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1. Introduction 
 

Long steel cables, commonly used in cable-stayed 

bridges, are prone to unwanted vibrations due to their small 

ratio of mass to length and extremely low intrinsic damping. 

Large vibrations may reduce the cable service life and 

seriously affect safe operation of cable-stayed bridges. 

Several effective countermeasures have been presented 

and/or implemented to mitigate such vibrations, and 

especially transverse dampers are often installed near the 

anchorage of the cable. Discrete passive viscous dampers 

attached perpendicularly to cables have been successfully 

used in a number of bridges. However, lots of studies have 

demonstrated that control performance of a cable with a 

passive damper is greatly restricted by the small ratio 

between damper location and cable length in practical 

situations (Kovacs 1982, Pacheco et al. 1993, Krenk 2000, 

Main and Jones 2002, Wang et al. 2005, Fujino and Hoang 

2008, Cheng et al. 2010, Zhou et al. 2014). For longer 

bridge cables, such as the Sutong Bridge and the Stonecut-

ters Bridge with a main span of 1088 m and 1018 m, 

respectively, the induced additional modal damping ratio of 

a passive damper may not be enough to suppress the  
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problematic vibration of a cable without significantly  

detracting the aesthetics of the bridge.  

To solve this problem, two dampers attached on a single 

cable (Caracoglia and Jones 2007) and hybrid control with 

both crossties and dampers (Zhou et al. 2015, Ahmad et al. 

2018, He et al. 2018) are proposed. However, these systems 

may be complicated and costly. As an alternative, semi-

active control has been also presented to improve control 

performance since they offer the capability of active control 

devices without the requirement of large power resources 

(Johnson et al. 2003). In particular, MR dampers have 

attracted extensive attention from the community because 

of their excellent performance in both lab tests and 

engineering practice (Spencer et al. 1997, Ni et al. 2002, 

Chen et al. 2004, Chistenson et al. 2006, Duan et al. 2005, 

Duan et al. 2006, Cai et al. 2007, Liu et al. 2007, Li et al. 

2007, Or et al. 2008, Weber et al. 2011, Huang et al. 2012, 

Weber et al. 2015, Duan et al. 2018). To date, it has been 

applied to cable vibration control systems on the Dongting 

Lake Bridge (Chen et al. 2004), Binzhou Bridge (Li et al. 

2007) and Sutong Bridge (Weber and Distl 2015a). 

However, these systems still require external and stable 

power supply, which may be impossible or unassured in 

some extreme events, such as earthquakes and typhoons. To 

avoid external power supply, self-powered MR damper 

(Choi and Wereley 2006, Jung et al. 2008, Sapiński 2008, 

Wang et al. 2018) based on vibration energy harvesting by 

electromagnetic induction technology have been proposed, 
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and its excellent control performance has been 

experimentally confirmed by Kim et al. (2010). 

Excellent control performance of stay cables with semi-

active MR dampers can be attributed to negative stiffness 

characteristics (Li et al. 2008), which has also been found in 

the vibration control area of seismically excited bridges 

(Pradono et al. 2009). The role of such negative stiffness 

has been well demonstrated (Høgsberg 2011, Weber and 

Distl 2015b). The results show that the introduction of 

negative stiffness yields an apparent local softening the 

structure at damper position (Høgsberg 2011), and makes 

damper move with larger displacement (Iemura and 

Pradono 2003, Li et al. 2008), thus dissipating more energy. 

In view of this, some efforts have also been attempted to 

enhance control performance of stay cables with viscous 

dampers by introducing the negative stiffness device based 

on pre-compressed spring (Chen et al. 2015, Zhou and Li 

2016), which concluded that such control system can 

effectively increase modal damping ratios of the cable. 

Similar findings were also reported by Shi et al. (2016).  

