergence. Several 

nonlinearly decreasing functions have been proposed in 

previous studies for different engineering applications. In 

this work, a type of sigmoid function is chosen as the 

transfer function due to its outstanding nonlinear prediction 

ability, the expression of which is shown as 

410 ( )

2
n

Na e
 

   (15) 

where n and N denote the current and maximum iteration 

numbers, respectively. 

The second modification is the introduction of immune 

operation to keep the best individuals in the whale swarm. 

Because bubble-net attacking behavior is a random process, 

the humpback whales tend to be premature convergence and 

fall into the local optimum. To prevent this problem, 

immune operation is employed in the MWOA, which is on 

basis of vertebrate immune system with an organism which 

protects itself from external disease. In this operation, the 

fitness function and corresponding solution are regarded as 

antigen and antibody, respectively. The match-degree 

between fitness and solution is represented by the proximity 

degree (affinity) between antigen and antibody, which 

causes the candidate antibodies to evolve. The similarity 

between every pair of solutions is represented by the 

concentration between corresponding antibodies, which can 

be used to monitor the diversity of the whale swarm. 

Accordingly, it is promising that the immune operation is 

added into the WOA to prevent the phenomenon of 

premature convergence. 

For the ith humpback whale, its location xi is 

represented by the antibody corresponding to the possible 

solution of the optimization problem. And the best location 

(prey) is represented by the antigen. Because the diversity 

of the whale swarm will be descended during the algorithm 

evolution, it is essential to preclude these antibodies with 

high concentrations for next-round iteration. In this study, 

the Euclidean distance is adopted to evaluate the proximity 

degree between a pair of antibodies: suppose fitness values 

of antibodies xi and xj are denoted by f(xi,ci) and f(xj,cj), and 

the proximity degree and concentration will be expressed by 

the following equations 

1

( ) ( , ) ( , )
M

i i i j j

j

p x f x c f x c


   (16) 

1
( )

( )
i

i

Dy x
p x

  (17) 

where M denotes the antibody number and its value is 10 in 

this study; p(xi) and Dy(xi) denote the proximity degree and 

concentrate between antibody xi and other antibodies. It is 

clearly seen that the larger the value of p(xi) is, the smaller 

the Dy(xi) will be. Based on p(xi) and Dy(xi), a selection 

probability of antibody xi is defined as 

1

1 1 1
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i i j
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

 





 
 (18) 

According to the above equation, it is obvious that 

antibodies with high concentrations have low probabilities 

to be selected. Otherwise, it will be selected with high 

probabilities. In this way, poor antibodies are excluded via 

the selection strategy. Then, the antibodies with high fitness 

values are used to produce new antibodies as the elements 

of the cloning set, which is able to guarantee the diversity of 

the humpback whales via the replacement of excluded 

antibodies. 

 

4.3 Model parameter identification based on MWOA  
 

In this work, the MWOA is employed to estimate the 

optimal parameters of proposed rotational hysteresis model 

of MRF VSD. The detailed procedure of model 

identification, shown in Fig. 10, is described as follows: 

Step 1. Determine the fitness function of the optimization 

problem and parameter setting of MOWA. In this research, 

the fitness function is given by Eq. (4) and algorithm 

parameters can be adjusted by trials according to the 

specific problem. 

Step 2. Randomly initialize the locations of each humpback 
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whale, set current iteration number n=1, and update r, a, A, 

C, l and p according to Eqs. (9)- (11) or random generation. 

Step 3. Update the locations of whales. Judge the value of 

p: if p≥0.5, the humpback whales will execute bubble-net 

attacking behavior and update their locations according to 

the spiral Eq. (11). Or else, evaluate the absolute value of A. 

If |A|<1, update the whales‟ location using Eqs. (7) and (8); 

if |A|≥1, the search for prey behavior will be conducted and 

the locations of humpback whales will be updated by Eqs. 

(13) and (14). 

Step 4. Check whether each individual gets out of the 

search space and modify it. 

Step 5. Calculate the fitness of each whale and compare it 

with the current optimal fitness value. If the calculated 

fitness is better than current optimal one, record this fitness 

value and corresponding location X as best fitness and Xopt.  

