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1. Introduction 
 

The multiferroic materials such as Magneto-electro-

elastic (MEE) are grasping the significant attention of the 

scientific communities due to their intensive energy 

conversion capabilities (Vinyas et al. 2018a, Vinyas and 

Kattimani 2018a). These materials display triple energy 

conversion among elastic, electric and magnetic fields. The 

MEE materials as a result of their beneficial coupling 

properties have become a potential candidate for various 

engineering applications which includes electronic devices, 

acoustic devices, magnetic field probes, medical ultrasonic 

imaging, sensors, and actuators, etc. The intelligent 

structures composed of MEE materials needs a thorough 

examination. In this regard, many pioneers have attempted 

to study the mechanical response of MEE structures. Pan 

and his fellow researchers (2001, 2002, 2005, 2016) 

inspected the free vibration behaviour of MEE plates via 

exact solutions. Using state vector approach, Wang and Pan 

(2011) and Chen et al. (2014) probed the vibration 

characteristics of laminated MEE plates. The examination 

of the natural frequencies of MEE plates with the aid of 

partial mixed layer-wise finite element methods was 

performed by Lage et al. (2004). Meanwhile, few more 

literature adopting different computational techniques such  
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as approximate solution method (Ramirez et al. 2006a,  

Huang et al. 2007), semi-analytical FE procedure (Bhangale 

and Ganesan 2006), FE methods (Annigeri et al. 2007, 

Vinyas et al. 2017a, Daga et al. 2009), mesh lessmethod 

(Sladek et al. 2013a), discrete layer method (Ramirez et al. 

2006b) and state space approach (Xin and Hu 2015, Chen et 

al. 2007) also have contributed in evaluating the free 

vibration characteristics of MEE plates. In addition to these 

literatures, several layer-wise theories are also proved to be 

handy in yielding accurate frequencies (Alaimo et al. 2013, 

Milazzo 2013, 2014a, b, Benedetti and Milazzo 2017). The 

nonlinear free vibration behaviour of MEE structures 

supported by an elastic foundation was studied by Razavi 

and Shooshtari (2015), as well as Shooshtari and Razavi 

(2015a).  

The coupled responses of piezoelectric smart structures 

in the thermal environment have an interesting phenomenon 

associated with it (Saadatfar and Khafri 2015). On the same 

grounds, exploring the thermal effects on the behaviour of 

MEE structures has motivated the research community in 

the recent years. It is reported by many investigators that 

the thermal fields significantly affect the coupled 

characteristics of MEE structures. With the aid of FE 

procedure, Sunar (2002) researched the coupled 

phenomenon and derived the constitutive equations for the 

thermopiezomagnetic continuum. In another work, Badri 

and Kayiem (2013) investigated the static and dynamic 

analysis of magneto-electro-thermo-elastic (METE) plates. 

An exact solution was developed by Ootao and Tanigawa 
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(2005) to analyse the transient behavior of multilayered 

METE strip subjected to non-uniform and unsteady heating.  

A unique behaviour of MEE structures can be 

experienced in the thermal environment due to additional 

pyro-coupling effects. Kondaiah et al. (2012, 2015, 2017) 

evaluated the influence of pyroelectric and pyromagnetic 

coupling on the structural behaviour of MEE beams, plates 

and cylinders. Further, the effect of temperature loads on 

the free vibration of MEE beams was studied by Kumaravel 

et al. (2007). More recently, Vinyas and Kattimani 

contributed to the research community through their works 

which discuss the effect of various forms of thermal loading 

on the coupled static response of stepped-functionally 

graded MEE beams (Vinyas and Kattimani 2017b, c, d, e, f) 

and plates (Vinyas and Kattimani 2017g). Extending their 

evaluation on the same grounds, the influence of moisture 

was also briefed out (Vinyas and Kattimani 2017h, Vinyas 

et al. 2018b). Akbarzadeh and Chen (2014) derived 

analytical solutions and compared the coupled response of 

functionally graded and homogeneous thermo-magneto-

electro-elastic hollow cylinder. 

Several articles have been reported on evaluating the 

coupled hygrothermo-magneto-electro-elastic response of 

MEE structures. Among them, investigation of the 

multiphysics MEE behaviour of rotating cylinders subjected 

to hygrothermal loads was analysed by Akbarzadeh and 

Chen (2012) considering the temperature and moisture 

dependent material properties. In their other work, they 

performed an analytical evaluation of the hygrothermal 

stresses in one-dimensional functionally graded 

piezoelectric media (2013). The effect of elastic foundation 

on the hygrothermo-magneto-electro-elastic behavior of 

FG-MEE hollow sphere was thoroughly examined by 

Saadatfar and Khafri (2014). Akbarzadeh and Pasini (2014) 

developed a closed form solution to evaluate the steady-

state responses of functionally graded, multilayered 

infinitely long cylinders and thin circular disks under 

hygrothermal loading.  

To assess the kinematics of the plate, many plate 

theories have been proposed. The classical plate theory 

(CPT) is considered to be elementary among those. It is 

worthy to mention that, CPT completely ignores the 

influence of shear deformation. As a result it cannot be 

adopted for thick plates (Ebrahimi and Shafiei 2017, 

Ebrahimi and Barati 2016). On the other hand, the first-

order shear deformation theory (FSDT) overcomes this 

drawback but requires shear correction factor to get 

accurate results. Further, selection of the correct shear 

correction factor is quite critical and affects the results 

drastically. Therefore, many higher order shear deformation 

theories (HSDT) came into existence. The HSDT satisfies 

the zero shear stress conditions without the requirement of 

shear correction factors which facilitates a better 

representation of the structural kinematics. However, the 

literatures reported on exploiting the advantages of HSDT 

for MEE structural analysis is available in scarce. Moita et 

al. (2009) proposed an analytical solution to solve for the 

vibration problem of MEE plates under the framework of 

HSDT. The effect of the elastic foundation on the vibrations 

of MEE plates were analyzed by Shooshtari and Razavi 

(2016). In hygrothermal environment, the ability of HSDT 

to consider coupling effects to evaluate the natural 

frequencies was thoroughly investigated by Vinyas and 

Kattimani (2018b). In addition, the influence of carbon 

nano-tubes (CNT) on the frequency response of MEE plates 

with the aid of HSDT was assessed through a FE 

formulation by Vinyas (2019a). 

The rectangular/square plates when provided with 

skewed edges, the stiffness drastically increases due to the 

fact that the area decreases. This improves the frequency of 

the plate. In addition, skewed MEE structures can be 

aligned easily even in case of obstructions. Therefore, the 

skewed structures are more often seen in the applications 

such as and actuators, energy harvesting and active 

vibration control (Vinyas 2019b). The free vibration 

behaviour of skew MEE plate was discussed by Vinyas et 

al. (2019) through higher-order shear deformation theory.  

