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1. Introduction 
 

Unforeseen loading, Interaction with corrosive agents, 

temperature variation, material ageing and other events are 

affecting a structure during operation and consequently 

introduce undesired damage. Structural health monitoring 

and on time damage detection is one of the common 

interests in different fields of engineering in order to 

preventative measures to avoid human casualties and 

financial detriment. In this way, damage detection using 

vibratory data become interesting and popular due to low 

cost and the ability to monitor the whole of the structure by 

measuring a few limited points. Vibration based damage 

detection techniques are established based on the fact that, 

the modal parameters such as natural frequencies, mode 

shapes and damping ratio are proportional to physical and 

geometrical parameters of the structure and any change in 

modal parameters is originated from change in physical or 

geometrical properties. Also, dynamic response or forced 

vibration response of the structure affected by damage and 

becomes different. Detecting of damage is classified into 

four levels as follows (Carden and Fanning 2004, Meruane 

and Heylen 2011): 

Level 1. Determination that damage is exist or not; 

Level 2. Determination of the geometric location of the 

damage; 
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Level 3. Quantification of the severity of the damage; 

Level 4. Estimation of the residual lifetime. 

First and second levels does not need to any knowledge 

about model of structure. These two levels known as 

response based method. Although, second level need to 

know spatial data of system to detecting damage location. 

An analytical or numerical model of structure is necessary 

to performing third level. Fourth level needs complete 

information of third level and also needs information about 

damage propagation and fracture mechanics. Third and 

fourth levels are known as model based method in damage 

detection. Researchers‟ attention mainly focused on second 

and third levels, because early damage detection with 

suitable accuracy could help operator to make good 

decision about rehabilitation or stop utilization of structure. 

Model-based methods attempt to modify or update a 

primary numerical model of the damage structure until the 

produce model characteristics become similar to monitored 

structure.  A comprehensive review about different model-

based techniques for structural damage detection using 

vibration analysis has been presented by Fan and Qiao 

(2011). One of the interesting approaches to damage 

detection by using the model of the structure is inverse 

method. An objective functions is required for damage 

detection by inverse method. The objective function is 

defined as discrepancy between modal parameters or 

dynamic response of the model of the structure and the 

monitored structure. Whenever objective function value 

becomes zero or very small, the damage parameters are 

detected. Important issue in inverse method is the selection 

of appropriate damage index for developing objective 

 
 
 

An inverse approach based on uniform load surface for  
damage detection in structures 

 

Alborz Mirzabeigy1,2 and Reza Madoliat
1 

 
1School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846, Iran 

2Department of Structural, Building and Geotechnical engineering, Politecnico di Torino,Corso Ducadegli Abruzzi, Turin, 10129, Italy 

 
(Received July 14, 2018, Revised February 24, 2019, Accepted May 10, 2019) 

 
Abstract.  In this paper, an inverse approach based on uniform load surface (ULS) is presented for structural damage 

localization and quantification. The ULS is excellent approximation for deformed configuration of a structure under distributed 

unit force applied on all degrees of freedom. The ULS make use of natural frequencies and mode shapes of structure and in 

mathematical point of view is a weighted average of mode shapes. An objective function presented to damage detection is 

discrepancy between the ULS of monitored structure and numerical model of structure. Solving this objective function to find 

minimum value yields damage‟s parameters detection. The teaching-learning based optimization algorithm has been employed 

to solve inverse problem. The efficiency of present damage detection method is demonstrated through three numerical examples. 

By comparison between proposed objective function and another objective function which make use of natural frequencies and 

mode shapes, it is revealed present objective function have faster convergence and is more sensitive to damage. The method has 

good robustness against measurement noise and could detect damage by using the first few mode shapes. The results indicate 

that the proposed method is reliable technique to damage detection in structures. 
 

