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1. Introduction 
 

As key structural elements in long-span cable-stayed 

bridges, stay cables are prone to excessive vibrations due to 

their high flexibility and low inherent damping 

characteristics. Large oscillations may reduce lifespan of 

cables and have detrimental effects on public confidence in 

the safety of the bridge. Various countermeasures and 

control strategies have been proposed to mitigate cable 

vibrations (Pacheco et al. 1993, Chen et al. 2004, Wang et 

al. 2005, Christenson et al. 2006, Duan et al. 2006, Cai et 

al. 2007, Li et al. 2007, Jung et al. 2008, Kim et al. 2010, 

Huang et al. 2012, Shen et al. 2016, He et al. 2018). Among 

these methods, transversely attached passive viscous 

dampers have been widely implemented in real 

applications. However, only minimal supplemental damping 

can be provided to the cable since the damper is typically 

restricted to the vicinity of the bridge deck for aesthetic and 

practical reasons (Pacheco et al. 1993, Krenk 2000, Fujino  
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and Hoang 2008, Zhou et al. 2014a). In addition, both the 

damper stiffness and the damper support stiffness have 

adverse effects on the damper control performance (Xu and 

Zhou 2007, Zhou and Sun 2008, Fournier and Cheng 2014, 

Zhou et al. 2014b). For long stay cables, such as Russky 

Island Bridge with 580 meters long cables, the 

supplemental damping induced by a passive viscous damper 

may be insufficient to suppress the problematic vibration of 

the cable (Weber and Distl 2015a). To solve this problem, 

combining cross-ties and dampers has been proposed, 

which was proved both theoretically and practically to be an 

effective method for long cables (Zhou et al. 2015, Ahmad 

et al. 2018). 

Recently studies have demonstrated that the 

supplemental damping of stay cables with negative stiffness 

dampers (NSDs) are larger than those with passive viscous 

dampers (Li et al. 2008, Chen et al. 2015, Weber and Distl 

2015b, Zhou and Li 2016, Shi et al. 2016, Wang et al. 

2018). Li et al. (2008), Chen et al. (2015) and Shi et al. 

(2016) theoretically examined the dynamic behavior of a 

taut cable with a NSD. They showed that NSDs can provide 

considerable damping for stay cables, and the better control 

performance of NSDs is mainly attributed to the negative 

stiffness characteristic of the damper, which can increase  
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Abstract.  Passive negative stiffness dampers (NSDs) that possess superior energy dissipation abilities, have been proved to be 

more efficient than commonly adopted passive viscous dampers in controlling stay cable vibrations. Recently, inertial mass 

dampers (IMDs) have attracted extensive attentions since their properties are similar to NSDs. It has been theoretically predicted 

that superior supplemental damping can be generated for a taut cable with an IMD. This paper aims to theoretically investigate 

the impact of the cable sag on the efficiency of an IMD in controlling stay cable vibrations, and experimentally validate superior 

vibration mitigation performance of the IMD. Both the numerical and asymptotic solutions were obtained for an inclined sag 

cable with an IMD installed close to the cable end. Based on the asymptotic solution, the cable attainable maximum modal 

damping ratio and the corresponding optimal damping coefficient of the IMD were derived for a given inertial mass. An 

electromagnetic IMD (EIMD) with adjustable inertial mass was developed to investigate the effects of inertial mass and cable 

sag on the vibration mitigation performance of two model cables with different sags through series of first modal free vibration 

tests. The results show that the sag generally reduces the attainable first modal damping ratio of the cable with a passive viscous 

damper, while tends to increase the cable maximum attainable modal damping ratio provided by the IMD. The cable sag also 

decreases the optimum damping coefficient of the IMD when the inertial mass is less than its optimal value. The theoretically 

predicted first modal damping ratio of the cable with an IMD, taking into account the sag generally, agrees well with that 

identified from experimental results, while it will be significantly overestimated with a taut-cable model, especially for the cable 

with large sag. 
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the damper motion and enhance its energy dissipation 

ability. Zhou and Li (2016) experimentally demonstrated 

that a passive pre-spring NSD can provide superior first and 

second modal damping ratios of a cable subjected to both 

single-mode and multi-mode excitations. Shi et al. (2017) 

also verified that a passive magnetic NSD can offer an 

optimal modal damping ratio that is four times as large as 

that produced by a passive viscous damper.  

