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1. Introduction 
 

The estimation of the states of a partially observed 

dynamic system is important for structural health 

monitoring and vibration control. In this regard, the 

classical Kalman filter (KF) is a well-recognized recursive 

algorithm that provides unbiased and optimal state 

estimation for a linear dynamic system from noise-

contaminated response measurements. A variety of KF-

based algorithms for state estimation or damage detection 

have been also studied and well developed. For example, a 

multi-rate KF approach was proposed by Smyth and Wu 

(2007) for state estimation when multi-type data with 

different sampling frequencies were involved. Ching and 

Beck (2007) presented a novel technique for indirectly 

monitoring threshold exceedance in a sparsely-instrumented 

linear structure subject to uncertain excitation modeled as a 

Gaussian process. A natural state observer, which possessed 

similar characteristics to the KF in the context of the second 

order differential equation of motion of linear structural 

systems, was proposed by Hernandez (2011). The 

performance of this observer was then investigated via a  
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simulated tall vertical structure subject to turbulent wind 

load and fatigue damage (Hernandez et al. 2013). With the 

extension use of KF as a damage detector, Bernal (2013) 

developed a lag shifted whiteness test (LSWT) for damage 

detection in the presence of changing process and 

measurement noise. Based on KF algorithm, an integrated 

method was proposed by Zhu et al. (2013) for determining 

the optimal placement of multi-type sensors and at the same 

time for reconstructing structural responses at all key 

locations. He et al. (2015) extended this method in the 

active control system by employing the estimated structural 

responses for vibration control. Kim and Park (2017) 

investigated the application of KF for estimating a time-

varying process disturbance in a building space. 

Although the classical KF and the aforementioned KF-

based methods can satisfactorily estimate structural states, 

the external excitation in these algorithms is assumed to be 

either known or modeled as a zero mean white Gaussian 

process. However, in many cases, it is difficult or 

sometimes impossible to directly measure the input force, 

or the Gaussian assumption is violated. Therefore, over the 

past years, various KF with unknown input (KF-UI) 

methods have been developed to circumvent the above 

limitations. For example, in the combination of KF and 

Auto-Regressive-with-eXogenous input (ARX) model, Gao 

and Lu (2006) proposed a time-domain analysis method for 

structural damage diagnosis only using acceleration 

measurements. By making use of unbiased minimum-

variance estimation, Gillijns and De Moor (2007a, b) 

proposed a recursive filter with the structure of KF for the 

estimation of both unknown inputs and linear system states. 
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This method was extended by Hsieh (2009) for a general 

case where not only unknown inputs affected both the 

system state and the output, but also the direct feedthrough 

matrix had arbitrary rank. Lourens et al. (2012a) also 

improved this method to cope with the numerical 

instabilities that arise when the number of sensors surpasses 

the order of the model. By employing KF to establish a 

regression model between the residual innovation and the 

input forces, Wu et al. (2009) proposed a method for 

estimating the time varying excitation force acting on the 

structural system. Based upon the weighted least-squares 

estimation and a decomposing method, Pan et al. (2011) 

presented a KF-based input and state estimation method for 

stochastic linear discrete-time systems with direct 

feedthrough. By using spectral methods and limited output-

only measurements, Papadimitriou et al. (2011) proposed a 

KF-based approach for predicting the strain/stress responses 

and the associated power spectral densities for fatigue 

prognosis. Lourens et al. (2012b) developed an augmented 

KF for force identification in structural dynamics, where the 

unknown inputs were introduced in the state vector and 

estimated in conjunction with the states. Eftekhar Azam et 

al. (2012a) developed a parallel implementation of the 

sigma-point Kalman filter (S-PKF) to provide an accurate 

tracking of the whole state of the laminate. With the 

comparison of the performances of S-PKF and Particle 

Filter (PF), Eftekhar Azam et al. (2012b) found that the PF 

displayed a higher convergence rate towards steady-state 

model calibrations and the S-PKF was less sensitive to the 

measurement noise. An analytical analysis of the stability of 

KF-based force estimation techniques was presented by 

Naets et al. (2015), and the addition of dummy 

measurements on a position level was suggested by the 

authors to prevent drift. By considering the unknown input 

as a white process, an output-only KF-based method was 

presented by Vicario et al. (2015) for the estimation of the 

dynamic structural model solely using time histories of the 

field measurements. A dual implementation of the KF was 

conducted by Eftekhar Azam et al. (2015a) for estimating 

the unknown input and states of a linear state-space model. 

This method was then validated by the authors via a four-

story frame structure (Eftekhar Azam et al. 2015b). To 

prevent the so-called drifts in the estimated unknown inputs 

and structural displacement in the presence of measurement 

noises, Liu et al. (2016) proposed an improved KF with 

unknown input method basing on data fusion of partial 

acceleration and displacement measurements. This method 

was further extended by Lei et al. (2016) on the basis of 

modal KF. More recently, through the implementation of 

KF under unknown input, Zhang and Xu (2017) presented a 

novelty damage identification method by utilizing the 

reconstructed response and excitation. A KF-based inverse 

approach was developed by Zhi et al. (2016, 2017) for the 

estimation of the wind loads on tall buildings and validated 

via wind tunnel tests as well as field tests on Taipei 101 

Tower. Based on the augmented KF and the modal 

expansion technique, Ren and Zhou (2017) proposed two 

strain estimation algorithms for unmeasured members in the 

truss structure. Based on the synergistic use of proper 

orthogonal decomposition and KF, Eftekhar Azam et al. 