Keywords:  damage detection; uniform load surface; inverse approach; modal parameters; teaching-learning based 

optimization 

 

mailto:r_mdlt@yahoo.com


 

Alborz Mirzabeigy and Reza Madoliat 

function. Several objective functions proposed in literature 

for damage detection. Khiem and Lien (2004) were used 

natural frequencies to detect multi-crack in beam by 

problem formulation in the form of nonlinear optimization.  

Ruotolo and Surace (1997) were defined an objective 

function by using natural frequencies, modal curvature and 

normalized mode shapes for crack detection in the beam-

like structure and the genetic algorithm was used to solve 

the optimization problem. Raich and Liszkai (2007) were 

proposed an objective function by using frequency response 

function to damage detection in structures. Other researches 

on vibration based damage detection by using inverse 

method could be found in (Panigrahi et al. 2009, Perera et 

al. 2013, Kourehli et al. 2013, Hosseinzadeh et al. 2016, 

Fatahi and Moradi 2018, Seyedpoor et al. 2018, Nobahari et 

al. 2017, Vosoughi 2015).  

As explained by Fan and Qiao (2011), usually, damage 

detection methods are verified by beam-type or plate-type 

structures; because most structures or their major 

components in engineering can be simplified as a beam or 

plate. In this way, researchers to investigate on damage 

detection methods make use of beam (Khiem and Lien 

2004, Ruotolo and Surace 1997) or plate (Corrado et al. 

2015) for numerical simulation and experimental test. Some 

researchers applied truss as test structure to validate their 

methods (Lim and Kashangaki 1994). In some researches 

frame structure was object of damage detection (Ovanesova 

and Suarez 2004). Moradi and Tavaf (2013) applied an 

inverse approach to damage detection in circular cylindrical 

shells. A double-beam system made of two parallel beams 

connected together through an elastic layer considered as an 

approximate model for the sandwich beam in which the 

shearing behavior of soft core is neglected (Mirzabeigy et 

al. 20017). Nguyen (2016) tries to detect crack like damage 

in a double-beam system by using auxiliary mass. When 

researchers wants to show effectiveness of their proposed 

method for damage detection, validate it against at least one 

of the mentioned structures. 

This paper mainly focuses on validate performance and 

effectiveness of a new objective function for damage 

detection in structures. The objective is defined by using 

uniform load surface (ULS). The ULS is make use of 

natural frequencies and mode shapes and fuse data to 

estimate structural deflection under uniform load distributed 

over all degree of freedoms of structure. After illustration of 

ULS and presenting mathematical formulation, an objective 

function developed by using it. Then teaching-learning 

based optimization (TLBO) algorithm is introduced in order 

to solve objective function. Finally, the effectiveness and 

performance of developed objective function examined 

against three numerical examples and effect of different 

parameters studied. 

 

 

2. Proposed method 
 

After discritizing a structure - without any energy 

dissipation - by means of finite elements, the modal analysis 

could be performed to determine the natural frequencies and 

mode shape of the structure. The mathematical 

representation of modal analysis is as follows 

fii NiMK ,...,2,1,0)( 2    (1) 

where K and M are global stiffness and mass matrices of 

the structure, respectively; i is the i th natural frequency 

and i  is corresponding mode shape. fN  is total 

number of measured degrees of freedom or total number of 

sensors. In structural health monitoring, change in natural 

frequencies and mode shapes is sign of damage. Commonly, 

these modal parameters applied for constructing objective 

function and it is expect by maximizing or minimizing 

objective function the damage parameters will be identified. 

There is some concept in literature which found based on 

natural frequencies and mode shapes. Modal flexibility is 

one of them. The transformation of the modal parameters to 

modal flexibility matrix using r modes is as following 

T

rrrrF  1
 (2) 

where  is a matrix consist of mass-orthogonal and mass-

normalized mode shape vectors as following 
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 is a square matrix with zero off diagonal elements as 

follows 
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Each components of flexibility matrix in Eq. (2) is given by 
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physical interpretation of jiF ,  refers to deformation at 

point i of the structure if unit load applied at point j . If 

the structure loaded by a uniform unit load distribute all 

over the structure, the deformation at point i  is 

summation of modal flexibility between point  i  and all 

degrees of freedom as following 
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Eq. (6) is called uniform load surface (ULS) of structure. 