Researchers have also proposed other means to achieve 

an effect that are similar to the NSD in a cable-damper 

system. Recent investigations showed that concentrated 

mass can demonstrate similar damping improvement effects 

as negative stiffness (Zhou et al. 2018b, Zhou et al. 2018c) 

However, to make significant increase to the attainable 

damping of the cable, a large mass is needed, which may be 

beyond the practical limits of the application (Lu et al. 

2017). An alternative is to use a vibration suppression 

device incorporating an inerter. Inertial mass dampers 

(IMDs) have attracted extensive attentions since their 

inerters can generate an apparent mass that is two orders of 

magnitude higher than their physical mass (Ikago et al. 

2012, Nakamura et al. 2014, Lazar et al. 2016, Lu et al. 

2017, Sun et al. 2017, Shi and Zhu 2018, Zhu et al. 2019). 

Furthermore, the superior mitigation performance of typical 

IMDs, such as the viscous inertial mass damper (Lu et al. 

2017, Shi and Zhu 2018, Cu et al. 2018) and the tuned 

inerter damper (Lazar et al. 2016, Sun et al. 2017, Luo et al. 

2019), have been theoretically investigated and illustrated 

through an ideal taut-cable model that neglects the effects 

of cable sag. However, previous studies (Xu and Yu 1998, 

Krenk and Nielsen 2002, Johnson et al. 2003, Duan 2004, 

Christenson et al. 2006, Wang et al. 2018) have shown that 

cable sag has adverse effects on the efficiency of transverse 

dampers, especially for the first mode of the cable. For 

example, Xu and Yu (1998) illustrated that the first modal 

damping ratio of a 442.6m-long stay cable with a passive 

viscous damper was reduced by about 38%, compared to 

that predicted by a taut-cable model.  

 

 

This paper aims to theoretically and experimentally 

evaluate the effect of the cable sag on the efficiency of an 

IMD in controlling cable vibrations. Both the numerical and 

asymptotic solutions were obtained for an inclined sag cable 

with an IMD installed close to the cable end. Based on the 

asymptotic solution, the cable attainable maximum modal 

damping ratio and the corresponding optimal damping 

coefficient of the IMD were derived for a given inertial 

mass. Subsequently, two model cables with different 

dynamic characteristics and sag parameters were 

established to experimentally verify the effect of cable sag 

on the mitigation performance of an IMD and to validate 

superior vibration mitigation performance of the IMD. 

Finally, the feasibility and applicability of the theoretical 

prediction results were evaluated by comparing the 

theoretical and the experimental supplemental first modal 

damping ratios of two model cables with sag. 

 

 

2. Theoretical analysis of an inclined sag cable with 
an IMD 

 
2.1 Model formulation 
 

Fig. 1 shows an inclined sag cable with an IMD 

installed at the location
dx x . The IMD is represented by 

an inerter paralleled with a dashpot. Therefore, the IMD 

force FIMD can be expressed as 

IMD e d eq d( , ) ( , )F m y x t c y x t   (1) 

where me and ceq denote the inertial mass and the equivalent 

damping coefficient, respectively; d( , )y x t and d( , )y x t  

are the transient velocity and acceleration of the cable at the 

damper location, respectively. 

By introducing the assumptions that: (1) the sag-to-span 

ratio is sufficiently small with respect to unity; (2) the cable 

 

Fig. 1 Analysis model of an inclined sag cable with an IMD 
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vibrates only in the x-y plane and its motion in the x-

direction is negligible; (3) the static profile of the cable y0(x, 

t) is a second-order parabola; (4) the flexural rigidity of the 

cable is ignored, the transverse free vibration of the cable-

IMD system can be expressed as (Duan 2004) 

2 2 2

IMD
d2 3 20

0 0

( , )
- ( , )- ( , )d ( ) 0

l m y x t F
y x t y x t x x x

x l T t T




 
   

 
 

(2) 

where  

y(x, t) is the cable vibration around its static profile  

y0(x, t),  

T0 is the tension force along the chord OO’,  

m is the mass per unit length,  

l is the length of the cable, 

 () is the Dirac delta function,  

2
 is the sag-extensibility parameter (Irvine and 

Caughy 1974) 