(2017) proposed an approach for the online health 

monitoring of damaged structures. By minimizing the 

overall estimation errors of structural responses at the 

locations of interest to a desired target level, Hu et al. 

(2018) proposed a KF-based integrated multi-type sensor 

placement and response reconstruction method for high-rise 

buildings under unknown seismic loading. Although the 

KF-UI methods mentioned above can provide promising 

results of state estimation and loading identification, most 

of them are suitable to manage linear state-space models. 

However, nonlinearity exists widely in many civil 

structures, such as the initiation and growth of damage, the 

hysteretic characteristics of structural components and so 

forth.  

In this paper, it is aimed to extend the classical KF 

approach to circumvent the aforementioned limitations for 

jointly estimating the structural states of linear or nonlinear 

systems and the unknown inputs applied to them. Based on 

the scheme of the classical KF, an improved KF-UI 

approach is proposed and the analytical recursive solutions 

are derived and given. A revised form of observation 

equation is obtained with the aid of a projection matrix. The 

structural states are then estimated with limited 

measurements. The unknown loadings are identified at the 

same time by means of least squares estimation. Some 

numerical examples and shaking table tests on a five-story 

building structure are used to demonstrate the effectiveness 

of the proposed approach. 

 
 
2. Improved KF-UI approach for joint estimation 

 

The equation of motion of an n degree-of-freedom (DOF) 

structure subject to unknown loadings can be given as 

( ) [ ( ), ( ), ] ( ) ( )u ut t t t t  Mx F x x θ φf φ f  (1) 

where ( ), ( )t tx x and x(t) are the vectors of structural 

acceleration, velocity and displacement, respectively; 

[ ( ), ( ), ]t tF x x θ represents the restoring force vector which can 

be expressed in the linear or nonlinear form; M is the mass 

matrix; θ is the structural parameters used to describe the 

manner of structural restoring force; f(t) and f
u
(t) are the known 

and unknown excitation vectors, respectively; φ
 
and φ

u
 are the 

influence matrices associated with the known and unknown 

excitation, respectively. 

Define the state vector 
T

T T( ) ( ) ( )t t , t   Z x x . Then, a 

general expression of the state-space equation can be found 

as 

 

1

( )
( )

[ ( ), ( ), ] + ( (

= ( ), ( ), ( ), ( )

u u

u

t
t

t t t t

t t t t t



  
  

       



x
Z

M F x x θ φf φ f

g Z f f w

 (2) 

where w(t) is process noise vector with zero mean and a 

covariance matrix Q(t). 

Let 
|

ˆ
k kZ and ˆu

kf be the estimates of 
kZ and 

u

kf  at time 

t = k× ∆t with ∆t being time interval, respectively. Eq. (2) 
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can be then linearized with respect to the estimates 
|

ˆ
k kZ and 

ˆu

kf  as follows 

 

 

| | |

|

ˆˆ ˆ( , , , Δ ) ( , , , Δ ) +

ˆ

u u

k k k k k k k k k k k k

u u

k k k k

k t k t 

 

g Z f f g Z f f U Z Z

W f f

 (3) 
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 
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  Z Z f f

0g Z f f
W

M φf
 

(4) 

Note 
1( ) ( )k kk t t   Z Z Z , and then the 

following expression can be derived basing on Eqs. (2)-(4) 

 

 

1 | | |

|

ˆˆ ˆ= Δ [ ( , , , Δ ) +

ˆ ]

u

k k k k k k k k k k k

u u

k k k k k

t k t   
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Z Z g Z f f U Z Z

W f f w

 (5) 

Usually, the acceleration responses are more reliable and 

easily obtained, as compared with other structural 

responses, e.g., displacement or velocity. Moreover, in 

many practical situations, the structural responses cannot be 

completely measured due to some factors, such as the cost 

of the sensors, the inaccessibility of some locations, and the 

sensor damage subject to the harsh service environments. 

Therefore, only partial acceleration responses are 

considered in this study leading to the following discretized 

observation equation 

 1 [ , ] u u

k k k k k k k k,      y Lx v LM F x x θ φf φ f v  (6) 

where yk is the acceleration measurements at time t = k× ∆t; 

L is the matrix associated with the locations of 

accelerometers; [ , , ]k kF x x θ , fk and 
u

kf are the 

corresponding discretized quantities at time t = k× ∆t; vk is 

the measurement noise assumed to be a Gaussian white 

noise with zero mean and a covariance matrix Rk. 