The ULS could be considered as a weighted average of 

mode shapes where weight factor is the inverse of the 

square of the natural frequencies. This weight factor leads 
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to the less contribution of higher order modes and the ULS 

converges to exact deformation only by the first few mode 

shapes. 

The ULS was first investigated by Zhang and Aktan 

(1998) and then applied in damage detection problems. 

Sung et al. (2013) were studied the effect of damage in 

slender beam on curvature of ULS. The results show that 

change in ULS curvature only occur at damage elements. 

Masoumi and Ashory (2014) were refine the ULS obtained 

from damage structure by means of stationary wavelet 

transform and then applied continuous wavelet transform to 

localize damage. 

As illustrated in introduction, the inverse methods are 

interesting to damage detection in structures. Also, the ULS 

of a structure has good information due to data fusion of 

frequencies and mode shapes. As a result, an objective 

function is developed for structural damage detection as 

follows 
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where 
mULS and 

*ULS are uniform load surface from 

FE model and uniform load surface of system with 

unknown damage, respectively. 

One way for damage modeling in structure is modulus 

of elasticity degradation. The modulus of elasticity of 

damaged element related to intact one through the following 

formula 

ii

d EE i )1(   (8) 

where i

d

i EE , and i  are elasticity modulus of element 

after damage, before damage and damage severity, 

respectively. The damage severity value change between 

[0,1], where 0 is correspond to healthy element and 1 is 

correspond to complete destruction of element. By this 

definition, the design variables of objective function 

become 
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An optimization method is required for solving Eq. (9) in 

order to find possible minimum value. In next section, 

Teaching-Learning based optimization method is introduced 

and will apply in numerical studies. 

 

 

3. Teaching-Learning based optimization 

 

Teaching-Learning based optimization (TLBO) is 

population based, metaheuristic algorithm inspired by the 

education procedure in a classroom. TLBO was proposed 

by Rao et al. (2012) and applied in different area of 

sciences and engineering (Singh et al. 2013, Basu 2014, 

Jordehi 2015). Logic behind TLBO is that learners 

(students) want to get better scores through education, so, 

teacher has great role. A good teacher could better educate 

learners and help to raise their scores or marks. The teacher 

quality could evaluate by mean value of class scores and the 

best teacher is who that his or her knowledge equals to 

mean value of class or teacher and learners have same 

knowledge. Except teacher education, learners could 

educate themselves by collaboration and reciprocate 

knowledge. TLBO simulate education from teacher and 

collaborative learning among students for finding global 

optimum. TLBO is parameter free and does not need to any 

parameters tuning, it requires only common controlling 

parameters like population size and number of generations 

for its working.  In this algorithm different decision 

variables are analogous to different subjects offered to 

students and student‟s overall result is analogous to the 

values of objective function. The procedure of TLBO is 

divided into two phases, the Teacher phase and the Learner 

phase. 

 

3.1 Teacher phase 
 
The first step of knowledge sharing in the TBLO is 

teacher phase which attempts to simulate teacher‟s 

influence on the student. During this phase the learners or 

students are motivated by the teacher and try to promote 

their knowledge which consequently yields to increase the 

mean result of the class in the subject taught by teacher. 

Consider N number of learner in the class and J  number 

of subject teaches to them. These are representing the 

population size of N with J design variables. At any 

iteration, the mean result of the class in a specific subject 

)J,...,,,(j 321 given by 
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where )j(X k  is the grade of learner k in subject j . 