The literature survey reveals that limited articles have 

been reported on assessing the vibration behaviour of MEE 

plate under the framework of HSDT. Further, to the best of 

author‟s knowledge, no work has been reported on 

estimating the natural frequencies of SMEE plate 

considering temperature-moisture dependent elastic 

stiffness coefficients. In this regard, this work makes the 

first attempt by deriving a FE formulation with the aid of 

Hamilton‟s principle. The governing equations of motion 

are solved by incorporating Hamilton‟s principle. A special 

emphasize has been made on assessing the influence of 

skew angle of MEE plate. Further, the individual effect as 

well as the significant combination of temperature and 

moisture dependent empirical constants on the vibration 

frequencies of SMEE plate has been investigated. The 

obtained results are compared with the previously published 

literature to validate its credibility to yield close results as 

that of 3D thick plate solution as well. The possible 

limitation of this FE model may be associated with the large 

deflection free vibration of thick plates based on the 3D 

theory. 

 

 

2. Materials and methods 
 

Eqs. 1(a)-1(c) illustrate the constitutive equations of 

MEE displaying inter-coupling among elastic, electric and 

magnetic phases (Vinyas and Kattimani 2017a) 

*𝜎𝑛+ = [𝐶̃𝑛]*𝜀𝑛+ − ,𝑒̃𝑛-*𝐸𝑛+ − ,𝑞̃𝑛-*𝐻𝑛+ − ,𝛼̃𝑛-Δ𝑇

− [𝛽𝑛]Δ𝑚 (1) 

*𝐷𝑛+ = ,𝑒̃𝑛-*𝜀𝑛+ − ,𝜂̃𝑛-*𝐸𝑛+ − ,𝑚̃𝑛-*𝐻𝑛+ − ,𝑝𝑛-Δ𝑇
− ,𝜒𝑛-Δ𝑚 (2) 

*𝐵+ = ,𝑞̃𝑛-*𝜀𝑛+ − ,𝑚̃𝑛-*𝐸𝑛+ − ,𝜇̃𝑛-*𝐻𝑛+ − [𝜆̃𝑛]Δ𝑇

− [𝜁𝑛]Δ𝑚 (3) 

The nomenclature of the various material property matrices 

and vectors appearing in Eqs. 1(a)-1(c) are explicitly 

illustrated in the Appendix. Since, the present analysis 

considers plane stress state, the reduced elastic stiffness 

coefficients are used as follows 
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2.1 Temperature and Moisture dependent material 
properties 

 
The present analysis considers that the elastic stiffness 

coefficient is dependent on the temperature gradient T (in 

Kelvin, K) and moisture concentration m (in %) through 

the empirical constants 
(temperature dependent) and  

(moisture dependent) as follows (Akbarzadeh and Chen 

2012) 

𝐶 = 𝐶0(1 + 𝛼∗∆𝑇 + 𝛽∗∆𝑚) (5) 

in which, C0 denotes the temperature and moisture 

independent elastic stiffness matrix. The significant 

empirical constants are obtained by evaluating the 

mechanical response of composite in hygrothermal 

environment experimentally, followed by fitting the 

mathematical relation (Youssef 2005, Adams and Miller 

1997). Meanwhile, the empirical constants are assumed not 

to vary in any direction. 

 

2.2 Methodology 
 
This study is structured according to the stages that 

involved the development of the finite element based on 

Reddy‟s TSDT. Therefore, in this section one starts by 

considering the displacement and strain fields associated to 

this theory, which is then followed by the corresponding 

finite element formulation. Considering that the plates that 

will be analyzed are made of temperature and moisture 

dependent magneto-electro-elastic materials, the 

corresponding constitutive relations are considered in the 

equation of motion constitution, as well as the necessary 

transformations to deal with the plates‟ geometrical 

skewness. 

 

2.3 Problem description 
 

The present study considers a three layered rectangular 

(Fig. 1(a)) and SMEE plates (Figs. 1(b) and 1(c)) having a, 

b and h as dimensions of length, breadth and thickness (Fig. 

1). The geometrical skewness of the plate is denoted by . 

.The SMEE plate with first and third layers made of 

piezoelectric (B) and the middle layer made of 

piezomagnetic (F) material forms BFB stacking sequence.  

 

 

Meanwhile, replacing the piezoelectric and piezomagnetic 

layers in BFB stacking sequence forms FBF stacking 

sequence. 

 

2.4 Reddy’s third order shear deformation theory 
 

The plate kinematics follows Reddy‟s third order shear 

deformation theory (RTSDT) according to which the 

displacement components u, v and w can be represented as 

(Reddy 1997) 
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(6) 

in which, the midplane displacements along x, y, and z-axes 

are denoted asu0, v0, and w0, respectively. Meanwhile, the 

rotations of the normal in the xz plane and yz plane are 

shown as x and y, respectively. Further, z = 0 acts as a 

mid-plane. 

Categorizing into bending and shear strains, the strain 

components can be illustrated as follows 
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(7) 

         3 3
1 1

e e e e
t r r rb tb rb rb rbB d z B d c z B d c z B d                 
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where 
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(9) 

𝐶̃11 = 𝐶11 −
𝐶13

2

𝐶33
 ; 𝐶̃12 = 𝐶12 −

𝐶13𝐶23

𝐶33
 ; 𝐶̃22 = 𝐶22 −

𝐶23
2

𝐶33
 ; 𝐶̃44 = 𝐶44 ; 𝐶̃55 = 𝐶55 ; 𝐶̃66 = 𝐶66 

𝑒̃31 = 𝑒31 −
𝐶13𝑒33

𝐶33
 ; 𝑒̃32 = 𝑒32 −

𝐶23𝑒33

𝐶33
 ; 𝑒̃15 = 𝑒15 ; 𝑒̃24 = 𝑒24 ; 

𝑞̃31 = 𝑞31 −
𝐶13𝑞33

𝐶33
 ;𝑞̃32 = 𝑞32 −

𝐶23𝑞33

𝐶33
 ;𝑞̃15 = 𝑞15 ; 𝑞̃24 = 𝑞24 ; 

𝜂̃11 = 𝜂11 ; 𝜂̃22 = 𝜂22; 𝜂̃33 = 𝜂33 +
𝑒233

𝐶33
 ; 