Eq. (6) can be also re-arranged as 

= ( )u

k k k k Df h Z y v  (7) 

in which 

 1 1( ) [ , , ] ; u
k k k k

    h Z LM F x x θ +φf D LM φ  (8) 

Assuming that (i) the number of sensors is larger than 

that of unknown inputs, and (ii) to ensure matrix D in Eq. (8) 

be non-zero the collocated acceleration responses at the 

location of unknown inputs are measured. Then, the 

unknown input 
u

kf can be determined by means of least 

squares estimation as 

   
1

T T ( )u

k ,LSE k k k



  f D D D h Z y v  (9) 

The error of the aforementioned solution can be 

calculated as 

   
1

T T

k k( )

u u

k k ,LSE

k



 

   

err Df Df

I D D D D h Z y v
 (10) 

where I is an identity matrix;  
1

T T


D D D D is known as a 

projection matrix. As a limit, the error shown in Eq. (10) 

should tend to be zero, leading to 

= ( )k k kΦy Φh Z Φv  (11) 

where  
1

T T


 Φ I D D D D . As observed from Eq. (11), 

with the aid of projection matrix, a revised form of 

observation equation is obtained. A merit of this observation 

equation is that the unknown input is not explicitly 

presented. Thus, the multiple regression problem described 

by Eq. (6) is transformed into a single regression problem, 

and then the principle of KF can be employed for the state 

estimation.  

It’s known the equations for classical KF falls into two 

groups: time update equations and measurement update 

equations. The former is responsible for projecting forward 

(in time) the current state and error covariance estimates to 

obtain the a priori estimates for the next time step, whereas 

the latter is responsible for incorporating a new 

measurement into the a priori estimate to obtain an 

improved a posteriori estimate (Welch and Bishop
 
1995). 

Since only the linear state-space equation is considered in 

the classical KF, it is not suitable for nonlinear system. To 

cover a more general case as mentioned in Eq. (2), the 

priori state estimate 
1|

ˆ
k kZ in this study is calculated as 

follows 

 
( 1)Δ

1| | |
Δ

ˆˆ ˆ ˆ , , , Δ d
k t

u

k k k k k k k k
k t

k t t


   Z Z g Z f f  (12) 

Taking difference between Eqs. (5) and (12) gives the 

priori estimate error εk+1|k as 

    1| | | |
ˆˆΔ Δ Δu u

k k k k k k k k k k k kt t t      ε I U Z Z W f f w  (13) 

Based on Eqs. (4), (7) and (8), the second term on the right-

hand-side of Eq. (13) can be expressed as 

| 1

T 1 T
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u u
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k k k k
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0
W f f

M φ f f

0

(L L) L h Z h Z v

 
(14) 

Similar to Eq. (3), h(Zk) can be linearized with respect 

to the state estimate 
|

ˆ
k kZ  as follows 

 | | |
ˆ ˆ( ) = ( )k k k k k k k k+ h Z h Z H Z Z  (15) 
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where 

|

|

ˆ

( )

k k k

k
k k

k 





Z Z

h Z
H

Z
 (16) 

Then, the priori estimate error εk+1|k shown in Eq. (13) 

can be rewritten as 

 1| 1 | 2

1 | 2

ˆ Δ

Δ

k k k k k k k

k k k k

t

= t

    

 

ε Γ Z Z Γ v w

Γ ε Γ v w

 (17) 

where 

1 | T 1 T
|

2 T 1 T

= + ;k k

k k

t t

t





 
    

  

 
   
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0
Γ I U

(L L) L H

0
Γ

(L L) L

 (18) 

Then, the priori estimate error covariance matrix can be 

found as 

 T T T 2

1 1 1 1 1 2 2 Δk |k k |k k |k k|k k kE t     P ε ε Γ P Γ Γ R Γ Q  (19) 

As known in the measurement update equations of the 

classical KF, the posteriori state estimate is found as a linear 

combination of its priori state estimate and a weighted 

difference between the actual measurements and the 

corresponding predictions. Therefore, based on the revised 

observation equation as shown in Eq. (11), the posteriori 

state estimate 
1| 1

ˆ
k k Z  in this study can be can be 

calculated as 

1| 1 1| 1 1 1|
ˆ ˆ ˆ( )k k k k k k k k=     

  
 

Z Z G Φy Φh Z  (20) 

where Gk+1 is the KF gain matrix at time t = (k+1)×Δt. 

Similarly, taking difference between Eqs. (5) and (20) leads 

to 

 
1| 1 1 1| 1

1 1| 1| 1 1

ˆ

=

k k k k k

k k k k k k k

=    
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

 

ε Z Z

I G ΦH ε G Φv

 (21) 

where Hk+1|k can be determined using Eq. (16) while 

1|
ˆ

k k kZ Z . 