The learner with the best overall grade taking all the 

subjects (or best fitness value) is designated as teacher and 

other learners move toward teacher to enhance their own 

overall grade via following equation 

))(()()( jFTeacher

old

k

new

k MTjXrjXjX   (11) 

where )j(X new
k and )j(X old

k  are new and old grade of 

learner k in subject j , r  is the random number in the 

range ],[ 10 , )j(XTeacher  is the teacher grade in subject 

j and FT  is teaching factor could be either 1 or 2 with 

equal probability. 
new

kX accept instead of old
kX if it gives 

better fitness function. At the end of each teaching cycle, 

the current best student will become the teacher for the next 

iteration. 

 

3.2 Learner phase 
 
After knowledge achievement by learners under teacher 

conduction, they could become more fit by mutual 

discussions and interactive learning. In this phase, for each 
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student p  from the class, another student q is randomly 

select, in such a way qp  . After fitness evaluation of 

both student if student p  be better than student q , then 

Jj
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where r  is the random number in the range ]1,0[ . new
pX

accept instead of old
pX if it gives better fitness function. 

 

 

4. Numerical examples 
 

This section is devoted to show applicability of 

proposed method in damage detection in structures. Three 

numerical cases are considered. As stated before, the TLBO 

is an algorithm for maximizing an objective function, while 

for solving objective function in Eq. (9), minimizing is 

desired. Therefore, the objective function applied in TLBO 

must be in the form of maximizing problem as follows 

Obj
ObjTLBO




1

1
 (14) 

where Obj was present in Eq. (9). It is obvious when 

TLBOObj become maximum, the value of Obj is minimum 

and damage‟s parameters are determined. 

The population of the students in the TLBO is 

considered 30 through all examples. Whenever the value of 

the objective function becomes less than 810 or the 

number of iterations becomes more than 1500, the 

optimization algorithm terminated and results of algorithm 

considered as damage parameters. 

 

4.1 A beam 
 
A beam with clamp-simply support boundary conditions 

is considered as first numerical example and depicted in 

Fig. 1. The physical and geometrical properties of this beam 

are as following: 

mLmmwmmh

mkgPaGE
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where E ,  , h , w and L  are modulus of elasticity, 

density, beam‟s height, beam‟s width and length, 

respectively. Based on different theories for beam modeling, 

the thin or Euler-Bernoulli beam theory could apply when 

the length of beam at least 10 times larger than the height. 

By considering the value of geometrical properties, the thin 

beam theory is adapted to modeling the system in Fig. 1. 

 

Fig. 1 Finite element model of the clamp-simply support 

beam 

 

 

The beam divided into 15 equal length elements. The 

stiffness and mass matrix of thin beam element is presented 

in Finite element books like Liu and Quek (2013). After 

assembling elements and deriving global stiffness and mass 

matrix, modal parameters like natural frequencies and mode 

shapes could be calculated and consequently the uniform 

load surface of system is achieved. 

In this numerical example, the main aim is to 

comparison between inverse method for damage detection 

using ULS and another inverse method which make use of 

natural frequencies and mode shapes in objective function 

as follows 
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where 
m

i and 
e

i are ith natural frequency of system 

from FE model and from system with unknown damage, 

respectively. n  is total number of measured natural 

frequencies and mode shapes. MAC is the modal assurance 

criterion that gives the correlation between two vectors. For 

damage detection, MAC is calculated by 
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where 
m

i and 
e

i are ith mode shape vector of system 

from FE model and from system with unknown damage, 

respectively. T is for vector transpose. The value of MAC

is a scalar quantity between [0,1]. Where zero means no 

correlation or orthogonality condition between vectors 

while one indicates two vectors are identical.  Objective 

function in Eq. (15) applied in different damage detection 

problems although sometimes a little change has been made 

by authors (Nanda et al. 2014, Oh et al. 2015, Wei et al. 

2018). 