2 2

0 0

cos
=( )

e

mgl EAl

T T L


  (3) 

where g is the gravity acceleration,  is the inclination 

angle, EA is the extensional rigidity of the cable and Le is 

the static (stretched) length of the cable 

2

e

0

1 cos
1

8

mgl
L l

T

  
    
   

 (4) 

The concentrated force FIMD triggers a discontinuity in 

y / x  at the IMD location dx x , that is 

d d
0 0 IMD

d ( ) d ( )

d d

y x y x
T T F

x x

 

   (5) 

When the cable oscillates with the complex natural 

frequency ω, the cable vibration, the additional cable 

tension force, and the IMD force can be expressed as 

IMD IMD( , ) ( )exp( ),  ( )exp( ),  exp( )y x t y x i t T T x i t F F i t      (6) 

where ( )y x , ( )T x  and TID ( )F x denote the amplitude of 

cable displacement, the amplitude of additional cable 

tension force, and the amplitude of IMD force, respectively. 

Considering the transverse displacement compatibility 

condition and the equilibrium condition at the IMD 

location, the wave number  of cable can be expressed as 

(Zhou et al. 2018a) 

3

2

3d d d dIMD

2

0 d

4
sin( ) sin( ) cos( )[ ( ) ]

2 2 2 2 2

1 4
2 sin( )sin( ) sin( ) cos( )cos( )[ ( ) ]

2 2 2 2 2 2 2

l l l l l

x x x xF l l l

T y
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

     

 

 
  

 

    
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  

 

(7) 

where 

0

=
m

T
   (8) 

As the effects of cable sag on the efficiency of 

transverse dampers are mainly in the first mode (Xu and Yu 

1998, Krenk and Nielsen 2002, Johnson et al. 2003, Duan 

2004, Christenson et al. 2006, Wang et al. 2018), only 

nearly symmetric vibrations of the cable are considered in 

this study. The nearly symmetric vibrations are associated 

with the second factor in Eq. (7). By dividing sin(βl/2) on 

both sides of Eq. (7) to remove the roots associated with the 

nearly antisymmetric modes, the wave numbers determinant 

equation of nearly symmetric vibrations is derived as 

 
3 3

2

2 2

4 4
tan 1 2 2 tan

2 2 2 2 2 2

l l l l l l     

 

            
                  

               

 
(9) 

where  reflects the effect of the IMD force with the 

expression as 

2

eqIMD

0 d 0

1
= =

em c iF

T y T

 

 

 
  (10) 

and  is defined as 

d dsin( )sin( )
2 2=

sin( )
2

x x

l

 





  (11) 

The equation solving for tan (βl/2) is subsequently 

derived as 

2
3

2

2

3

2 3

2

4
2

2 24
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(12) 

 

2.2 Numerical solution 
 

The numerical solution can be obtained from Eq. (12) 

by the fixed-point iteration, where the iterative scheme is 

. 
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(13) 

The process starts from the undamped wave number of 

the n
th

 mode
0

n , which can be obtained by 

substituting
IMD 0F  into Eq. (12) 

0 0 0
3

2

4
tan( ) ( )

2 2 2

n n nl l l  



 
  
 

 (14) 

After solving the wave number of the n
th

 mode n , the 

corresponding eigen frequency of the n
th

 mode n can be 

calculated by Eq. (8). The eigen frequency related to the 

modal damping ratio can be expressed as 

2( 1 )n n n ni       (15) 

where 
n  is the n

th
 modal damping ratio of the cable. 
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Therefore, the n
th

 modal damping ratio of the cable can 

be finally determined as 

n

Im( ) Im( )
=n n

n n

l

l

 


 
  (16) 

 

2.3 Asymptotic solution 
 
The asymptotic solution for a sag cable with a passive 

viscious damper has been well developed (Krenk and 

Nielsen 2002, Duan 2004). To facilitate the optimal design 

of the IMD, this section extends their studies to derive the 

asymptotic solution of a sag cable with an IMD. The 

solution is established on the assumptions that the IMD is 

installed close to the cable end ( lxd  ), and the 

installation of the IMD causes minimal perturbation in the 

wave numbers ( 00
nnn   ).  