Then, the posteriori estimate error covariance matrix can be 

computed as 

   
T

1 1 1 1 1 1 1

T T

1 1 1

k |k k k |k k |k k k |k

k k k

      

  

  



P I G ΦH P I G ΦH

G ΦR Φ G

 (22) 

Based on the principle of KF technique, the optimality 

criterion used for determining gain matrix Gk+1 is equivalent 

to minimizing the trace of the posteriori estimate error 

covariance matrix Pk+1|k+1. Therefore, the gain matrix can be 

calculated by setting the partial derivative of tr(Pk+1|k+1) with 

respect to Gk+1 to zero 

 

 1 1 T T

1 1 1 1 1

1

T T

1 1

tr( )
2

2 0

k |k

k k |k k |k k |k k

k

k |k k |k

 

    



 


 



 

P
G Φ H P H R Φ

G

P H Φ

 (23) 

in which tr(·) denotes the trace operator. Then, the gain matrix 

can be found as 

 
1

T T T T

1 1 1 1 1 1 1k k |k k |k k |k k |k k |k k



      
  
 

G P H Φ Φ H P H R Φ  (24) 

On the basis of the posteriori state estimate 
1| 1

ˆ
k k Z  

shown in Eq. (20), the unknown inputs at time t = (k+1)×Δt 

can be identified according to Eq. (9) as follows 

 
1

T T

1 1| 1 1
ˆ ˆ( )u

k k k k



   
  
 

f D D D h Z y  (25) 

As compared with Liu et al. (2016), it can be seen from Eq. 

(25) that the unknown input is identified on the basis of the 

posteriori state estimate 
1| 1

ˆ
k k Z  rather than the priori state 

estimate 
1|

ˆ
k kZ . As defined before, 

1| 1
ˆ

k k Z is the estimate 

of 
1kZ  at time t = (k+1)× ∆t. Thus, the usage of 

1| 1
ˆ

k k Z

for input identification should be more reasonable.  

The flowchart of the proposed approach for joint 

estimation is plotted in Fig. 1. It can be found that the proposed 

approach has a similar frame of classical KF, including time 

update equations as shown in Eqs. (12) and (19) as well as 

measurement update equations as shown in Eqs. (20), (22) and 

(24). Also, the unknown excitations can be simultaneously 

identified according to Eq. (25). Moreover, the proposed 

approach can be used to handle both linear and nonlinear cases. 

The effectiveness and robustness of the proposed approach will 

be investigated in the following sections through some 

numerical examples and shaking table tests. 

 

 

 

Fig. 1 Flowchart of the proposed approach 
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3. Numerical Investigation 

 

In this section, several numerical examples including a 

five-story shear building, a simply supported beam and three 

types of nonlinear hysteretic structures are considered. The 

loadings used in these numerical examples are all assumed to 

be unknown. All the measured signals are simulated by the 

theoretically computed quantities superimposed with the 

corresponding noise process with 5% noise-to-signal ratio. 

Only limited acceleration responses are observed for the joint 

estimation. More details are given below. 

 

3.1 Five-story shear building model 
 

A five-story shear building is first employed for 

verifying the effectiveness of the proposed approach. The 

parameters of this model are given as mi = 80 kg and ki = 

1.5×10
5 

N/m (i = 1,…, 5). The Rayleigh damping 

assumption with the proportional coefficient of α = 0.5508 

for mass matrix and β = 0.0012 for stiffness matrix is 

adopted for the construction of damping matrix. The 

structure is subject to the El-Centro earthquake with a peak 

ground acceleration (PGA) of 0.34 g, and the corresponding 

responses are calculated by state-space method with the 

time interval of 0.001 s. Herein, the acceleration responses 

of the 1
st
, 2

nd
 and 4

th 
floor are assumed to be measured for 

the joint estimation. As mentioned before, the response 

measurements are contaminated by 5% noise. The  

 

 

 

 

measurement noise and process noise covariance matrices 

are set to R = I and Q = 10
-4

×I, respectively, where I is 

identity matrix with appropriate dimension. 

Based on the proposed approach, the unmeasured 

structural responses, such as the displacement and velocity, 

can be estimated. Since the magnitudes of displacement, 

velocity, and in particular, the loadings are of different 

orders, a normalized root mean square error (NRMSE) 

defined in Eq. (26) is used as a measure of deviation 

between the actual and estimated values. The NRMSE 

results of the shear building are shown in Table 1. 

 

 

Table 1 NRMSE results for shear building 

Estimated 

quantities 

NRMSE 

(×10-3) 

Estimated 

quantities 

NRMSE 

(×10-3) 

x1 1.44 v1 0.15 

x2 1.37 v2 0.11 

x3 1.34 v3 0.88 

x4 1.33 v4 0.54 

x5 1.36 v5 0.13 

fseismic 7.00 - - 

* xi and vi denote displacement and velocity of the i-th floor, 

respectively 

 

 

  
(a) Displacement of the top floor (b) Velocity of the top floor 

Fig. 2 Comparison of structural responses of shear building structure 

  
(a) The entire time series (b) Time segment from 4 s to 8 s 

Fig. 3 Comparison of ground acceleration applied to shear structure 
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 
2

1

1 1
NRMSE

np
est act

i i

iA np
 



   (26) 

in which A denotes the amplitude of the signal; np is the 

number of sampling points; 
est

i and 
act

i are the 

estimated and actual value of the i-th sample, respectively. 