Step 6. After the pre-set Nd iterations, if the optimal fitness 

is not changed, carry out the immune operation. Here, Nd is 

set as 30. 

Step 7. Calculate the selection probabilities of each 

candidate according to Eqs. (16)-(18). Then, based on the 

probabilities, the candidates with high fitness values will be 

employed to generate new individuals to replace the poor 

ones based on clonal proliferation operation. 

Step 8. Evaluate the stopping criteria. In this study, the 

maximum iteration number N is seemed as the stopping 

condition. If the current iteration number is larger than the 

maximum value (n>N), the algorithm evolution will be 

stopped and the optimal solution will be outputted. 

Otherwise, n=n+1 and move to Step 2 to re-update r, a, A, 

C, l and p. 
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Determine fitness function and set 

parameters of MWOA

Initialise the location of each 
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Update r, a, A, C, l and p. 
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Fig. 10 Algorithm procedure of MWOA to identify the 

model parameters 

 

5 Results and discussions 
 

5.1 Algorithm setting and evaluation 
 

The MWOA is implemented based on MATLAB 

v.2015a, in which there are three important algorithm 

parameters to be determined before the MWOA is adopted 

to identify the proposed model of MRF VSD, i.e., 

population number of humpback whale Npop, maximum 

iteration number N and parameter to define the shape of 

logarithmic spiral b. Previous study suggested that b is not a 

very sensitive parameter associated with algorithm 

performance (Kaveh and Ghazaan 2017). Consequently, its 

value should be determined first given the fixed Npop and N. 

In this part, the values of Npop and N are selected as 30 and 

400 according to (Kaveh and Ghazaan 2017). Fig. 11 gives 

the mean MSE of identification results using MWOA with 

different values of b. From the figure, it is noticeable that 

the value of MSE does not change too much with the 

different values of b from 0.5 to 2. However, comparison 

result shows that 1.2 should be most reliable value that 

contributes to a small MSE (0.0616). Then, the value of b is 

fixed to 1.2 and the influences of population number and 

maximum iteration on MSE are investigated. Here, various 

population numbers of humpback whale range from 10 to 

50 with an interval of 10 while the maximum iteration 

numbers are chosen as 300, 400, 500, 600, 700, 800, 900 

and 1000. Fig. 12 shows the graph of mean MSEs under 

different combinations of population number and maximum 

iteration number. It is apparent that the higher Npop and N 

can result in better MSE result but require more calculation 

time meanwhile. Especially when the population number is 

over 30 or the maximum iteration number is over 600, the 

RMS changes less with the increasing values. As a 

consequence, to reduce the calculation amount, the optimal 

combination of population number and maximum iteration 

number is selected as (40, 800), corresponding to the MSE 

of 0.0613. 
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Fig. 11 Effect of parameter b on algorithm fitness 
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Fig. 12 Effects of population size and maximum iteration 

on algorithm fitness with fixed b 

 
 
In order to prove the superiority of the MWOA over other 

commonly used optimization algorithms in parameter 

identification of the proposed model, a comparative study is 

conducted based on experimental data collected from the 

device with 3 Hz frequency and 17.65 mm amplitude 

excitation together with 1 A supplying current. In addition 

to MWOA, four common optimization algorithms, WOA, 

GA, PSO and monkey algorithm (MA), are selected for this 

investigation. MSE value and convergence rate are 

employed as evaluation indices to indicate the algorithm 

performance. To make a fair assessment, the population size 

and maximum iteration of all the algorithms are set as 40 

and 800, respectively. Other parameter setting of each 

algorithm can be referred in (Li Voti 2018, Fesharaki and 

Golabi 2016, Yi et al. 2015). Fig. 13 illustrates the 

comparison result of convergence rates of different 

optimization algorithms. It is noted that PSO has the worst 

performance among all the testing algorithms in terms of 

MSE. The main reason contributing to this phenomenon is 

that in the PSO, the algorithm iteration is mainly dependent 

on initial solution scale. If the particles search the optimal 

solution in a relatively large space, the PSO is easy to fall 

into the local optimum, leading to the worse identification 

accuracy. Although MWOA reaches his optimal solution a 

little more slowly than WOA, GA and MA, it has the best 

fitness value, which is due to the local adjustment in the 
later stage of algorithm evolution. Accordingly, the MWOA 

can be regarded as a promising tool to identify the 

parameters of the proposed rotational hysteresis model for 

MRF VSD. 
 