Rewrite Eq. (9) as 

2

d d
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d d
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(17) 

The left-hand of the Eq. (17) can be linearized around 

the undamped value
0

n l  

0 0 0 0 0 0
3 3 2 2

2 2 2

4 4 12
tan( ) [ ( ) ] tan( ) [ ( ) ] tan ( ) ( )
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(18) 

Substituting Eq. (14) and Eq. (18) into Eq. (17) and 

using the following relation 
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we can obtain 
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(20) 

Given that lxd  and 00
nnn   , we can achieve 

the following approximations 

0

d

0 0

d d0

tan( )
21 1    sin( )

tan( )
2

n

n n

n

x

x x
l


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
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，  (21) 

By substituting Eq. (21) into Eq. (20), the Eq. (20) can be 

simplified as 
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d e eq0 d
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(22) 

The modal damping ratios of the cable can be obtain by 

2

eq 0 d d

2 2 20
0 e d eq d

Im( ) 1

( ) ( )

nn
n

n nn

c T x x

T m x c x W l





 


 

 
 (23) 

where 2
W  is the damping ratio modification factor due to 

sag of a passive viscous damper 

2
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12
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n n nl l l
W



  


   (24) 

where 2W


is larger than 1 when
2 0  . 

By introducing the following dimensionless parameters 

as 

0,

eqT T 0, 2d
e, e, e, e d 0

0 ,

,   ,  ( ) /
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T

n T

n k n n c n n

e n

c x
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
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(25) 

the modal damping ratios of the cable can be subsequently 

derived as 

2

d

T 2

e,

1 1

1- 1

n
n

k n n

x

m W l





 



 (26) 

where e,nm and
n denote the dimensionless inertial mass 

and the dimensionless damping coefficient of the IMD for 

the n
th

 mode of the cable with sag, 
T

e,nm denotes the 

dimensionless inertial mass of the IMD for the n
th

 mode of 

the taut cable, 
0,T

n is the undamped frequency of a taut 

cable, k and c are the modification factor of the inertial 

mass and the damping coefficient due to the sag, 

respectively 

0 0
2( )  ,    n n

k c

l l

n n

 
 

 
   (27) 

The optimum damping coefficient
opt
eq,nc corresponding to 

a constant me can be obtained by 

eq

0n

c


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
 (28) 

leading the value 
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n

T
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x

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The corresponding optimal damping ratio in the cable 

n
th

 mode can be obtained as 

2
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(1 ) 2
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m W l
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
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As the cable sag always increases the undamped 

frequency of the cable (Krenk and Nielsen 2002, Johnson et 

al. 2003, Duan 2004),
k and 

c are greater than 1 

when
2 0  . Hence, the cable sag tends to decrease the 

optimal damping coefficient of the IMD and the following 

equation is satisfied 

2 2

opt Td d
e,T T

e, e,

1 1
   when  1

(1 ) 2 (1 ) 2
n k n

k n n

x x
m

m W l m W l
 

 


  
 

 
(31) 

which means the IMD tends to alleviate the negative effect 

induced by the cable sag compared with the passive viscous 

damper when the 
T

e,k nm  is less than unity. In addition, 

when 

2

opt d d

T T

e, e,

1 1
   

(1 ) 2 (1 ) 2
n

k n n

x x

m W l m l





 
 

 (32) 

the cable with sag tends to increase maximum modal 

damping ratios provided by the IMD compared with taut 

cable. Here, the dimensionless inertial mass falls in the 

range of 

2 2

T

e,( 1)/( 1)< 1k n kW W m /
 

     (33) 

 
 

 
 
3. Experiment investigation of a sag cable with an 
EIMD 
 

3.1 Experimental setup 
 
To experimentally evaluate the impact of cable sag on 

the efficiency of an IMD in controlling stay cable vibrations 

and validate theoretical analysis results above, two model 

cables with different dynamic characteristics and sag 

parameters were established in the laboratory. The main 

properties of the model cables are listed in Table 1. Fig. 2 

illustrates schematic diagram of test setup for cable 

vibration control, and corresponding photos are shown in 

Fig. 3. An electromagnetic IMD (EIMD) shown in Fig. 3 

(b) was attached transversely to the cable at 0.114 m (i.e., 

1% of the cable length) away from the right anchorage, 

incorporating a load cell and a displacement sensor to 

monitor the mechanical performance of the EIMD. Three 

accelerator-meters were installed at two quarter-spans and 

the mid-span of the cable to monitor the cable acceleration 

responses, which were adopted to identify the modal 

damping ratios of the cable. All the signals were collected 

by the DH8302 data acquisition system with 200 Hz 

sampling frequency. 