Another source of negative stiffness is the inerter, which 

was originally proposed by Smith et al. (2002). In the area 

of civil engineering, the inerter was called apparent mass 

(Ikago et al. 2012) or inertial mass (Garrido et al. 2013, 

Nakamura et al. 2014). Until recently, control performance 

of viscous inertial mass damper or tuned inerter damper to 

mitigate cables vibration have been investigated and proved 

(Lazar et al. 2016, Lu et al. 2017, Shi and Zhu 2018, Luo et 

al. 2019). However, viscous fluid inside viscous dampers 

may leak over time, which is the main concern of this kind 

of dampers. As a non-contacted damping strategy, eddy 

current damping (Sodano and Bae 2004) and electro-

magnetic damping (Palomera et al. 2008, Zhu et al. 2012, 

Zhu et al. 2019) are two possible alternative solutions for 

this problem. Control performance of stay cables with 

passive electromagnetic dampers was also experimentally 

validated (Shen et al. 2016). To further confirm the superior 

control performance of inertial mass dampers, a rotary 

electromagnetic inertial mass damper (REIMD) for 

suppressing cable vibrations is constructed and investigated 

via both theoretical analysis and experimental investigations 

in this paper. The proposed REIMD consists of a rotary 

electromagnetic damper (RED) for energy dissipation, a 

ball screw that translates linear motion of the cable into 

high-speed rational motion of the RED, and a flywheel 

attached to the shaft of the RED as the inertial mass 

element.  

This paper first gives the mechanical model of the 

REIMD via both theoretical analysis and experimental 

validation, and then the dynamic characteristics of a taut 

cable with a REIMD installed close to the cable end is 

theoretically investigated, where the effects of inertial mass 

and damping coefficient on modal damping ratios of the 

cable are highlighted. Finally, control performance of a 

model cable with a REIMD are experimentally evaluated by 

the identified modal damping ratios in the first two modes 

of the cable and corresponding control mechanics of the 

REIMD are subsequently discussed and obtained. 

 

 

 

Fig. 1 Schematic diagram of a REIMD 

 

 

2. Configuration and mechanical model of the 
REIMD 
 

2.1 Configuration of the REIMD 
 
The proposed REIMD, depicted in Fig. 1, mainly 

consists of a rotary generator, a ball screw, a liner guide 

way and a flywheel. The linear motion of the hollow piston 

rod connected to the main structure can be converted into 

the high-speed rotational motion of the rotary generator and 

the flywheel through ball screw amplification mechanism, 

where the liner guide way is set in the REIMD with the 

function of ensuring the REIMD move smoothly. The 

inertial forces generated by the mass moment of inertia of 

the flywheel and the generator itself are again amplified 

when they are translated back to the axial direction of the 

REIMD. 

 

2.2 Mechanical model of the REIMD 
 

According to the configuration of the REIMD shown in 

Fig. 1, the total axial force of the REIMD consists of three 

parts, such as the damping force provided by the rotary 

generator, the inertial force generated by the flywheel and 

the generator, and the friction force generated between the 

brush and armature as well as the ball screw mechanism. 

Therefore, the total axial force of the REIMD can be 

expressed as 

2

d I f eq e 02

d d
( ) sign( )

d d

u u
f t F F F c m f u

t t
       (1) 

where I f,  and cF F F denote the damping force, the inertial 

force, and the friction force, respectively; u and u denote the 

axial displacement and the axial velocity of the REIMD; 

eq e 0,  and  c m f denote the equivalent damping coefficient, 

the inertial mass and the friction force of the REIMD, 

respectively; sign( )u  is the signum function that gives 1, 

0 or -1 according to the sign condition of u . 

If the self-inductance effect can be negligible, the 

equivalent damping coefficient eqc of the REIMD can be 

expressed as (Palomera et al. 2008, Zhu et al. 2012) 

2
e

eq
a L

( )k
c

R R





 (2) 
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where ke denotes the electromotive force constant, Ra and 

RL denote the internal resistance and the load resistance of 

the generator, respectively, η denotes the transformation 

coefficient of linear motion to the rotational motion through 

the ball screw mechanism with the expression as 

d

2

L


   (3) 

The inertial mass 
em of the REIMD can be expressed as 

(Nakamura et al. 2014) 

2

e f g( )m I I   (4) 

where fI and gI denote the moment of inertia of the flywheel 

and the generator, respectively. 