𝑚̃11 = 𝑚11 ; 𝑚̃22 = 𝑚22; 𝑚̃33 = 𝑚33 +
𝑒33𝑞33

𝐶33
 ;𝛼̃1 = 𝛼1 −

𝐶13𝛼3

𝐶33
 ; 𝛼̃2 = 𝛼2 −

𝐶23𝛼3

𝐶33
 ; 

𝛽1 = 𝛽1 −
𝐶13𝛽3

𝐶33
; 𝛽2 = 𝛽2 −

𝐶23𝛽3

𝐶33
; 𝜁1 = 𝜁1 ; 𝜁2 = 𝜁2 ; 𝜁3 = 𝜁3 +

𝑞33𝛽33

𝐶33
 

𝑝1 = 𝑝1 ; 𝑝2 = 𝑝2 ; 𝑝3 = 𝑝3 +
𝑒33𝛼33

𝐶33
 ; 𝜆̃1 = 𝜆1 ; 𝜆̃2 = 𝜆2 ; 𝜆̃3 = 𝜆3 +

𝑞33𝛼33

𝐶33
  

(4) 
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(10) 

The shear strains can be expressed as follows 
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(13) 

In the Eqs. (8)- (11), ,𝐵𝑡𝑏-, ,𝐵𝑟𝑏-, ,𝐵𝑡𝑠-and  ,𝐵𝑟𝑠- are the 

strain-displacement matrices. Meanwhile, *𝑑𝑡+ =
*𝑢0 𝑣0 𝑤0+𝑇 , *𝑑𝑟+ = *𝜃𝑥 𝜃𝑦+𝑇  and *𝑑𝑟∗+ =
*𝜅𝑥 𝜅𝑦+𝑇 are the translational, rotational and higher-order 

displacement vector, respectively. 

 

2.5 Finite element formulation 
 

The details regarding the derivation of finite element 

(FE) in association with the RTSDT has been presented in 

this section. An eight noded isoparametric element is used 

to develop the FE model. Each node of the element 

accommodates nine degrees of freedom related to *𝑑𝑡+ , 
*𝑑𝑟+,*𝑑𝑟∗+, electric potential (𝜙) and magnetic potential 

(𝜓). The generalized translational displacement vector and 

rotational vector associated with the i
th

(i =1, 2, 3…8) node 

of the element can be represented as 
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(15) 

where, ,𝑁𝑡-, ,𝑁𝑟-, ,𝑁𝑟∗-, [𝑁𝜙] and[𝑁𝜓] are shape function 

matrices, respectively. 

Assuming the quasi-staticelectro-magnetic behavior, the 

electric field (E) and magnetic field (H) can be related to 

scalar gradients of its potential as follows 
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(17) 

in which, i = x, y and z. 

 

2.6 Equation of motion 
 

The expression of Hamilton‟s principle for SMEE plate 

can be given as follows 
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In Eq. (18), the layer number is shown as n and the volume 

of the n
th

 layer is depicted as Ωn. In the present analysis, 

the effect of the mechanical load vector*𝐹𝑚
𝑒+𝑇, the electric 

load vector {𝐹𝜙
𝑒}

𝑇
 and magnetic load vector {𝐹𝜓

𝑒}
𝑇

are 

neglected. Further, bifurcating the terms based on the 

coefficients of *𝑑𝑡
𝑒+𝑇,*𝑑𝑟

𝑒+𝑇, *𝑑𝑟∗
𝑒 +𝑇, *𝜙𝑒+𝑇 and *𝜓𝑒+𝑇,we 

obtain the equations of motion as follows 

,𝑀𝑡𝑡-{𝑑𝑡̈} + ,𝐾𝑡𝑡-*𝑑𝑡+ + ,𝐾𝑡𝑟-*𝑑𝑟+ + ,𝐾𝑡𝑟∗-*𝑑𝑟∗+ + [𝐾𝑡𝜙]*𝜙+ + [𝐾𝑡𝜓]*𝜓+ = 0 

,𝐾𝑟𝑡-*𝑑𝑡+ + ,𝐾𝑟𝑟-*𝑑𝑟+ + ,𝐾𝑟𝑟∗-*𝑑𝑟∗+ + [𝐾𝑟𝜙]*𝜙+ + [𝐾𝑟𝜓]*𝜓+ = 0 

,𝐾𝑟∗𝑡-*𝑑𝑡+ + ,𝐾𝑟∗𝑟-*𝑑𝑟+ + ,𝐾𝑟∗𝑟∗-*𝑑𝑟∗+ + [𝐾𝑟∗𝜙]*𝜙+ + [𝐾𝑟∗𝜓]*𝜓+ = 0 

[𝐾𝜙𝑡]*𝑑𝑡+ + [𝐾𝜙𝑟]*𝑑𝑟+ + [𝐾𝜙𝑟∗]*𝑑𝑟∗+ + [𝐾𝜙𝜙]*𝜙+ + [𝐾𝜙𝜓]*𝜓+ = 0 

(19) 

[𝐾𝜓𝑡]*𝑑𝑡+ + [𝐾𝜓𝑟]*𝑑𝑟+ + [𝐾𝜓𝑟∗]*𝑑𝑟∗+ + [𝐾𝜓𝜙]*𝜙+ + [𝐾𝜓𝜓]*𝜓+ = 0 

The skew transformations are applied by imposing 

transformed boundary conditions along x’-, y’- and z’- 

directions, to the degrees of freedom of the points lying on 

the skew edges as follows
 

              1 1 1
* * *  ;     ;   t t t r r r r r rd T d d T d d T d    (20) 

 1
td , and by  1

rd ,  1
*rd  denotes skew transformed 

translational, rotational and higher order degrees of 

freedom, respectively. Further, the transformation 

matrices,𝑇𝑡- , ,𝑇𝑟-  and ,𝑇𝑟∗-  implemented at each node 

can be shown as follows 

     *

cos sin 0
cos sin

sin cos 0   ;  
sin cos

0 0 1

t r rT T T

 
 

 
 

 
  

          

 
(21) 

Similarly, the transformed stiffness and mass matrices can 

be illustrated as follows 

           1 1 1 2 * 1 * 2  ;     ;   
T T Te e e e e e

tt tt tr tr tr trK T K T K T K T K T K T            
               

 
(22) 

           2 2 * 2 * 2 * * 2 * * 2  ;     ;   
T T Te e e e e e

rr rr rr rr r r r rK T K T K T K T K T K T            
               

 

   1 1

Te eM T M T   
   
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where  1T  and  2T  are banded matrices containing the 

matrices present in Eq. (21) along the main diagonals, 

respectively. Finally, Eq. (19) can be condensed to a more 

generalized form as follows 

    0eq t eq tM d K d         (23) 

where, [𝐾𝑒𝑞]and [𝑀𝑒𝑞]is the equivalent stiffness and mass 

matrix.  