 

Table 1 The main properties of the test model cables 

Cable with small sag Cable with large sag 

Item Value Item Value 

Cable length (l) 11.4 m Cable length (l) 11.4 m 

Cross-section area (A) 1.374 cm2 Cross-section area (A) 1.374 cm2 

Mass per unit length (m) 15.0 kg/m Mass per unit length (m) 9.5 kg/m 

Elasticity modulus (E) 200 GPa Elasticity modulus (E) 200 GPa 

Tension force (T0) 44.0 kN Tension force (T0) 19.2 kN 

Inclination angle () 0° Inclination angle () 0° 

Sag parameter(λ2) 0.906 Sag parameter(λ2) 4.513 

The first modal natural frequency 2.55 Hz The first modal natural frequency 2.25Hz 

 

Fig. 2 Schematic diagram of test setup for cable vibration control 
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3.2 EIMD 
 

An EIMD with adjustable inertial mass was developed 

to mitigate the model cables vibrations. The design 

parameters of the EIMD are given in Table 2. The EIMD, 

shown in Fig. 4, mainly consists of a rotary generator, a ball  

 

 

 

 

 

 

screw, a flywheel and a liner guide way. The linear motion 

of the cable can be converted into the high-speed rotational 

motion of the rotary generator and the flywheel through the 

ball screw amplification mechanism. A magnified axial 

initial force and damping force of the EIMD are generated 

by the rotational flywheel and the generator, respectively.  

  
(a) Test cable (b) EIMD 

Fig. 3 Test photos of cable vibration control 

 

Fig. 4 Schematic diagram of an EIMD 

Table 2 Design parameters of the EIMD 

Components Parameters Values 

Rotary generator 

Electromotive force constant 0.06V/(rmin-1) 

Maximum angular velocity 3000r/min 

Internal resistance 6.4 

Load resistance 40, 80 

Ball screw 
Diameter 16 mm 

Lead 16 mm 

Flywheel 

Diameter-thickness (#1) 9.0 cm-1.0 cm 

Diameter-thickness (#2) 11.0 cm-1.0 cm 

Diameter-thickness (#3) 13.0 cm-1.0 cm 

Diameter-thickness (#4) 15.5 cm-1.0 cm 

Diameter-thickness (#5) 19.0 cm-1.0 cm 
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The inertial mass and the equivalent damping coefficient 

of the EIMD can be identified by the least square method 

according to the measured displacement and the force of the 

EIMD based on the mechanical model of the EIMD [i.e., 

Eq. (1)]. The identified parameters of the EIMD are 

summarized in Table 3, and comparisons shown in Fig. 5 

demonstrate the feasibility of the model. 
 
3.3 Experimental results and discussion 
 
Series of free vibration tests were conducted to evaluate 

the mitigation performance of the cable with the EIMD. 

Each cable was excited manually at its first modal natural 

frequency, where the excitation position was located at 

0.25l away from the left anchorage of the cable. The typical 

time history responses of accelerations at the mid-span of 

each cable in the first mode are shown in Figs. 6 and 7. An 

exponential function is utilized to fit the envelope curve of 

the free decay responses to identify modal damping ratios 

of two cables. Since modal damping ratios may depend on  

 

 

 

 

the amplitudes of cable vibrations, the interval accelerations 

of 6-10 m/s
2
 and 4-8 m/s

2
 are selected to identify modal 

damping ratios of the cable with small sag and large sag, 

respectively. 