Two different damage scenarios are presumed by 

reducing in modulus of elasticity of damaged elements, 

which are presented by detail in Table 1. It is assumed, the 

numbers of damages are given in this example. Single 

damage detection does not considered, because both 

objective functions have same efficiency in single damage 

detection. When the input data are noise free, both objective 

functions are able to correctly localize and quantify 

damaged elements based on scenario 1, therefore we study 

the effect of number of modes on convergence rate of 

objective function. The algorithm is performed five times 

for each objective function and best convergence rate 

considered. The convergence of the proposed objective 

function value is plotted in Fig. 2. As observed, using three 
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modes in objective function, accelerate algorithm in finding 

damage, it is reasonable because more applied mode shapes 

provide more information. Also, the convergence of the 

objective function value in Eq. (15) is plotted in Fig. 3. As 

seen, by using three modes, significant change in 

convergence rather than using two modes is observed. By 

comparison between Figs. 2 and 3, it is revealed the 

objective function based on ULS has rapid convergence rate 

rather than objective function in Eq. (15). After damages 

detection in scenario number 1, the second scenario has 

been investigated. In this scenario damages are not severe 

and located near supports. Objective function in Eq. (15) is 

not able to detect the damages in the scenario number 2 by 

use of two mode shapes. Optimization algorithm was 

conducted 10 times, but damages were not detected 

correctly. Also, the optimization problem in Eq. (15) was 

solved by genetic algorithm (GA), but no success was 

achieved in detecting the damages correctly. When the 

number of mode shapes increases from two to three, 

damages were successfully detected for 6 times by 

conducting the algorithm for 10 times. When four modes 

are used, algorithm could detect the damages in all 

performances. Unlike the objective function of Eq. (15), 

proposed objective function by using two mode shapes, is 

able to detect the damages in the scenario number 2 during 

all running processes. 

 

 

 

 

Fig. 2 Effect of modes numbers on convergence rate of 

proposed objective function in damage scenario 1 

detection in the beam 

 

 

 

Fig. 3 Effect of modes numbers on convergence rate of 

objective function in Eq. (15) in damage scenario 1 

detection in the beam 

 

 

Table 1 Assumed damage scenarios in the beam 

Damage Scenario 1 Damage Scenario 2 

Element no.   Element no.   

3 0.1 2 0.05 

8 0.1 13 0.05 

 

 

As already said, the objective function of Eq. (15) is not 

able to detect the damage in the scenario number 2 by using 

two mode shapes. In Table 2, a number of solutions for 

optimization problems of Eq. (15) are given after meeting 

the condition of algorithm termination (1500 iterations). By 

using the values obtained for location and intensity of 

damages, value of objective functions in Eq. (15) and 

proposed objective function are calculated. As it is seen, 

proposed objective function has higher values, indicating 

this objective function is able to highlight the impact of 

damage by combining the information and passes the local 

extremum points more easily. 

 

4.2 A six-story shear building 
 
This example is devoted for damage detection in a six-

story shear building. The schematic of the building is shown 

in Fig. 4. The Physical characteristics of this shear building 

like mass and stiffness are presented in Table 3. The masses 

and stiffnesses of stories are chosen in non-uniform pattern. 

This pattern yields structural irregularity and hampers 

simplicity in solving inverse problem.  Two damage 

scenarios are presumed by reducing in story-stiffness, 

which are presented by detail in Table 4. The first scenario 

is devoted for single damage with small deterioration. The 

second scenario is for dual damage in different stories of 

shear building. The first and second mode shapes of shear 

building before and after damage of first scenario are 

graphed in Fig. 5. Each mode shape normalized with 

respect to undamaged mode shape. As seen the effect of 

damage is insignificant and direct using of mode shapes for 

damage detection may lead to incorrect results. Normalized 

uniform load surface of the building by using first two 

mode shapes, before and after damage occurrence of first 

scenario is depicted in Fig. 6. As expected, the difference 

between healthy and damaged state become more visible by 

using the ULS due to data fusion. The ULS is calculated by 

using first two mode shapes and applied for damage 

detection. 