The boundary conditions at the nodes laying on the skew 

edges can be expressed along the transformed axes as 

follows 

Clamped edge (C): 

x y x y

1 1 1 1 1 1 1
u v w 0             

 
Simply supported edge (S): 

x x

1 1 1 1 1
u 0;v w 0         

 
at x

1
 =0, a 

(24) 

y

1 1 1 1 1

y
v 0;u w 0           at y

1
 =0,b 

 

 

3. Results and discussion 
 

In this section, the natural frequency characteristics of 

SMEE have been assessed with the aid of FE formulation 

derived, considering temperature-moisture dependent 

elastic stiffness coefficients. The geometrical dimensions of 

the plate considered are a = b = 1m and thickness h = 0.3 m. 

The METE material properties tabulated in Table 1 are 

considered in this analysis. A mesh size of 10×10 which 

yields a converged result has been adopted in the present  

 

 

work. Analogously, the verification of the present FE model 

is carried out by comparing the results with the previously 

published literature. The usefulness of the FE formulation 

derived is able to employ them in place of more general 

three-dimensional analyses to obtain much accurate results. 

The 3D analyses require higher computational time and 

involve greater numerical round-off error difficulties. 

Further, it eliminates the over corrections in frequencies 

caused by first order theory for moderate and large 

thickness. In this regard, to prove the credibility of the 

proposed formulation to yield accurate results against the 

existing 3D thick plate solution, the problem of layered 

thick MEE plates as considered by Chen et al. (2014) is 

resolved through the present formulation. From Table 2 it is 

affirmed that the proposed FE formulation results in an 

accurate prediction of coupled natural frequency of plate 

up-to a very low length/thickness ratio of 5 (thick plates). 

 

3.1 Effect of temperature-moisture dependent 
empirical constants 

 
The influence of temperature dependent empirical 

constant 
and moisture dependent empirical constant  on 

the natural frequency of MEE plate is evaluated using FE 

formulation. The temperature and moisture dependent elastic 

stiffness coefficient C as depicted in Eq. (5) is considered for 

evaluation. Further, in the present analysis, MEE plate with 

BFB stacking sequence (the term „B‟ and „F‟ corresponds to 

the pure piezoelectric and pure piezomagnetic phases, 

respectively) subjected to the temperature difference of 10 K 

and a moisture concentration of 0.5 has been considered. The 

evaluation is carried out for SSSS and CCCC boundary 

conditions. For the sake of brevity, only the variation of the  

Table 1 Material properties corresponding to different volume fraction VfofBaTiO3 – CoFe2O4 (Vinyas and Kattimani 

2017b) 

Material property 
Material 

Constants 
0 Vf 0.2 Vf 0.4 Vf 0.5 Vf 0.6 Vf 0.8 Vf 1 Vf 

Elastic Constants 

(GPa) 

C11=C22 286 250 225 220 200 175 166 

C12 173 146 125 120 110 100 77 

C13=C23 170 145 125 120 110 100 78 

C33 269.5 240 220 215 190 170 162 

C44=C55 45.3 45 45 45 45 50 43 

C66 56.5 52 50 50 45 37.5 44.5 

Piezoelectric constants 

(C/m2) 

e31 0 -2 -3 -3.5 -3.5 -4 -4.4 

e33 0 4 7 9.0 11 14 18.6 

e15 0 0 0 0 0 0 11.6 

Dielectric constant 

(10-9 C2/Nm2) 

ε11=ε22 0.08 0.33 0.8 0.85 0.9 1 11.2 

ε33 0.093 2.5 5 6.3 7.5 10 12.6 

Magnetic permeability 

(10-4 Ns2/C2) 

μ11=μ22 -5.9 -3.9 -2.5 -2.0 -1.5 -0.8 0.05 

μ33 1.57 1.33 1 0.9 0.75 0.5 0.1 

Piezomagnetic 

constants 

(N/Am) 

q31 580 410 300 350 200 100 0 

q33 700 550 380 320 260 120 0 

q15 560 340 220 200 180 80 0 

Magneto-electric 

constant 

(10-12Ns/VC) 

m11=m22 0 2.8 4.8 5.5 6 6.8 0 

m33 
0 2000 2750 2600 2500 1500 0 

Density (kg/m3) ρ 5300 5400 5500 5550 5600 5700 5800 
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Table 2 Verification of the present FE formulation (a/h = 5) 

Stacking Sequence Mode 

No. 

Non-Dimensional Frequency  

 

% Error 

  Chen et al. (2014) Present   

 

BBB 

1 1.7823 1.7871 0.2673 

2 2.9492 2.9534 0.1433 

3 2.9492 2.9537 0.1512 

 

FFF 

1 1.3674 1.3736 0.4518 

2 2.2318 2.2404 0.3841 

3 2.2318 2.2404 0.3841 

 

BFB 

1 1.3434 1.3482 0.3601 

2 2.2199 2.2279 0.3597 

3 2.2199 2.2279 0.3597 

 

FBF 

1 1.4463 1.4346 -0.8109 

2 2.3602 2.3390 -0.8979 

3 2.3602 2.3392 -0.8905 

 
(a) Rectangular MEE plate 

 
(b) Skew MEE plate 

 
(c) Skew Transformation 

Fig. 1 Magneto-electro-elastic plate geometry 
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(a) 1

st
 Mode 

 
(b) 2

nd
 Mode 

 
(c) 3

rd
 Mode 

 
(d) 4

th
 Mode 

Fig. 2 Mode shapes of MEE plate (CCCC boundary condition) 

Table 3 Effect of 
and  on the natural frequency of MEE plate 

BFB stacking sequence, ΔT= 10 K; Δm=0.5 

 SSSS  CCCC 

 ∗  = 0.5  = 1.0  = 1.5 = 2.0   = 0.5  = 1.0  = 1.5 = 2.0 

 

0.5 

0.3249 0.3314 0.3377 0.3439  0.4324 0.4410 0.4494 0.4576 

0.5848 0.5964 0.6078 0.6189  0.9176 0.9358 0.9536 0.9712 

0.6431 0.6558 0.6683 0.6806  0.9176 0.9358 0.9536 0.9712 

 

1.0 

0.4359 0.4408 0.4455 0.4502  0.5802 0.5866 0.5929 0.5992 

0.7846 0.7933 0.8019 0.8103  1.2313 1.2449 1.2584 1.2717 

0.8628 0.8723 0.8818 0.8911  1.2313 1.2449 1.2584 1.2717 

 