5.2 Model identification results 

 

Based on the proposed MWOA with selected parameters 

in Section 5.1, the parameters of the rotational hysteresis 

model are identified for all the loading conditions, part 

results of which are shown in Figs. 14-16. Fig. 14 

demonstrates the performance of the proposed model to 

predict the torque responses of the device with different 

applied current levels when the excitation condition is 1 Hz 

frequency and 7.06 mm amplitude. As can be seen from the 

figure, the increasing current can result in the adding 

nonlinear torque-angular velocity responses of the device. 

Five groups of comparisons between model predictions and 

experimental results have verified the effectiveness of this 

rotational hysteresis model to capture the responses with the 

adding current. Particularly, in each response loop, the 

reconstructed hysteresis fits well with the nonlinear 

phenomenon of the responses.  
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Fig. 13 Algorithm performance evaluation 
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(b) Torque-angular velocity responses 

Fig. 14 Response comparisons between experimental 

data and model predictions under different applied 

currents (7.06 mm – 1 Hz) 
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Fig. 15 investigates the ability of the model to describe 

the frequency-dependent feature of the device. In this study, 

the device is driven by 17.65 mm loading amplitude and 

supplied with 1 A current. The excitation frequency ranges 

from 0.5 Hz to 3 Hz. The results obviously show that the 

loading frequency has little effect on maximum torque of 

the responses. However, the ascending frequency will 

induce the growing nonlinear torque-angular velocity 

relationship. The perfectly matched loops in the figure 

illustrate that this model is capable of accurately portraying 

the frequency dependent phenomenon of the MRF VSD. 

Fig. 16 compares the reconstructed responses with 

measured responses of the device with 0.5 Hz excitation 

frequency, 1.5 A applied current and different loading 

amplitudes, i.e., 7.06 mm, 17.65 mm and 28.2 mm. It is 

clearly seen that the hysteresis loops exhibit the shape of 

irregular rectangular with dull turns at right bottom and left 

top corners, which demonstrates the effect of the angular 

velocity on the device responses. Apparently, the angular 

velocity has little impact on peak value of torque but will 

affect the shape of response loops, as described in Fig. 

16(b). Good agreements between experimental and 

reconstructed responses effectively validate the ability of 

the proposed model to describe this characteristic of the 

device. 
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(b) Torque-angular velocity responses 

Fig. 15 Response comparisons between experimental 

data and model predictions under different loading 

frequencies (17.65 mm – 1 A) 
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(b) Torque-angular velocity responses 

Fig. 16 Response comparisons between experimental 

data and model predictions under different loading 

amplitudes (0.5 Hz – 1.5 A) 

 
 

To illustrate the proposed model with better 

performance to characterize MRF VSD than existing 

models, further investigation is conducted based on the 

comparison between the proposed model and other model in 

terms of reconstructed curve and MSE. Here, a hybrid 

model, reported in (Royel et al. 2015), is employed as the 
comparison object. Its mathematical expression is shown in 

Eq. (19). 

𝑇(𝜃) = {
𝛿 + 𝜀 ⋅ tanh(𝜑 ⋅ �̇�) + 𝜆 ⋅ 𝑒

−
�̇�2

2𝜎2 , �̈� ≥ 0 

𝛿 + 𝜀 ⋅ tanh(𝜑 ⋅ �̇�) − 𝜆 ⋅ 𝑒
−

�̇�2

2𝜎2 , �̈� ≥ 0 

 (19) 

where δ, ε, φ, λ and ζ are identified parameters in the model. 

Figs. 17 and 18 give the comparisons between experimental 

and reconstructed responses from both the proposed and 

hybrid models respectively, when the MRF VSD is driven 

by 1 Hz frequency harmonic excitation without any current 

input. The results show that under small loading amplitude 

(7.06 mm) excitations, the hybrid model has similar 

modeling accuracy as the proposed model. However, when 

the loading amplitude is increased to 28.2 mm, the hybrid 

model is not capable of accurately capturing the device 

responses. Especially at the saturation areas (circled in the 

figure), the reconstructed response has obvious deviations. 