When the sinusoidal excitation
0 sin( )u u t is applied 

to the REIMD, the axial force of the REIMD in Eq. (1) can 

be rewritten as 

2

e eq 0( ) sign( )f t m u c u f u     (5) 

Eq. (5) clearly indicates that the REIMD can produce 

negative stiffness effects, and corresponding negative 

stiffness can be described as 

2

ek m    (6) 

 

2.3 Experimental validation 
 
Mechanical performance tests of the REIMD with 

design parameters in Table 1 are conducted to verify the 

established mechanical model of the REIMD. A CFX-04 

speed-measuring permanent magnet motor shown in Fig. 2 

is employed as the rotary generator of the REIMD. The 

mechanical performance test setup of the REIMD is shown 

in Fig. 3. The REIMD is forced to rotate synchronously 

with a servo motor, where the loading frequency and 

amplitude of the excitation system can be adjusted by the 

frequency transformer and the eccentricity of the eccentric 

wheel, respectively.  

 

 

Table 1 Design parameters of the REIMD 

Generator  

Internal resistance Ra 6.4 

Electromotive force 

constant 
ke 0.06V/(rmin-1) 

Maximum angular 

velocity 
n 3000r/min 

Moment of inertia Ig 8.00 kgcm2 

Ball 

screw 

Diameter D 16 mm 

Lead Ld 16 mm 

Flywheel 

Moment of inertia 

(small) 
If-s 5.05 kgcm2 

Moment of inertia 

(medium) 
If-m 11.28 kgcm2 

Moment of 

inertia(large) 
If-L 22.00 kgcm2 

 

 

Fig. 2 A rotary electromagnetic damper 

 

 

 

Fig. 3 Mechanical performance test setup of the REIMD 

 

 

 

Fig. 4 The force-displacement hysteresis loops of the 

REIMD with different flywheel (load resistance: 50) 

 

 

A load cell and a displacement gauge are used to measure 

the axial force and displacement of the REIMD, 

respectively. The loading frequency is 2 Hz, and loading 

displacement amplitude is 17 mm. 

Fig. 4 shows the force-displacement relationship of the 

REIMD with different flywheel. It can be seen that both the 

slope of the hysteretic loops and corresponding negative 

stiffness of the REIMD continuously increase with the 

increase of the flywheel size. Fig. 5 compares the force time  
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Fig. 5 REIMD force comparisons between theoretical 

predictions and test results (large flywheel) (Theoretical 

curves by Eq. (1), me=462.64 kg, ceq=2570 N*s/m, f0=0 N) 

 

 

histories of theoretical predictions and test results of the 

REIMD, and the good agreement of each other verifies that 

the established mechanical model can well describe the 

mechanical performance of the REIMD. 

 

 

3. Theoretical analysis of a stay cable with a REIMD 
 

3.1 Dynamic formulation of a stay cable with a 
REIMD 

 

The schematic diagram of a stay cable with a REIMD is 

shown in Fig. 6. Neglecting the static deflection, the 

bending stiffness, the inclination and the inherent damping 

of the cable, the cable with the length l and the tension T 

can be idealized as a taut cable with both ends fixed, where 

a REIMD is perpendicularly installed at the cable in the 

transverse direction, as shown in Fig. 7. 

The transverse free vibrations of a taut cable subjected 

to a transverse force can be described by the following 

differential equation (Krenk 2000) 

 

 

 

Fig. 6 Schematic diagram of stay cable vibration 

control with a REIMD 

 

Fig. 7 Schematic representation of a taut cable with a 

REIMD at x=a 

 

 

2 2

2 2
( ) ( )

u u
T m f t x a

x t


 
  

 
 (7) 

with the boundary condition 

(0, ) ( , ) 0u t u l t   (8) 

where x is the location coordinate along the cable chord 

axis, x is the complementary coordinate defined as 

x l x   , u(x, t) is the transverse displacement of the cable 

at the location x and the time t, m is the cable mass per unit 

length, f (t) represents the transverse force of the REIMD in 

Eq. (1),    is the Dirac delta function, a is the distance 

from the cable left end to the REIMD location, and the 

distance from the cable right end to the REIMD location is 

calculated as a l a   . 