1.5 

0.5239 0.5280 0.5319 0.5359  0.6973 0.7026 0.7079 0.7132 

0.9430 0.9502 0.9574 0.9645  1.480 1.4913 1.5026 1.5137 

1.0369 1.0449 1.0528 1.0606  1.480 1.4913 1.5026 1.5137 

 

2.0 

0.5991 0.6027 0.6062 0.6096  0.7974 0.8020 0.8067 0.8113 

1.0783 1.0847 1.0910 1.0971  1.6924 1.7024 1.7122 1.7221 

1.1858 1.1927 1.1997 1.2055  1.6924 1.7024 1.7122 1.7221 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3 Effect of skew angle on the SMEE plates with different empirical constants 

0 15 30 45

1

2

3

4

BFB-CCCC 




0

 




0.5






0

 




2.5

F
u
n
d
am

en
ta

l 
fr

eq
u
en

cy
 (

1
0

5
 r

ad
/s

ec
)

Skew Angle ()

 

 

0 15 30 45

0

1

2

3

4 FBF-CCCC
 





0

 




0.5






0

 




2.5

F
u

n
d

am
en

ta
l 

fr
eq

u
en

cy
 (

1

0
5
 r

ad
/s

ec
)

Skew Angle ()

 

 

0 15 30 45

0

1

2

3

FBF-SSSS 




0

 




0.5






0

 




2.5

F
u
n
d
am

en
ta

l 
fr

eq
u
en

cy
 (

1
0

5
 r

ad
/s

ec
)

Skew Angle ()

0 15 30 45

0

1

2

3
BFB-SSSS

F
u

n
d

am
en

ta
l 

fr
eq

u
en

cy
 (

1

0
5
 r

ad
/s

ec
)

Skew Angle ()

 




0

 




0.5






0

 




2.5

 

 

274



 

Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment 

 

 

 

 

 

 

 

first natural frequency is depicted in this section. It can be 

noticed from Table 3 that for a given 
, the natural frequency 

increases for the higher values of . Figs. 2(a)-2(d) illustrate 

the first four mode shapes of MEE plate subjected to ΔT= 10 K 

and Δm=0.5. The empirical constants correspond to 
=  = 

0.5. 

 

 

 
 
 
 
 

 
 
3.2 Effect of skew angle 

 

The influence of skew angle on the coupled frequency 

of SMEE plates has been analyzed. The results plotted in 

Figs. 3(a)-3(d) suggest that with the increase in the skew 

angle of the SMEE plate, the natural frequencies increases. 

It may be due to the fact that the area of the plate decreases 

leading to improved stiffness of the plate. The mode shapes  

Table 4 Effect of skew angle on MEE plate with different empirical constants (BFB; T = 100 K; m = 1) 

Skew Angle Natural frequency (× 105 rad sec-1) 

SSSS CCCC 

Empirical constants 𝛼∗ = 𝛽∗ 

 0.5 1 2.5 0.5 1 2.5 

𝜆 = 00 0.9439 1.3284 2.0941 1.2377 1.7418 2.7459 

1.201 1.6902 2.6645 2.0647 2.9058 4.5809 

1.201 1.6902 2.6645 2.0647 2.9058 4.5809 

𝜆 = 100 0.9655 1.3587 2.142 1.2588 1.7716 2.7929 

1.2163 1.7117 2.6984 2.0357 2.865 4.5166 

1.2232 1.7215 2.7139 2.158 3.0371 4.7879 

𝜆 = 200 1.0339 1.4551 2.294 1.3257 1.3257 2.9413 

1.2641 1.7791 2.8046 2.0697 2.0697 4.5919 

1.2955 1.8231 2.8742 2.3275 2.3275 5.1639 

𝜆 = 450 1.5294 2.1524 3.3932 1.8023 2.5364 0.3999 

1.5945 2.2439 3.5375 2.5354 3.5681 0.5625 

1.8492 2.6024 4.1026 2.9108 4.0965 0.6458 

Table 5 Effect of skew angle on MEE plate with different empirical constants (FBF; T = 100 K; m = 1) 

Skew Angle Natural frequency (× 105 rad sec-1) 

SSSS CCCC 

Empirical constants 𝛼∗ = 𝛽∗ 

0.5 1 2.5 0.5 1 2.5 

       

𝜆 = 00 1.0825 1.0825 2.4017 1.334 1.8773 2.9596 

1.2495 1.2495 2.7722 2.1834 3.0728 4.8442 

1.2495 1.2495 2.7722 2.1834 3.0728 4.8442 

𝜆 = 100 1.1043 1.5541 2.45 1.355 1.907 3.0063 

1.2655 1.7809 2.8076 2.1532 3.0302 4.7771 

1.2731 1.7917 2.8245 2.2783 3.2063 5.0547 

𝜆 = 200 1.1733 1.6512 2.6031 1.4215 2.0005 3.1538 

1.3155 1.8513 2.9186 2.186 3.0764 4.8498 

1.3498 1.8997 2.9948 2.45 3.4479 5.4355 

𝜆 = 450 1.6601 2.3363 3.6831 1.8956 2.6677 0.4206 

1.6689 2.3487 3.7027 2.6474 3.7258 0.5874 

1.9404 2.7307 4.3049 3.0975 4.3592 0.6872 
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corresponding to the different skew angle is illustrated in 

Fig. 4. Further, it also witnessed that a drastic change in the 

frequency appears when the skew angle changes from 30 to 

45 degree. This holds good for all the temperature and 

moisture dependent empirical constants adopted for the 

analysis, as elucidated in Tables 4 and 5. In addition, it is 

also witnessed here that the higher empirical constants 

yields higher natural frequency. 

The analysis is extended to compare the natural 

frequency of SMEE plate considering the effect of 

temperature and moisture dependent elastic stiffness 

coefficients with that of temperature and moisture 

independent elastic stiffness coefficients. The results 

tabulated in Table 6 reveals that for different stacking 

sequences and boundary conditions, the natural frequencies  

 

 

 

show a prominent effect when the elastic stiffness 

coefficients are considered to be dependent on the external 

temperature and moisture fields. In addition, the effect of 

skew angle is evaluated on the same grounds. The results 

reveal that the discrepancy between the natural frequencies 

of SMEE plate with and without considering temperature 

and moisture dependent elastic stiffness coefficients 

becomes more at the higher skew angle as depicted in Figs. 

5(a)-5(d). 

 

3.3 Effect of stacking sequences 
 

For a unit change in the external thermal and moisture 

fields, the effect of stacking sequences on the first four 

natural frequencies of MEE plate with CCCC boundary  

Mode 

No. 