When information lacks any noise, the proposed 

objective function is able to detect the damages with high 

speed. In order to account measurement noise, the natural 

frequencies are contaminated with random noise by using 

the following formula 

)1( RndnNLi

Noise

i   (17) 

where 
Noise
i  and i  are ith natural frequencies with and 

without noise, respectively. NL is noise level and Rndn is 

a random number between [-1,1]. Also, mode shapes 

contamination is done by using the following  

 

237



 

Alborz Mirzabeigy and Reza Madoliat 

 

 

relationship 
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where 
Noise

i  and i  are ith mode shapes with and 

without noise, respectively. 
2  is the variance of 

noiseless mode shape, SNR is signal to noise ratio and 

RV is a zero-mean vector with random elements between 

[-1 1]. The relationship for noise vector in Eq. (19) is 

adopted from Nguyen (2016). For examining the efficiency 

of this method versus the noise, two different noise patterns 

are taken into account as per the Table 5. Results of 

algorithm implementation for the first scenario of damage 

are given in Fig. 7. As it is observed, in spite of low 

intensity of damage, algorithm can detect the damage with a 

good accuracy in presence of noise with various patterns. 

Algorithm convergence is drawn in Fig. 8, indicating that 

the objective function takes less value in presence of noise 

with first pattern. Results of algorithm implementation for 

the second scenario of damage are given in Fig. 9. As it can 

be seen, in both patterns of noise application, damage is 

detected with higher accuracy in the third-story than fifth-

story. Algorithm convergence for the second scenario of 

damage is plotted in Fig. 10. Similar to the first scenario of 

damage, objective function takes less value in presence of 

noise with first pattern. 

As it is seen in this example, the proposed objective 

function is able to detect the damages with low intensity 

and multiple damages in shear building using two mode 

shapes and in presence of noise with various intensities. 

 

 

Table 3 Physical characteristics of the six-story shear 

building 

Story number Mass (kg) Stiffness (N/m) 

1 200 10000 

2 100 10000 

3 180 8000 

4 150 5000 

5 100 7000 

6 150 6000 

 

 

 

 

 

Table 4 Assumed damage scenarios in the six-story shear 

building 

Damage Scenario 1 Damage Scenario 2 

Story no. Stiffness 

reduction  

Story no. Stiffness 

reduction  

2 0.05 3 0.1 

5 0.1 

 

 

 

 

Table 5 Different noise patterns considered for data 

contamination in the six-story shear building 

Noise Pattern 1 Noise Pattern 2 

SNR NL SNR NL 

30 3% 50 7% 

 

 

 

 

Fig. 4 Six-story shear building 

 

 

Table 2 Comparison between different objective function in damage scenario 2 detection in beam 

 Identified damage from objective function in Eq. (15) after 

1500 iterations 
Objective function 

value in Eq. (15) 

Proposed objective 

function value 
First damage Second damage 

Element no.   Element no.   

First run 8 0.0397 12 0.0484 0.000010523 0.0265862702 

Second run 10 0.0439 13 0.0486 0.000018436 0.0357274493 
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Fig. 6 The ULS of the shear building by using first two 

modes, before and after damage occurrence of the first 

scenario 

 

 

 

Fig. 7 Damage identification result of the six-story 

building for damage scenario 1 in presence of noise 

 

 

 

Fig. 8 Convergence rate of proposed method with 

different noise patterns in first scenario damage detection 

in shear building 

 

 

 

Fig. 9 Damage identification result of the six-story 

building for damage scenario 2 in presence of noise 

 

 

 

Fig. 10 Convergence rate of proposed method with 

different noise patterns in second scenario damage 

detection in shear building 

 

 

4.3 A Double-beam system 
 
As stated in introduction, a double-beam system with 

elastic inner layer is an approximate model for sandwich 

beam. There are limited researches on damage detection in 

this system. So, we test proposed method for damage 

detection in a double-beam system. Schematic of system is 

presented in Fig. 11, each beam divided into 10 elements; 

therefore the whole system is composed of 20 elements. 