The concentrated force (t)f causes a discontinuity in 

u / x  at the location x=a 

( | | ) ( )a a
u u

T f t
x x 

 
 

 
 (9) 

The transverse displacement of free damped vibrations 

of the cable can be expressed as 

( , ) Re[ ( )exp( )]u x t U x i t  (10) 

where   is the complex natural frequency and U(x) is the 

complex mode shape of the cable. By substituting Eq. (10) 

into Eq. (7), the complex mode shape U(x) should satisfy 

the following ordinary differential equation 

2
2

2

0d
0

0d

x aU
U

x ax


 
  

  
 (11) 

where the wave number  has been defined as 

m

T
   (12) 

The solution to Eq. (11) is derived as 

sin( )
,0

sin( )
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U x a
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U x a
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






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
 
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 (13) 
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where Ua  is the amplitude of the displacement mode shape 

at the REIMD location. Substitution of the mode shape 

representation Eq. (13) into the force equilibrium condition 

Eq. (9) at the REIMD location, the complex wave number β 

can be determined by 

2

eq
cot( ) cot( )

em c i
a a

T

 
 



 
    (14) 

It can be further rearranged as 

2 2

eq

2

eq

sin ( )( )
tan( )

sin( )cos( )( )

e

e

a m c i
l

T a a m c i

  


    

 


  
 (15) 

As the REIMD is installed close to the cable end (a<<l), 

the asymptotic solution can be obtained by considering 

small perturbation of the undamped solution. The wave 

number corresponding to the n
th

 mode of the undamped 

cable can be expressed as 

0 , 1,2,n

n
n

l


    (16) 

Assuming the wave number in the n
th

 mode n of the 

damped cable to be small perturbations from 0

n and 

a l , we can achieve the following approximations 

0tan( ) ,sin( ) ,cos( ) 1n n n n nL l a a a         (17) 

where
0

n n n     represents the change of wave number 

due to the damper force. 

Substituting Eq. (17) into Eq. (15) yields 

0 2

eq

2

eq

( )

( )

n e

n

e

a m c i a

T a m c i l

  


 

 
 

  
 (18) 

Given the n
th 

mode solution of the wave number βn, the 

n
th 

eigen frequency ωn can be calculated by Eq. (12). The n
th
 

eigen frequency relates to the modal damping ratio is  

 

 

expressed as 

2( 1 )n n n ni       (19) 

where n  is the n
th

 modal damping ratio and can be solved 

by 

0

Im( ) Im( ) Im( )n n n
n

n n n

  


  


    (20) 

Substituting Eq. (18) into Eq. (20), the asymptotic 

solution of n
th

 modal damping ratio of the cable can be 

finally derived as 

0

Im( ) Im( ) Im( )n n n
n

n n n

  


  


    (21) 

 

3.2 Optimal damping ratio of the cable and 
conresponding optimum design of the REIMD 

 
In order to conveniently determine the optimal damping 

ratio of the cable and the optimum design of the REIMD, 

the following parameters are defined as 

2

e eq/ ,  / (1 ),  /n n nk m a T a a k c a T        (22) 

where nk represents the dimensionless negative stiffness in 

the n
th

 mode induced by the inertial mass, a represents the 

modified location due to the dimensionless negative 

stiffness, and
n denotes the dimensionless damping 

coefficient in the n
th

 mode. The n
th

 modal damping ratio of 

the cable can be subsequently derived as 

eq

2 2 2 2

e eq( ) ( ) 1

n

n

n n

c Ta a a

T m a c a l l

 


  
 

  
 (23) 

 

  

(a) Variation of modal damping ratio of the cable with 

damping coefficient of the REIMD 
(b) Variation of modal damping ratio of the cable with 

inertial mass of the REIMD 

Fig. 8 The variation of the n
th 

modal damping ratio of the cable with damping coefficient and initial mass of the REIMD 
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Eqs. (22) and (23) indicate that negative stiffness effect 

of the REIMD is essentially equivalent to installing the 

traditional viscous damper at relatively higher location. 