As can be seen from Figs. 6 and 7, the uncontrolled first 

modal damping ratios of the cable with small sag and large 

sag are 0.14% and 0.22%, respectively. The 

electromagnetic damper (an EIMD without a flywheel) that 

is similar to a passive viscous damper increases cables 

damping ratio to 0.28% and 0.45%, respectively. For the 

EIMD with #3 flywheel or #4 flywheel, the first modal 

damping ratio of the cable with small sag is increased to 

0.42% or 0.62%, while the first modal damping ratio of the 

cable with large sag is increased to 0.70% or 1.23%, 

respectively. It is shown that the achievable first modal 

damping ratios of the cable with the EIMD are superior to 

those with the electromagnetic damper (passive viscous 

damper), which demonstrates that the inertial mass of the 

EIMD is beneficial to improve control performance of the 

cable with sag. 

Table 3 The identified inertial mass and damping coefficient of the EIMD 

EIMD 

Cable with small sag Cable with large sag 

em (kg) 
T

e,m 
 e ,m 

 eqc (Ns/m) 
em (kg) 

T

e,m 
 e ,m 

 eqc (Ns/m) 

40Ω 80Ω 40Ω 80Ω 

without 

flywheel 
103.2 0.060 0.069 4047 3080 102.6 0.093 0.122 4659 3117 

with #1 

flywheel 
153.2 0.088 0.102 4352 3192 140.5 0.128 0.167 4778 3177 

with #2 

flywheel 
279.2 0.161 0.186 4847 3300 259.7 0.236 0.308 4636 3087 

with #3 

flywheel 
461.3 0.266 0.307 4561 3083 422.0 0.384 0.500 4968 3197 

with #4 

flywheel 
851.4 0.491 0.611 4326 3248 808.1 0.736 0.958 4639 3017 

with #5 

flywheel 
1775.7 1.024 1.180 4041 3272 1684.5 1.534 1.997 4719 3028 

 
Fig. 5 Comparison between the fitting and experimentally obtained responses (cable with small sag, EIMD with #3 

flywheel, load resistance: 40Ω) 
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Figs. 8 and 9 give the comparison between the 

theoretical and the experimental supplemental modal 

damping ratios in the first mode of the cable with small and 

large sag, respectively. Corresponding results are 

summarized in Table 4 and Table 5, respectively. The 

comparison results demonstrate that the asymptotic solution 

agrees with the numerical solution well when small or 

moderate inertial mass is used in the EIMD, shown in Figs.  

 

 

 

8(a)-8(e) and Figs. 9(a)-9(d). However, the asymptotic 

solution will deviate from the numerical solution when 

larger inertial mass is adopted in the EIMD, shown in Fig. 

8(f) and Figs. 9(e)-9(f). This is mainly because the 

assumption 00
nnn    for the asymptotic solution is 

no longer satisfied when large inertial mass is used in the 

IMD (Shi and Zhu 2018, Wang et al. 2018). 

 

 
Fig. 6 Time history responses of accelerations at mid-span of the cable with small sag in the first mode: (a) without 

control, (b) EIMD without flywheel, (c) EIMD with #3 flywheel and (d) EIMD with #4 flywheel 

 
Fig. 7 Time history responses of accelerations at mid-span of the cable with large sag in the first mode: (a) without 

control, (b) EIMD without flywheel, (c) EIMD with #3 flywheel and (d) EIMD with #4 flywheel 
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For the cable with small sag, theoretical modal damping 

ratios (including numerical and asymptotic solutions) taking 

into account the cable sag are slightly smaller than those 

without cable sag effect ,  and more closer to the 

experimental results except for the EIMD with #5 flywheel. 

For the cable with large sag, theoretical modal damping 

ratios taking into account the cable sag generally agree well 

with the experimental results except for the EIMD with the  

 

 

 

#4 flywheel or the #5 flywheel. It is shown that theoretical 

results neglecting the cable sag effect significantly 

overestimate the achievable first modal damping ratios of 

the cable. It is also worth noting that both the numerical and 

asymptotic solutions of the cable with small sag or large sag 

lose their accuracies when the EIMD adopts lager inertial 

mass. 