Skew Angle (α) 

15° 30° 45° 

1 

  
 

2 

   

3 

   

4 

   

5 

   

6 

   

Fig. 4 Mode shapes of SMEE plates-BFB stacking sequence 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 Comparison of fundamental frequency of SMEE plate with tempereature-moisture dependent and independent 

material properties 
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Table 6 Comparison of the natural frequencies corresponding to temperature and moisture dependent and indep

endent elastic stiffness coefficients with different boundary conditions 

Natural frequencies (104 rad/sec),  ∗ =  ∗ =   

Stacking 

Sequence 

SSSS CCCC CSCS CFCF 

T andm 

 independent dependent independent dependent independent dependent independent dependent 

 

 

BFB 

1.3191 2.2848 1.7297 2.9959 1.5208 2.6341 1.1668 2.0209 

2.3747 4.1131 3.6634 6.3549 2.8205 4.8852 2.2317 3.8654 

2.6198 4.5377 3.6634 6.3549 3.0905 5.3546 2.4934 4.3187 

 

 

FBF 

1.5129 2.6204 1.8643 3.2291 1.6713 2.8948 1.2624 2.1865 

2.4708 4.2796 3.9415 6.8369 2.9987 5.194 2.4671 4.2732 

2.8534 4.9415 3.9415 6.8369 3.2406 5.6144 2.6246 4.5459 

 

 

BFFB 

1.3406 2.3220 1.7445 3.0216 1.5372 2.6625 1.1774 2.0393 

2.4233 4.1972 3.8055 6.6012 2.8402 4.9193 2.2578 3.9106 

2.6444 4.5803 3.8055 6.6012 3.1671 5.4872 2.5088 4.3454 

 

 

FBBF 

1.4994 2.5971 1.8542 3.2113 1.6602 2.8755 1.255 2.1737 

2.4233 4.1972 3.8055 6.6012 2.983 5.1666 2.4482 4.2404 

2.8369 4.9137 3.8055 6.6012 3.1671 5.4872 2.6114 4.523 

 

 

BBB 

1.3036 2.2580 1.7105 2.9627 1.5037 2.6046 1.1542 1.9991 

2.2745 3.9396 3.3569 5.8245 2.7893 4.8313 2.2074 3.8233 

2.5904 4.4867 3.3569 5.8245 2.9248 5.0684 2.4666 4.2722 

 

FFF 

1.5278 2.6462 1.8841 3.263 1.6885 2.9245 1.2753 2.2088 

2.5634 4.4399 4.029 6.978 3.0308 5.2496 2.4914 4.3152 

2.8835 4.9943 4.1758 7.233 3.3802 5.8561 2.6522 4.5938 

Mode 

No. 
BFB FBF BBB FFF BFFB FBBF 

1 

      

2 

    
 

  

3 

 

 

  
  

4 

      
 

Fig. 6 Effect of stacking sequences on the mode shapes of MEE plates subjected to hygrothermal loads (ΔT= Δm=1) 
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Table 7 Effect of different combination of empirical constants on the fundamental frequency of SMEE plate (ΔT= 10 K; 

Δm=0.5; CCCC condition) 

Skew 

Angle 

 
Fundamental natural frequency (× 105 rad sec-1) 

 BFB FBF 

 ∗  = 0.5  = 1.0  = 1.5 = 2.0  = 0.5  = 1.0  = 1.5 = 2.0 

=0 0.5 1.2377 1.2437 1.2496 1.2556 1.334 1.3404 1.3469 1.3533 

1.0 1.7375 1.7418 1.7461 1.7503 1.8727 1.8773 1.8819 1.8865 

1.5 2.1228 2.1263 2.1298 2.1333 2.288 2.2917 2.2955 2.2993 

2.0 2.4481 2.4512 2.4542 2.4572 2.6386 2.6419 2.6452 2.6484 

=15 0.5 1.2588 1.2649 1.271 1.277 1.355 1.3616 1.3681 1.3746 

1.0 1.7673 1.7716 1.776 1.7803 1.9023 1.907 1.9116 1.9163 

1.5 2.1591 2.1627 2.1662 2.1698 2.3241 2.3279 2.3317 2.3356 

2.0 2.49 2.4931 2.4962 2.4993 2.6803 2.6836 2.6869 2.6903 

= 30 0.5 1.3257 1.3321 1.3385 1.3449 1.4215 1.4284 1.4352 1.4421 

1.0 1.8611 1.8657 1.8703 1.8748 1.9956 2.0005 2.0054 2.0103 

1.5 2.2738 2.2775 2.2813 2.285 2.4381 2.4421 2.4461 2.4501 

2.0 2.6223 2.6255 2.6288 2.632 2.8118 2.8153 2.8188 2.8222 

= 45 0.5 1.8023 1.811 1.8197 1.8283 1.8956 1.9047 1.9139 1.923 

1.0 2.5302 2.5364 2.5426 2.5488 2.6611 2.6677 2.6742 2.6807 

1.5 3.0912 3.0962 3.1013 3.1064 3.2512 3.2565 3.2619 3.2672 

2.0 3.565 3.569 3.574 3.578 3.749 3.754 3.759 3.763 

  
(a) FBF-SSSS (b) FBF-CCCC 

  
(c) BFB-CCCC (d) BFB-SSSS 

Fig. 7 Effect of different combination of empirical constants and skew angle on the fundamnetal frequency of SMEE plate 
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condition is studied. It can be noticed from Table 6 that 

MEE pate with FFF stacking sequence (homogeneous 

piezomagnetic) has a predominant effect. This can be 

attributed to the fact that the pure piezomagnetic phase has 

higher elastic stiffness coefficients and results in increased 

coupling effects. Meanwhile, BBB (homogeneous 

piezoelectric) MEE plate shows a negligible effect. Further, 

the comparison of the mode shapes corresponding to 

different stacking arrangements of MEE plates has been  

depicted in Fig. 6. It can be noticed from this figure that few 

modes are significantly affected by the stacking sequences, 

whereas few remains unaffected (Pan and Heyliger 2002). 

This may be attributed to the various degree of coupling. 

 

3.4 Significant combination of empirical constant 
 

The temperature and moisture fields behave differently 

for the varying temperature and moisture profiles, in 

contrast to uniform hygrothermal loads. Hence, evaluating 

the significant combination of empirical constants gains 

importance when SMEE plate is subjected to non-uniform 

temperature fields. For both BFB and FBF stacking 

sequences with CCCC and SSSS boundary conditions, the 

significant combination of empirical constants are evaluated. 