Hence, modal damping ratios of the cable can be 

significantly enhanced.  

The optimum damping coefficient opt

eq,nc corresponding to 

a constant me can be obtained by 

e

0n

qc





 (24) 

Leading the value 

opt
eq,

n

n

T
c

a
  (25) 

The corresponding optimal damping ratio in the cable 

n
th

 mode can be obtained as 

1
/

2

opt

n a l   (26) 

Eqs. (25) and (26) indicate that both the maximum 

attainable modal damping ratio of the cable and optimum 

damping coefficient of the REIMD are related to the 

modified location of the REIMD, while optimum damping 

coefficient also relates to the properties of the cable. 

Fig. 8 shows the variation of the n
th 

modal damping ratio 

of the cable with damping coefficient and initial mass of the 

REIMD. It can be seen that the maximum attainable modal 

damping of each mode of the cable is the same, while 

corresponding optimum damping coefficient and initial 

mass is relatively smaller for a higher mode of the cable. 

 

 

4. Experiment investigation on vibration control of a 
stay cable with a REIMD 
 

4.1 Test setup 
 

 

 

To further verify vibration control performance of a stay 

cable with the REIMD, a stay cable model with a REIMD is 

established in the laboratory. The main properties of the 

stay cable are shown in Table 2. Fig. 9 illustrates schematic 

diagram of test setup for cable vibration control, while 

corresponding photos are shown in Fig. 10. The cable 

shown in Fig. 10(a) is 11.4 m long with 79 lumped masses 

attaching on the cable evenly so that the cable model has 

similar dynamic characteristics with those on real cable-

stayed bridges. The REIMD shown in Fig. 10(b), incorporat 

ing a load cell and a displacement sensor, is attached 

transversely to the cable at a location 0.114 m (i.e., 1% of 

the cable length) from one anchorage, and an electro-

magnetic shaker shown in Fig. 10(d) is installed at a 

location 0.684 m (i.e., 6% of the cable length) away from 

the other anchorage. Accelerator meters are installed at both 

quarter-span and mid-span of the cable to monitor the cable 

accelerations, which are adopted to identify the modal 

damping ratios of the cable. For the measurements, a data 

acquisition system shown in Fig. 10(c) is employed to 

collect all the data with 200 Hz sampling frequency, 

including the forces and the displacements of the REIMD, 

as well as the acceleration responses of the cable. 

 

 

Table 2 The main properties of the stay cable 

Item Value 

Cable length (l) 11.4 m 

Cross-section area (A) 1.374 cm2 

Mass per unit length ( m ) 9.5 kg/m 

Elasticity modulus (E) 200 GPa 

Tension force ( T ) 19.2 kN 

Inclination angle ( ) 0° 

Sag parameter(λ2)  4.513 

The first modal natural frequency 2.25 Hz 

The second modal natural frequency 3.95 Hz 

 

 

Fig. 9 Schematic diagram of test setup for cable vibration control 
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4.2 Test cases 
 
Series of free vibration tests of the cable are conducted 

to evaluate the vibration mitigation performance of the 

REIMD. Test cases for the first two modes of the cable 

model are summarized in Table 3. Due to the fact that the 

fundamental frequency of the cable model is too low to be 

well excited by an electromagnetic shaker, the first mode of 

the cable is excited by man-power at its natural frequency, 

while the second mode of the cable is excited by the 

electromagnetic shaker shown as Fig. 10(d). There are 

totally six test cases for each of the first two modes of the 

cable. As for case 1, it is actually a RED without any 

supplemental inertial mass. The equivalent damping 

coefficients of the REIMD are adjusted by the load 

resistance ranging from 0 to 150 Ω. Thus, the effects of the 

initial mass and the damping coefficient on the control 

performance of the cable with the REIMD can be derived 

by the identified modal damping ratios. To identify the 

modal damping ratio, an exponential function is utilized to  

 

 

fit the envelope curve of free decay acceleration responses 

of the cable. Since modal damping ratios may be dependent 

on the amplitudes of the cable vibrations, the interval 

accelerations of 4-8 m/s
2
 and 6-10 m/s

2
, respectively, are 

selected to identify the first and the second modal damping 

ratios of the cable for each case. 