On the contrary, torque outputs from the proposed model  
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Table 1 MSEs of both proposed and hybrid models for all loading conditions 

Loading condition MSE Loading condition MSE 

Frequency Amplitude Current Proposed Hybrid Frequency Amplitude Current Proposed Hybrid 

0.5 Hz 

7.06 mm 

0 A 0.0019 0.0013 

1 Hz 

7.06 mm 

0 A 0.0006 0.0038 

0.5 A 0.0046 0.0042 0.5 A 0.0029 0.0153 

1 A 0.0184 0.0199 1 A 0.0153 0.0747 

1.5 A 0.0303 0.1098 1.5 A 0.0186 0.0915 

2 A 0.0710 0.3704 2 A 0.0264 0.1489 

17.65 mm 

0 A 0.0011 0.0009 

17.65 mm 

0 A 0.0003 0.0095 

0.5 A 0.0082 0.0246 0.5 A 0.0044 0.0254 

1 A 0.0507 0.1783 1 A 0.0294 0.0933 

1.5 A 0.1128 0.2548 1.5 A 0.1055 0.3661 

2 A 0.1654 0.4872 2 A 0.1589 0.4387 

28.2 mm 

0 A 0.0008 0.0111 

28.2 mm 

0 A 0.0003 0.0118 

0.5 A 0.0132 0.0582 0.5 A 0.0073 0.0247 

1 A 0.0902 0.2391 1 A 0.0729 0.1701 

1.5 A 0.2051 0.5113 1.5 A 0.1965 0.4465 

2 A 0.3375 0.7205 2 A 0.3318 0.7743 

2 Hz 

7.06 mm 

0 A 0.0003 0.0047 

3 Hz 

7.06 mm 

0 A 0.0007 0.0006 

0.5 A 0.0021 0.0085 0.5 A 0.0043 0.0041 

1 A 0.0146 0.0481 1 A 0.0181 0.0564 

1.5 A 0.0176 0.0636 1.5 A 0.0205 0.0931 

2 A 0.0474 0.2005 2 A 0.0306 0.1982 

17.65 mm 

0 A 0.0003 0.0084 

17.65 mm 

0 A 0.0011 0.0098 

0.5 A 0.0032 0.0192 0.5 A 0.0042 0.0279 

1 A 0.0267 0.1537 1 A 0.0422 0.2035 

1.5 A 0.0748 0.3109 1.5 A 0.0848 0.3821 

2 A 0.1274 0.5673 2 A 0.1777 0.6320 

28.2 mm 

0 A 0.0013 0.0104 

28.2 mm 

0 A 0.0011 0.0095 

0.5 A 0.0062 0.0628 0.5 A 0.0102 0.0753 

1 A 0.0708 0.2367 1 A 0.0362 0.1905 

1.5 A 0.2265 0.5804 1.5 A 0.0933 0.4182 

2 A 0.3797 0.8164 2 A 0.1773 0.6539 
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Fig. 17 Torque-angular velocity response comparisons between experimental data and predictions from the proposed 

model 
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still agree well with the experimental results even at large 

amplitude excitations. Table 1 summarizes the calculated 

MSEs of both proposed and hybrid models for all the 

loading conditions. It is observed that the proposed model 

outperforms the hybrid one for almost all the cases except 

the cases of 7.06 mm amplitude with 0.5 Hz and 1 Hz 

frequencies and 0 A and 0.5 A currents as well as 17.65 mm 

amplitude with 0.5 Hz frequency and 0 A current. 

Accordingly, compared with the existing model, the 

proposed rotational hysteresis model could be regarded as a 

better solution for the design of the feedback controller. 
 

 
 

 
 
 
5.3 Generalized rotational hysteresis model 
 

The identification results in Section 5.2 indicate that 

parameter values of the proposed model are closely 

associated with the loading condition, including excitation 

frequency, amplitude and applied electricity current. 