For ease and clarity of comparison, the time histories of 

the estimated structural states are also given in Fig. 2 as 

dashed curves, whereas the corresponding actual ones are 

plotted by solid curves. Due to the limitation of paper 

length, only the displacement and velocity responses of the 

top floor are given in Fig. 2 as an example. It can be seen 

from Fig. 2 that the estimated structural states have a good 

agreement with the actual ones. Similar results can be found 

for the remaining floors. 

Besides the estimation of structural states, the unknown 

seismic loading applied to the building can be identified as 

well. The NRMSE of the identified input is also calculated 

and shown in Table 1. It can be found that values of 

NRMSE for the estimated structural states and unknown 

input are small. The comparison of time series of the 

identified input with the actual one is given in Fig. 3. For 

clarity of comparison, the time segment from 4 s to 8 s is 

also plotted in Fig. 3. It’s obvious that the identified loading 

matches the actual one very well. 

 

 

 

 

3.2 A simply supported beam 
 

It is known the rotational response, such as the response 

of rotational angle, can be used for the assessment of 

structural safety and functionality. However, the direct 

measurement of rotational response is a challenging task. 

Therefore, the methods that can be used for the estimation 

of rotational responses would be another choice to gain 

rotational information. 

In this example, a simply supported beam with identical 

cross section, as shown in Fig. 4, is used as an example for 

demonstrating the accuracy of the proposed approach for 

the estimation of rotational responses. The beam is divided 

into five elements with equal length. Each element has two 

nodes, and two DOFs are introduced for each node in the 

vertical and rotational direction. Notably, due to the 

constraints at nodes 1 and 6, only rotational DOF is 

involved in these two nodes. The parameters of beam are 

described as follow: elastic modulus E = 2 GPa, structural 

density ρ = 7850 kg/m
3
 and area of cross section A = 0.04m

2
. 

The Rayleigh damping assumption with the proportional 

coefficients of α = 0.1350 and β = 0.0043 is adopted, 

providing structural damping ratios δ1 = δ2 = 3%. 

An unknown random excitation is applied to the beam 

in the vertical direction at node 3. As mentioned before, it 

would be difficult to directly measure dynamic responses of  

 

Fig. 4 Schematic diagram of a simply supported beam 

  
(a) Vertical displacement of node 3 (b) Vertical velocity of node 3 

  
(c) Rotational displacement of node 3 (d) Rotational velocity of node 3 

Fig. 5 Comparison of structural responses of node 3 
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rotational angles. Therefore, the rotational responses are 

unknown herein and only the acceleration responses in the 

vertical direction of nodes 2~5 are observed. Based on the 

proposed approach, the unmeasured structural responses 

and unknown input are estimated at the same time. The 

results of NRMSE are listed in Table 2. Taking node 3 as an 

example, the time histories of the estimated responses in the 

vertical and rotational direction are compared with their 

theoretical ones as shown in Fig. 5. Fig. 6 gives the 

comparison of the identified loading with the real one. 

Results shown in Table 2 and Figs. 5 and 6 indicate the 

proposed approach is feasible and reliable. 

 

Table 2 NRMSE results for the simply supported beam 

Estimated 

quantities 

NRMSE 

(×10-2) 

Estimated 

quantities 

NRMSE 

(×10-2) 

xr,1 0.57 vr,1 0.52 

xr,2 0.60 vr,2 0.59 

xr,3 0.43 vr,3 0.68 

xr,4 0.65 vr,4 0.42 

xr,5 0.57 vr,5 1.02 

xr,6 0.54 vr,6 0.56 

xv,2 0.59 vv,2 0.21 

xv,3 0.61 vv,3 0.36 

xv,4 0.57 vv,4 0.34 

xv,5 0.55 vv,5 0.30 

frandom 0.19 -- -- 

* xr,i and vr,i are displacement and velocity of the i-th node in the 

rotational direction, respectively; xv,i and vv,i are displacement and 

velocity of the i-th node in the vertical direction, respectively 

 

 

3.3 Nonlinear hysteretic structure with Bingham 
model 

 
To investigate the performance of the proposed 

approach for the estimation of nonlinear system, an eight-

story shear-type building with a Bingham model on the 5
th

 

floor is employed. The values of mass and stiffness of the 

structure are set to be 80 kg and 2.6×10
5
 N/m for each floor, 

respectively. The Rayleigh damping model with α = 0.4721 

and β = 0.0014 is used. 

The nonlinear restoring force (NRF) generated by the 

Bingham model can be given by 

sgn(Δ ) ΔBingham

f c i b i bR f x c x f    (27) 

where fc, cb and fb are the coefficients used for the 

description of the characteristics of Bingham model; 
ix  

is the relative velocity between the i-th and (i-1)-th floor. 

Here, the parameters of Bingham model are set to be fc =25 

N, cb =800 N∙s/m, and fb = -80 N. 