 

 

Fig. 8 Comparison between experimental and theoretical damping ratios in the first mode of the cable with small sag: (a) 

without flywheel, (b) with #1 flywheel, (c) with #2 flywheel, (d) with #3 flywheel, (e) with #4 flywheel and (f) with #5 

flywheel 

Table 4 Theoretical and experimental supplemental modal damping ratios of the cable with small sag 

EIMD 

Cable with sag (%) Cable without sag (%) Experimental 

results (%) num. results asy. results num. results asy. results 

40Ω 80Ω 40Ω 80Ω 40Ω 80Ω 40Ω 80Ω 40Ω 80Ω 

without flywheel 0.16 0.12 0.16 0.12 0.17 0.13 0.17 0.13 0.14 0.11 

with #1 flywheel 0.18 0.14 0.18 0.14 0.20 0.15 0.20 0.15 0.16 0.12 

with #2 flywheel 0.24 0.17 0.24 0.17 0.25 0.18 0.25 0.18 0.21 0.14 

with #3 flywheel 0.30 0.21 0.31 0.21 0.31 0.21 0.32 0.22 0.28 0.21 

with #4 flywheel 0.58 0.46 0.61 0.49 0.55 0.42 0.58 0.46 0.51 0.44 

with #5 flywheel 2.25 1.94 3.98 4.29 3.02 2.48 6.24 7.61 1.22 1.09 
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Similar to passive viscous dampers, the cable sag 

generally decreases supplemental modal damping ratios of 

the cable. However, as shown in Figs. 8 and Fig. 9, the 

supplemental modal damping ratios differences with or 

without considering the cable sag effect become smaller 

with the increase of the inertial mass of the IMD, which 

means the IMD tends to alleviate the negative effect  

 

 

 

 

induced by the cable sag. In addition, the optimum damping 

coefficient of the IMD for a sag cable is less than that for a 

taut cable when corresponding achievable damping ratio of 

the cable increases with the increase of the inertial mass of 

the IMD, which implies that the cable sag will decrease the 

optimum damping coefficient of the IMD when the inertial 

mass is not exceed its optimal value. 

 
Fig. 9 Comparison between experimental and theoretical damping ratios in the first mode of the cable with largesag: (a) 

without flywheel, (b) with #1 flywheel, (c) with #2 flywheel, (d) with #3 flywheel, (e) with #4 flywheel and (f) with #5 

flywheel 

Table 5 Theoretical and experimental supplemental modal damping ratios of the cable with large sag 

EIMD 

Cable with sag (%) Cable without sag (%) Experimental 

results (%) num. results asy. results num. results asy. results 

40Ω 80Ω 40Ω 80Ω 40Ω 80Ω 40Ω 80Ω 40Ω 80Ω 

without flywheel 0.26 0.19 0.26 0.19 0.37 0.26 0.37 0.26 0.23 0.18 

with #1 flywheel 0.29 0.22 0.29 0.22 0.39 0.29 0.40 0.29 0.28 0.23 

with #2 flywheel 0.39 0.30 0.39 0.30 0.49 0.35 0.49 0.36 0.35 0.31 

with #3 flywheel 0.64 0.54 0.63 0.55 0.71 0.53 0.71 0.54 0.48 0.41 

with #4 flywheel 1.57 2.55 1.50 2.31 1.84 1.64 1.83 1.87 1.01 0.82 

with #5 flywheel 0.17 0.11 0.18 0.12 0.70 0.51 0.85 0.66 0.72 0.41 
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4. Conclusions 
 

It has been theoretically predicted that superior 

supplemental damping can be generated for a taut cable 

with an IMD. This paper extends previous studies to 

investigate the effect of the cable sag on the efficiency of an 

IMD in controlling stay cable vibrations, theoretically and 

experimentally. The main conclusions are summarized as 

follows: 

(1) The theoretical analysis indicates that the cable sag 

generally reduces the first modal damping ratios provided 

by the IMD. Unlike the passive viscous damper, the IMD 

tends to alleviate the negative effect induced by the cable 

sag since the cable sag can increase the dimensionless 

inertial mass of the IMD. In addition, the cable sag 

decreases the optimum damping coefficient when the 

dimensionless inertial mass is less than an optimal value. 

(2) Both the theoretical and experimental results 

demonstrate that the IMD can provide superior damping to 

a cable. The first modal damping ratio of a sag cable with 

an IMD will be significantly overestimated with a taut-cable 

model, especially for the cable with large sag. After taking 

into account the cable sag, theoretical modal damping ratios 

of the cable predicted by both numerical solution and 

asymptotic solution generally agree well with experimental 

results. Special attentions should be paid to cable sag effect 

in the design of the IMD for cable vibration control. 
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