However, in the practical application, it is unnecessary to 

obtain the relationships between model parameters and 

loading frequency and amplitude, as the external excitation 

is always changeable and uncontrollable. Therefore, only 

current-dependent property of the model is desirable to 

implement the adaptive control of output torque resistance 
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Fig. 18 Torque-angular velocity response comparisons between experimental data and predictions from the hybrid model 

0.0 0.5 1.0 1.5 2.0
-20

-10

0

10

20

30

40

50

V
al

u
e 

o
f 

k

Current / A

 Experimental result

 Fitting curve

 

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

 Experimental result

 Fitting curve

V
al

u
e 

o
f 

c

Current / A  

0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10

12  Experimental result

 Fitting curve

V
al

u
e 

o
f 


Current / A

 

(a) Parameter k (b) Parameter c (c) Parameter α 

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

30

35
 Experimental result

 Fitting curve

V
al

u
e 

o
f 


Current / A  

0.0 0.5 1.0 1.5 2.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 Experimental result

 Fitting curve

V
al

u
e 

o
f 


Current / A  
(d) Parameter β (e) Parameter γ 

Fig. 19 Relationships between model parameters and current level 
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of the device. In this case, the parameters estimated from 

the rotational hysteresis model with various loading 

conditions are divided into different groups corresponding 

to different supplying currents. Next, the mean values of the 

parameter values are calculated at each current level, 

depicted in Fig. 19. The result in the figure clearly indicates 

that all the parameters have the almost linear relationships 

with current level, which may be expressed by 1st-order 

polynomial functions. It is noticeable from Fig. 19(a) that 

the rotational stiffness (parameter k) of the device shows 

significant change (500% increases) with the increase of 

applied current, sufficiently verifying the capacity of the 

developed VSD. Then, Curve Fitting Toolbox in MATLAB 

is employed to identify the coefficient values of polynomial 

functions with the following results. 

( ) 10.41 28.48k I I     (20) 

( ) 0.2324 2.061c I I    (21) 

( ) 0.7702 4.971I I     (22) 

( ) 18.51I   (23) 

( ) 0.4547 0.2669I I     (24) 

Hence, a generalized model with current-dependent 

parameters is established with the following expression 

𝑇𝑀 = 𝑘(𝐼) ⋅ 𝜃 + 𝑐(𝐼) ⋅ �̇� + 𝛼(𝐼)

⋅ erf[𝛽(𝐼) ⋅ �̇� + 𝛾(𝐼) ⋅ 𝑠𝑖𝑔𝑛(𝜃)] (25) 

To demonstrate the effectiveness of this model, Fig. 20 

shows the tracking performance of the generalized 

hysteresis model along time from various applied currents 

at 0 A, 0.5 A, 1 A, 1.5 A and 2 A and harmonic excitations 

with 1 Hz frequency and 17.65 mm amplitude.  
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Fig. 20 Comparison between experimental data and the 

generalized rotational hysteresis model outputs for 

different applied currents (1 Hz – 17.65 mm) 

 

 
The comparison result indicates that the torque output from 

the generalized model well agrees with the measured 

torques and the model is capable of well capturing the 

nonlinear dynamics of MRF VSD. This outcome 

demonstrates the reliability and feasibility of this current-

dependent model for its application in the vibration 

controller design for beam structure using MRF VSDs. 
 
 
6. Conclusions 

 

This paper presented a rotational hysteresis model to 

demonstrate the nonlinear and hysteretic behavior of MRF 

VSD. This new model comprises a rotational spring, a 

viscous dashpot and a nonlinear hysteresis component with 

advantages of simple expression, few parameters and 

efficient computation. Model parameter identification can 

be considered as solving a global optimization problem, in 

which the error between experimental data and model 

prediction is used as the objective function. The solution of 

optimization problem was realized using a modified 

evolutionary algorithm based on WOA, in which the 

nonlinear parameter update strategy is introduced into 

conventional WOA to prevent the local optimal solution. 

The experimental data collected from an MRF VSD 

prototype with various loading conditions were employed 

for modeling validation. The result verifies that the 

proposed model is able to characterize the unique features 

of this device. The comparative studies were also conducted 

to indicate the superiorities of the proposed model and 

MWOA over existing MRF VSD model and optimization 

algorithms in terms of reconstructed response, MSE and 

convergence rate. Finally, a generalized rotational hysteresis 

model, based on the current-dependent property of the 

device, was established and evaluated with outstanding 

results. Accordingly, it is capable of being applied to the 

design of the controller for the real-time adaptive vibration 

control of intelligent structures equipped with MRF VSDs. 
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