In this example, a random excitation is applied to the 4
th

 

floor of building and the structural responses are calculated 

by Runge-Kutta method. The acceleration responses at the 

1
st
, 2

nd
, 4

th
 and 8

th
 floor are assumed to be measured with 

the sampling frequency of 1000 Hz. Similarly, 5% noise 

level is considered.  

Based on the proposed approach, joint estimation of the 

structural states and unknown input is conducted. The 

NRMSE results are listed in Table 3. It can be observed that 

the values of NRMSE for structural states and external 

excitation are small. Moreover, the time series of the 

estimated displacement and velocity responses of the top 

floor are compared with their actual ones in Fig. 7 as an  

  
(a) The entire time series (b) Time segment from 4 s to 4.1 s 

Fig. 6 Comparison of random force applied to simply supported beam 

  
(a) Displacement of the top floor (b) Velocity of the top floor 

Fig. 7 Comparison of structural responses of nonlinear system with Bingham model 
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Fig. 9 Comparison of NRF provided by Bingham model 

 

 

Table 3 NRMSE results for nonlinear hysteretic structure 

with Bingham model 

Estimated 

quantities 

NRMSE 

(×10-2) 

Estimated 

quantities 

NRMSE 

(×10-3) 

x1 1.77 v1 0.98 

x2 2.22 v2 1.15 

x3 2.64 v3 1.43 

x4 3.11 v4 2.62 

x5 2.68 v5 1.65 

x6 2.42 v6 1.13 

x7 2.14 v7 1.11 

x8 1.97 v8 0.50 

frandom 0.41 -- -- 

 

 

example. The comparison of the identified excitation with 

the actual one is given in Fig. 8 Obviously, the proposed 

approach can satisfactorily estimate the structural responses 

of nonlinear system and the unknown input applied to it. 

Based on the estimated state vector, the NRF generated by 

Bingham model can be evaluated as well (see Fig. 9). 

Apparently, the estimated NRF is quite close to the real one 

which implies the proposed approach provides a potential 

way for the estimation of nonlinear characteristics. 

 

3.4 Nonlinear hysteretic structure with Dahl model 
 

To further investigate the performance of the proposed 

approach for different nonlinear system, an eight-story  

 

 

shear-frame structure with a Dahl model on the 1
st
 floor is 

considered herein. The mass and stiffness parameters of the 

building structure are 300 kg and 1.4×10
5 

N/m for each 

floor, respectively. The Rayleigh damping assumption with 

α = 0.1789 and β = 0.0038 is adopted. 

The nonlinear restoring force (NRF) provided by Dahl 

model in this example can be expressed as 

0

Dahl

f d i d i dR k x c x f z f       (28) 

where kd, cd, fd and f0 are the parameters describing the 

properties of Dahl model; Δxi and 
ix  are the relative 

displacement and velocity between the i-th and (i-1)-th 

floor, respectively; z is a dimensionless coefficient as 

 1 sgn( )i iz x z x      (29) 

in which σ is the coefficient controlling the shape of 

hysteresis loop, and sgn(·) denotes signum function. Here, 

the parameters of Dahl model are set to kd = 30 N/m, cd = 

150 N·s/m, fd = 400 N, f0 = 0 N and σ = 1500 s/m. 

The El-Centro earthquake with a PGA of 0.34g is 

applied to the building structure, and the nonlinear 

structural responses are obtained by means of Runge-Kutta 

method with the time interval of 0.001 s. The acceleration 

responses at the 2
nd

, 3
th

, 6
th

 and 8
th

 floor are assumed to be 

known, and the level of 5% noise is considered. Herein, the 

unknown quantities to be estimated include the state vector 

 
T

1 8 1 8,..., , ,..., ,x x x x zZ  and the unmeasured ground 

motion. 

On the basis of the proposed approach, the estimation of 

the structural states and the unknown input are 

simultaneously conducted. Their NRMSE results are given 

in Table 4. Obviously, the values of NRMSE for both 

structural states and ground acceleration are small which 

means the results of the joint estimation by the proposed 

approach are reliable. Similarly, the comparison of time 

series of the estimated displacement and velocity responses 

of the top floor with their theoretical ones is shown in Fig. 

10 as an example. Fig. 11 gives the comparison of the 

identified ground acceleration with the actual one. From 

Figs. 10 and 11, it can also be confirmed that the proposed 

approach is capable of estimating nonlinear structural 

responses and unknown input with acceptable accuracy.  

 

  
(a) The entire time series (b) Time segment from 4 s to 4.1 s 

Fig. 8 Comparison of random force applied to the nonlinear structure with Bingham model 
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Table 4 NRMSE results for nonlinear hysteretic structure 

with Dahl model 

Estimated 

quantities 

NRMSE 

(×10-3) 

Estimated 

quantities 

NRMSE 

(×10-3) 

x1 9.60 v1 1.17 

x2 9.14 v2 0.72 

x3 8.77 v3 0.74 

x4 8.19 v4 0.84 

x5 7.76 v5 0.86 

x6 7.44 v6 0.93 

x7 7.21 v7 0.87 

x8 7.09 v8 0.79 

fseismic 5.01 -- -- 

 

 

 

Fig. 12 Comparison of NRF provided by Dahl model 

 

 

 

 

 

Moreover, on the basis of the estimated state vector, the 

NRF provided by Dahl model can also be evaluated as 

plotted in Fig. 12. It is clear that the estimated NRF has a 

good agreement with the real one. 