Figs. 7(a)-7(d) illustrate the variation of fundamental 

natural frequency for different combinations of α

 and  

corresponding to various SMEE plates. It can be noticed 

that for a constant value of α

, the fundamental natural 

frequency increases with a higher value of . In addition, 

the results tabulate in Table 7 suggests that even though a 

negligible discrepancies prevail, the most prominent effect  

is witnessed for α

= =2.0. It means, a higher 

multiphysical frequency response can be obtained when the 

same values are taken for the empirical constants of 

temperature and moisture dependence. 

 

3.5 Effect of temperature and moisture gradient 
 

Meanwhile, the study is extended to analyze the effect 

of moisture concentration and temperature gradient. Figs. 

8(a) and 8(b) depict the influence of m and T, when T  

 

 

and m are set to a constant value, respectively. From the 

figure it can be concluded that m has a minimal effect in 

contrast to T. Therefore, the thermal field contributes more 

to the coupling properties than the moisture field. Figs. 9(a) 

-9(d) demonstrate the combined effect of m and T 

considering different stacking sequences and boundary 

conditions. The values of the empirical constant are set to α

 

= = 1. It can be noticed from this figure that as the value 

of m and T increases, the natural frequency increases. 

Further, Table 8 illustrates the combined effect of m and 

T for different empirical constants and skew angle. A 

similar conclusion with respect to skew angle, empirical 

constants as previously discussed can be arrived here as 

well. 

From the previous results it is clearly witnessed that m and 

T have a significant influence on the natural frequency. 

However, evaluating the individual effect of thermal and 

moisture fields and its empirical constants become 

important. Figs. 10(a)-10(d) show that with the increase in 

temperature the fundamental natural frequency increases. 

Analogously, Figs. 11(a)-11(d) depict the individual effect 

of moisture field when there is no effect of thermal field. 

From these figures it is revealed that, as the skew angle 

improves, the individual effect of both m and T becomes 

higher. Also, it can be noticed that when only the moisture 

effect is considered, the discrepancies are more at the higher 

skew angle, in comparison with the individual thermal 

effect. 

 

3.6 Effect of coupling 
 

The influence of empirical constants and the individual 

phases on the natural frequencies of SMEE plates has been 

investigated. The numerical evaluation suggests that SMEE 

plate yields a higher natural frequency when the full 

coupling between elastic, electric and magnetic fields are 

considered. This hierarchy is followed by electro-elastic, 

magneto-elastic coupling. A pure elastic SMEE plate is 

observed to yield a minimum frequency. 

 

  
(a) (b) 

Fig. 8 Effect of (a) m at constant value of T and (b)T at constant value of m 
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(a) (b) 

  
(c) (d) 

Fig. 9 Effect of different combination of T and m on the fundamental frequency of different SMEE plates with α

 = 

= 1 

  
(a) (b) 

  
(c) (d) 

Fig. 10 Individual effect of T on the fundamental frequency of different SMEE plates when m = 0 
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Table 8 Effect of different empirical constants and different combination of T and m on the fundamental frequency 

of different SMEE plates 

Stacking S

equence 

Empirical constants Skew Angle 

() 
Temperature and moisture rise 

    

ΔT = 10 K 

Δm = 0.5 % 

 

ΔT = 100 K 

Δm = 1 % 

 

ΔT = 200 K 

Δm = 1.5 % 

 

ΔT = 300 K 

Δm = 2.0 % 

 

 

 

 

 

 

 

 

 

 

 

 

BFB 

 

 

α = = 0.5 

0 0.4312 1.2377 1.7397 2.1263 

15 0.448 1.2861 1.8077 2.2095 

30 0.505 1.4495 2.0375 2.4903 

45 0.6278 1.8023 2.5333 3.0962 

 

 

α = = 1 

0 0.5849 1.7418 2.4542 3.0021 

15 0.6077 1.8099 2.5502 3.1195 

30 0.685 2.04 2.8743 3.516 

45 0.8517 2.5364 3.574 4.372 

 

 

α = = 1.5 

0 0.7058 2.1298 3.0033 3.675 

15 0.7335 2.2131 3.1208 3.819 

30 0.8267 2.4944 3.517 4.304 

45 1.0278 3.1013 4.373 5.351 

 

 

α = = 2.0 

0 0.8089 2.4572 3.466 4.242 

15 0.8406 2.5534 3.602 4.408 

30 0.9474 2.8779 4.06 4.968 

45 1.1779 3.578 5.048 6.177 

 

 

 

 

 

 

 

 

 

 

FBF 

 

 

α = = 0.5 

0 0.4647 1.334 1.875 2.2917 

15 0.4815 1.3821 1.9427 2.3744 

30 0.5381 1.5446 2.1711 2.6536 

45 0.6604 1.8956 2.6644 3.2565 

 

 

α = = 1 

0 0.6304 1.8773 2.6452 3.2357 

15 0.6531 1.9451 2.7406 3.3524 

30 0.7299 2.1738 3.0628 3.747 

45 0.8957 2.6677 3.759 4.598 

 

 

α = = 1.5 

0 0.7608 2.2955 3.237 3.961 

15 0.7882 2.3783 3.3538 4.104 

30 0.8809 2.6579 3.748 4586 

45 1.081 3.2619 4.6 5.628 

 

 

α = = 2.0 

0 0.8719 2.6484 3.736 4.572 

15 0.9033 2.744 3.871 4.737 

30 1.0095 3.0666 4.326 5.294 

45 1.2389 3.763 5.309 6.497 

Table 9 Effect of coupling on the fundamental natural frequency of SMEE plate with a different stacking sequence and 

empirical constant (m = 1; T = 100 K; SSSS boundary condition; =0

) 

Empirical 

Constant 

Fundamental natural frequency (× 105 rad sec-1) 

BFB FBF 

α = MEE EE ME E Red (%) MEE EE ME E Red (%) 

0.5 0.9439 0.9123 0.9056 0.892929 5.4 1.334 1.3178 1.3022 1.2846 3.7 

1 1.3284 1.2834 1.2678 1.240726 6.6 1.8773 1.8432 1.8056 1.7872 4.8 

2 2.0941 1.9323 1.9031 1.888878 9.8 2.2993 2.2056 2.1567 2.1338 7.2 

MEE: Magneto-electro-elastic; EE: Electro-elastic; ME: Magneto-elastic; E: Elastic; Red: Reduction % reduction = [(MEE-

Elastic)/MEE] × 100 
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In addition, it is witnessed that the coupling effect are 

predominant for higher empirical constants as illustrated in 

Table 9. 

 

3.7 Effect of boundary conditions 
 

The effect of boundary conditions on the natural 

frequencies of MEE plate is evaluated.  