More detail about this system could be found in Oniszczuk 

(2000). Both beams are similar and physical and 

geometrical properties of system are as following: 

 

 

 
 

(a) First mode shape (b) Second mode shape 

Fig. 5 Mode shapes of the shear building before and after damage occurrence of the first scenario 
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k is stiffness of inner elastic layer which is modeled by 

Winkler type elastic layer. Three different scenarios are 

considered by elasticity modulus degradation of beam‟s 

element, which are presented by detail in Table 6. The first 

scenario is devoted for dual damage in one of the beams. In 

the second scenario, each beam has single damage. The 

third scenario is devoted for triple damage in both beams. 

The ULS is calculated by using first two mode shapes and 

applied for damage detection. Noise contamination is 

considered by adding 2% noise level to natural frequencies 

and noise vector by SNR 70 to mode shapes. Damages 

detection results for different scenarios are given in Figs. 

12-14. As seen, in the case of noiseless data, the method 

could detect damages with high accuracy. In the presence of 

noise the accuracy is good and acceptable and the results 

approve applicability of proposed method for damage 

detection in structure composed of different parts with 

different materials. 

 

 

Table 6 Assumed damage scenarios in the double-beam 

system 

Damage Scenario 1 Damage Scenario 2 Damage Scenario 3 

Element 

no. 

Stiffness 

reduction 

Element 

no. 

Stiffness 

reduction 

Element 

no. 

Stiffness 

reduction 

7 0.1 12 0.1 2 0.1 

14 0.1 15 0.1 7 0.15 

13 0.1 

 

 

 

Fig. 11 Finite element model of the double-beam system 

 

 

 

 

Fig. 12 Damage identification result of the double-beam 

system for damage scenario 1 in presence of noise 

 

 

 

Fig. 13 Damage identification result of the double-beam 

system for damage scenario 2 in presence of noise 

 

 

 

Fig. 14 Damage identification result of the double-beam 

system for damage scenario 3 in presence of noise 

 

 

5. Conclusions 
 

In the present study, detecting the damage in structures 

by using inverse method was taken into account and a new 

objective function was introduced for such purpose. An 

objective function proposed to damage detection as 

discrepancy between the ULS of monitored structure and 

numerical model of structure. The ULS could be considered 

as a weighted average of mode shapes where weight factor 

is the inverse of the square of the natural frequencies. The 

values of parameters in which this objective function 

become minimum, are correspond to damage‟s parameters. 

The Teaching-Learning based optimization was used to 

solve objective function. A numerical model of structure 

was constructed using finite element method and damage 

was considered as stiffness degradation in elements. The 

efficiency of proposed method was investigated through 

three numerical examples. In the first example, a beam with 

hinged fixed support conditions was investigated. In this 

example, efficiency of proposed objective function is 

compared to another objective function which uses the 

natural frequencies and mode shape functions. Results 

showed that the proposed objective function is more 

sensitive to damage. When another objective function by 

using two mode shapes is not able to detect the damages in 

the beam, the proposed objective function detects easily the 

damages by use of two mode shapes. It was also indicated 

that the proposed objective function has more convergence 

speed and easily escapes the local extremum points. In the 

second example, a six-story shear building was 
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investigated. In such example, impact of damage on the first 

and second mode shape was taken into account. Meanwhile, 

the ULS was calculated by using the first two-mode-shapes 

before and after the damage. Results show that ULS can 

magnify the impact of damage and provides more 

information than the mode shapes. In this example, damage 

detection was tracked for two scenario of damage as well as 

for various intensities of noise, which led to a good 

accuracy in detecting the damage. In the third example, a 

double-beam system as an approximate model for soft core 

sandwich structure was considered. For several scenarios of 

damages and in presence of noise the algorithm could detect 

the damages with acceptable accuracy. It could be conclude 

that, the ULS is good fusion between natural frequencies 

and mode shapes data and have good robustness against 

measurement noise and could confidently applied for other 

types of structures. 
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