 

3.5 Nonlinear hysteretic structure with Bouc-Wen 
model 

 

To consider the joint estimation of building structure 

with multiple nonlinearities, an eight-story shear-type 

building with Bouc-Wen model on each floor is considered 

in this numerical example. The equation of motion of such 

nonlinear structure under earthquake excitation can be 

written as 

( ) ( ) ( ) ( )gt t t x t   Mx Cx Kz M1  (30) 

where zʹ(t) is hysteretic component given as 

1
( )


        i i

i i i i i i i i iz x x z z x z
 

   (31) 

in which ηi, μi and γi are the hysteretic parameters of Bouc-

Wen model on the i-th floor. Here, the following values are 

employed: mi = 125 kg, ki = 20 kN/m, ci = 100 N·s/m, ηi = 

2000 s
-2

, μi = 2 and γi =1000 s
-2

 (i = 1,…, 8). Instead of El-

Centro earthquake, the seismic input considered in this 

example is Kobe earthquake with a PGA of 0.63 g. The 

nonlinear responses are computed by Runge-Kutta methods 

with the time interval of 0.001 s. The acceleration responses 

at the 1
st
, 3

th
, 5

th
, 7

th
 and 8

th
, floor are considered for joint 

estimation. In this example, the state vector to be estimated 

is  1 8 1 8 1 8,..., , ,..., , ,...,
T

x x x x z z Z . 

  
(a) Displacement of the top floor (b) Velocity of the top floor 

Fig. 10 Comparison of structural responses of nonlinear system with Dahl model 

  
(a) The entire time series (b) Time segment from 4 s to 4.1 

Fig. 11 Comparison of random force applied to the nonlinear structure with Dahl model 
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Table 5 NRMSE results for nonlinear hysteretic structure 

with Bouc-Wen model 

Estimated 

quantities 

NRMSE 

(×10-2) 

Estimated 

quantities 

NRMSE 

(×10-2) 

x1 0.50 v1 0.09 

x2 1.67 v2 0.34 

x3 1.31 v3 0.12 

x4 1.19 v4 0.39 

x5 0.55 v5 0.04 

x6 0.87 v6 0.33 

x7 0.99 v7 0.13 

x8 1.04 v8 0.07 

fseismic 0.17 -- -- 

 

 

The results of NRMSE of the displacement, velocity and 

seismic input are shown in Table 5. Clearly, small values of 

NRMSE can be found in Table 5. The direct comparison of 

time series of the estimated displacement and velocity of 

the top floor is depicted in Fig. 13. Moreover, Fig. 14 gives 

the comparison of the identified ground acceleration with 

the actual one. The NRF provided by Bouc-Wen model can 

also be estimated as shown in Fig. 15. Again, it can be 

found from Figs. 13-15 that the differences between the 

estimated values and actual ones are very small. 

 

 

 

 

 

 

 

 

 

Fig. 15 Comparison of NRF provided by Bouc-Wen 

model 

 

 

4. Experimental validation 
 

The shaking table tests conducted on a five-story 

building model in the Dynamic Structural Laboratory of 

The Hong Kong Polytechnic University is employed herein 

to validate the robustness of the proposed approach for the 

joint estimation of a real structure. The building model as 

shown in Fig. 16 is designed as the height of 1750 mm and 

planar size of 850 mm × 500 mm. The rigid plates with the 

thickness of 16 mm are welded to four main columns with 

the cross section of 50 mm × 6mm and four smaller 

columns with the cross section of 10 mm × 6 mm. To 

increase the structural damping, five silicon oil dampers are 

designed and installed in the building structure. The lumped 

mass distribution of the building can be obtained basing on 

the weight measurement of each component, i.e., 67.43 kg, 

  
(a) Displacement of the top floor (b) Velocity of the top floor 

Fig. 13 Comparison of structural responses of nonlinear system with Bouc-wen model 

  
(a) The entire time series (b) Time segment from 4 s to 8 s 

Fig. 14 Comparison of random force applied to the nonlinear structure with Bouc-wen model 
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61.65 kg, 56.54 kg, 62.82 kg and 59.66 kg for the 1
st
, 2

nd
, 

3
rd

, 4
th

 and 5
th

 floor, respectively. 

To determine the real values of structural stiffness, static 

tests as schematically shown in Fig. 17 are carried out. As 

the weight of the mass block increases, the displacement of 

each floor measured by the dial gauges increases. The tests 

are conducted three times, and the curves of average 

displacements of five floors (named as d1, d2, d3, d4, and 

d5) versus the loads in these tests are shown in Fig. 18. The 

structural stiffness of i-th floor ki can be then calculated as 

1

i

i i

W
k

d d 




 

(32) 

where W and di are the weight of mass block and the 

corresponding displacement of the i-th floor, respectively. 