It can be noticed from Table 6 that CCCC MEE plate 

has a significant influence on the characteristics of natural 

frequencies in contrast to the remaining boundary 

conditions. Further, for the temperature and moisture 

dependent empirical constants 𝛼∗ = 𝛽∗ = 1 , the natural 

frequencies variation for different combinations of ΔT and 

Δm for different boundary conditions are illustrated in Figs. 

12(a)-12(d). In addition, the natural frequencies the MEE 

plate with various skew angles and empirical constants are 

listed in Table 10. Similar to previous evaluation, a 

predominant effect of higher skew angles and empirical 

constants can be witnessed here as well. 

 

3.8 Effect of a/h ratio 
 

In this section, an attempt has been made to analyse the 

influence of aspect ratio (a/h) on the free vibrations of skew 

MEE plate. To this end, the fundamental frequency of MEE  

 

 

plate with different skew angles is considered for evaluation 

by choosing T and m, separately. From Figs. 13(a)-13(h) 

it can be witnessed that the MEE plate with lesser aspect 

ratio has a predominant effect. The discrepancies in the 

natural frequencies reduce as the aspect ratios increases. 

Therefore, it can be said that the aspect ratio (a/h) of the 

plate predominantly affects the stiffness properties of MEE 

plate. Meanwhile, it can be concluded that higher skew 

angle has a significant effect. Also, in contrast to the m a 

predominant influence of T is noticed. 

 

3.9 Effect of a/b ratio 
 

The effect of the length-to-width ratio (a/b) on the 

variation of the natural frequency of MEE plates has been 

studied in this section. For the purpose of evaluation, BFB 

and FBF stacking sequences along with SSSS boundary 

conditions have been considered. It can be inferred from 

Figs. 14(a) and 14(b) that the natural frequency varies 

proportional to a/b ratio. It can be attributed to the increased 

stiffness of MEE plates. Meanwhile, these figures also 

depict that the effect of a/h ratio is more on the SMEE plate 

in contrast to rectangular MEE plates. 

 

 

 

  
(a) (b) 

 
 

(c) (d) 

Fig. 11 Individual effect of m on the fundamental frequency of different SMEE plates when T = 0 
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Table 10 Effect of boundary conditions on fundamental frequency (×10
4
 rad/sec) of different SMEE plates with 

various empirical constants (m = 1; T = 10 K) 

Stacking 

Sequence 

Empirical constants Skew Angle 

() 
Boundary conditions 

 

CCCC 

 

SSSS 

 

CSCS 

 

CFCF 

 

 

 

 

 

 

 

 

 

 

 

 

BFB 

 

 

α = = 0.5 

0 4.312 0.1431 0.2212 0.159 

15 4.48 0.2073 0.2366 0.1674 

30 5.05 0.2705 0.2916 0.1977 

45 6.278 0.3987 0.4265 0.2726 

 

 

α = = 1 

0 5.849 0.1941 0.28854 0.2157 

15 6.077 0.2812 0.321 0.2271 

30 6.85 0.3669 0.3956 0.2682 

45 8.517 0.5408 0.5786 0.3698 

 

 

α = = 1.5 

0 7.058 0.2343 0.3622 0.2603 

15 7.335 0.3394 0.3874 0.2741 

30 8.267 0.4428 0.4774 0.3237 

45 10.27 0.6527 0.6983 0.4463 

 

 

α = = 2.0 

0 8.809 0.2685 0.4151 0.2983 

15 8.406 0.389 0.444 0.3141 

30 9.474 0.5074 0.5471 0.3709 

45 11.779 0.748 0.8003 0.5115 

 

 

 

 

 

 

 

 

 

 

FBF 

 

 

α = = 0.5 

0 4.647 0.1849 0.2783 0.2009 

15 4.815 0.2544 0.2977 0.211 

30 5.381 0.3371 0.3667 0.2475 

45 6.604 0.501 0.5365 0.339 

 

 

α = = 1 

0 6.304 0.2508 0.3775 0.2725 

15 6.531 0.345 0.4038 0.2862 

30 7.29 0.4572 0.4974 0.3357 

45 8.957 0.6796 0.7277 0.4598 

 

 

α = = 1.5 

0 7.608 0.3027 0.4556 0.3288 

15 7.882 0.4164 0.4873 0.3454 

30 8.809 0.5518 0.6003 0.4051 

45 10.81 0.8202 0.878 0.5549 

 

 

α = = 2.0 

0 8.719 0.347 0.5222 0.3769 

15 9.033 0.4772 0.5585 0.3958 

30 10.095 0.6324 0.68 0.4643 

45 12.389 0.9432 1.007 0.636 
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Mode  

No. 

Boundary Conditions 

CCCC SSSS CCCF CFCF CSCS 
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2 
  

 
  

 

 

 

3 
     

 

 

 

 

4 

     
 

Fig. 12 Effect of boundary conditions on the mode shapes (BFB stacking sequence) 
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4. Conclusions 
 

This article deals with assessing the frequency response 

of skew magneto-electro-elastic plates in hygrothermal 

environment under the frame work of third-order shear 

deformation theory. To this end, a finite element 

formulation has been derived considering temperature and 

moisture dependent material properties.  The equations of 

motion are arrived through Hamilton‟s principle. The 

numerical evaluation suggests that the frequency response 

is significantly affected by the skew angle and the 

temperature and moisture dependent empirical constants. 

Further, it is noticed that in comparison with the moisture 

concentration gradient, the natural frequency of the SMEE 

plate is predominantly affected by the temperature gradient.  

 

 

 

 

 

The higher value of temperature dependent empirical 

constant and moisture dependent empirical constant yields 

an increased natural frequency of MEE plate. The degree of 

coupling improves with the higher empirical constants. The 

effect of geometrical parameters such as boundary 

conditions, stacking sequences and aspect ratio on the free 

vibration characteristics has been studied. The results reveal 

that CCCC boundary condition has a predominant effect. 

Further, the MEE plates with a higher number of pure 

piezomagnetic phase (F) results in a greater magnitude of 

natural frequency and few of the higher mode shapes 

remain unaffected. For a given temperature and moisture 

concentration gradient, the natural frequencies show a 

significant effect for thick MEE plates (lower aspect ratio). 

  
(e) (f) 

  
(g) (h) 

Fig. 13 Effect of aspect ratio on the different SMEE plates with different ΔT and Δm 

  
(a) (b) 

Fig. 14 Effect of length-to-width ratio on the SMEE plates with different aspect ratio and skew angle 
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Appendix 
 

The explicit representation of the stiffness matrices 

appearing in the Eq. (20) can be shown as follows 
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The various rigidity matrices contributing to Eq. (A2) can 

be denoted as follows 
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