Based on the measured results shown in Fig. 18, the values 

of stiffness are determined as 2.656×10
5
 N/m, 2.576×10

5
, 

N/m, 2.619×10
5
 N/m, 2.639×10

5
 N/m and 2.713×10

5
 N/m 

for the 1
st
, 2

nd
, 3

rd
, 4

th
 and 5

th
 floor, respectively. 

Moreover, by using a hammer to apply impact force to 

the top floor of the model, the analyses of structural 

dynamic properties are carried out on the basis of the 

measured acceleration and the corresponding frequency 

response functions. 

 

 

 

Fig. 16 Five-story shear-type building structure 

 

 

 

 

Fig. 17 Schematic diagram of static tests 

 

 

Fig. 18 Measured results in the static tests 

 

 

The natural frequencies of the structure are found as 2.970 

Hz, 8.658 Hz, 13.941 Hz, 17.948 Hz and 21.299 Hz. The 

first two damping ratios can be also found as 0.81 % and 

1.01 %. The Rayleigh damping assumption is employed and 

the damping coefficients are determined as α = 0.1961 and 

β = 3.051×10
-4

. 

Since the structural parameters including mass, stiffness 

and damping coefficients are obtained as described above, 

the shaking table tests used for the validation of the 

proposed approach are then conducted. The scaled 

Northridge earthquake with a PGA of 0.196g is considered 

as seismic input. The acceleration responses of the 1
st
, 2

nd
 

and 4
th

 are measured for the joint estimation. For 

comparison, the seismic input and all of displacement 

responses are measured as well. The sampling frequency is 

set to 1000 Hz. To reduce the effect of measurement noise, 

a band-pass filter with the cut-off frequencies of 1 Hz and 

30 Hz is used. 

The quantities to be estimated include the structural 

states and unknown ground motion. By using the proposed 

approach for joint estimation, the results in terms of 

NRMSE are given in Table 6. The relatively small values of 

NRMSE can be found in Table 6 indicating the estimated 

results are reliable. The comparison of time series of the 

estimated displacement of the top floor with the measured 

one is shown in Fig. 19 as an example. It can be found from 

Fig. 19 that the estimated displacement is closed to the 

measured one. Similar results can be obtained for the 

remaining floors. Moreover, the identified seismic input is 

plotted in Fig. 20 as dashed line, whereas the corresponding 

measured one is shown as solid line. It is obvious that the 

identified excitation has a good agreement with the 

measured one.  
 

 

Table 6 NRMSE results for five-story experimental 

structure 

Estimated 

quantities 
NRMSE 

Estimated 

quantities 
NRMSE 

x1 0.035 x4 0.0251 

x2 0.0297 x5 0.0241 

x3 0.0255 fseismic 0.0122 
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Notably, due to the measurements of velocity responses 

being not available in the tests, the comparison of the 

estimated velocity is not discussed herein. However, since 

the results of the estimated displacement and ground motion 

are acceptable, it can be concluded that the estimated 

velocity should be also reliable to some extent. 

 

 

5. Conclusions 
 

In this paper, an improved KF approach is proposed for 

joint estimation of structural states and unknown external 

excitations. By using a projection matrix, a revised 

observation equation with the unknown inputs being not 

explicitly presented is obtained. Based on the scheme of KF, 

analytical recursive solution of the proposed approach is 

derived, including the time update equations the 

measurement update equations. The unknown inputs are 

simultaneously identified by means of least squares 

estimation on the basis of the estimated structural states. 

With the consideration of nonlinear state space equation, the 

proposed approach can be used for joint estimation of both 

linear and nonlinear structural system with limited 

observations. The accuracy of the proposed approach is 

demonstrated via a five-story shear building, a simply 

supported beam, and three sorts of nonlinear hysteretic 

structures. The shaking tests of a five-story shear building  

 

 

 

 

 

structure are further conducted to validate the effectiveness 

and robustness of the proposed approach. Numerical and 

experimental results show that the proposed approach is 

capable of not only satisfactorily estimating structural 

states, but also identifying unknown loadings with 

acceptable accuracy for both linear and nonlinear systems. 

Notably, as mentioned by Eftekhar Azam et al. (2015) 

and Liu et al. (2016), a drifted problem during identification 

procedure may occur. In this paper, the low-frequency drifts 

of estimation results are not happened mainly because of a 

high-pass filter being used prior to the state estimation. 

Based on the statement of Liu et al. (2016), further research 

will be conducted by data fusion of displacement and 

acceleration measurements to prevent the so-called drifts to 

realize real-time estimation.      
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(a) The entire time series (b) Time segment from 4 s to 8 s 

Fig. 19 Comparison of the displacement of the top floor in the experiment 

  
(a) The entire time series (b) Time segment from 4 s to 6 s 

Fig. 20 Comparison of the seismic input used in the experiment 
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