 

4.3 First mode test results 
 
Fig. 11 shows typical time history responses of accelera-

tions at mid-span of the cable for the first mode. It is 

evident that the case 5 shows a faster response reduction 

compared with the case 1 and without control, which 

implies that the REIMD can provide larger modal damping 

ratios. As shown in Fig. 11, the first modal damping ratio of 

the cable is 0.22% without control, increases to 0.45% for 

the RED (case 1), and further increases to 1.23% for the 

REIMD (case 5). 

 

 

  
(a) Test cable (b) REIMD 

 
 

(c) Shaker control system and data acquisition system (d) Electromagnetic shaker 

Fig. 10 Test photos for cable vibration control 
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Fig. 11 Time history responses of accelerations at mid-

span of the cable for the first mode (a) Without control; 

(b) RED (case 1) with 40Ω; (c) REIMD (case 5) with 40Ω 

 
 

 

Fig. 12 Plot of additional modal damping ratios versus 

load resistances for the first mode of the cable 

 
 

Fig. 12 compares the first modal additional damping 

ratios of the cable for various control cases. As expected, 

the attainable maximum first modal additional damping 

ratios of the cable in the case 2-6 are all larger than those in 

the case 1. The largest first modal additional optimal 

damping ratio of the cable is 1.01% when load resistance is 

40Ω for the case 5, while the maximum theoretical 

optimum damping ratio for a traditional viscous damper is 

associated with a ratio about half of the ratio between 

damper location and cable length (Kovacs 1982, Pacheco et 

al. 1993, Krenk 2000, Main and Jones 2002), which is 

about 0.50% in this paper. The results demonstrate that the 

largest first modal additional optimal damping ratio of the 

cable with the REIMD is approximately two times of that  

 

 

for an optimum viscous damper. However, the first modal 

additional damping ratios in the case 6 are smaller than 

those in the case 5, which implies that control performance 

will be deteriorated when the inertial mass of the REIMD is 

larger than the optimal value. 

 

4.4 Second mode test results 
 
Harmonic excitation with amplitude 12 mm and 3.95 Hz 

is adopted to excite the second mode of the cable. The 

entire process of the acceleration responses of the cable at 

the quarter-span for the second mode is shown in Fig. 13. It 

is shown that both the acceleration amplitude and the 

acceleration root-mean-square (RMS) value of the cable in 

the case 3 are the smallest among three cases, which 

demonstrates that the REIMD can also enhance control 

performance of the cable in the second mode. In addition, as 

seen from Fig. 14, the second modal damping ratio of the 

cable is 0.20% without control, increases to 0.98% for the 

RED (case 1), and further increases to 2.10% for the 

REIMD (case 4). 

Besides, the second modal additional damping ratios of 

the cable for various control cases are further compared, as 

shown in Fig. 15. Similar with the first mode of the cable, 

the attainable maximum second modal additional damping 

ratios of the cable in the case 2-4 are all larger than those in 

the case 1. However, the additional damping ratios in the 

case 5 get smaller than those in the case 1, which implies 

that the effect of the inertial mass on the control 

performance of the cable is not always positive. The largest 

second modal additional damping ratio of the cable can 

reach 2.23% (load resistance 70Ω for the case 3), which is 

4.46 times of that for an optimum passive viscous damper. 

 

 

 

Fig. 13 Forced vibration acceleration responses of the 

cable at quarter-span for the second mode 

Table 3 Vibration control test cases of the cable model for the first and second mode 

case 

Parameters of the flywheel Parameters of the generator Parameters of the REIMD 

Diameter 

df (cm) 

Thickness 

tf (cm) 

Moment of inertia  

If (kgcm2) 

Load 

resistance  

RL (Ω) 

Moment of 

inertia  

Ig(kgcm2) 

Load 

resistance  

RL (Ω) 

Inertial 

mass  

me (kg) 

1    0-150 8.00 0-150 123.37 

2 9 1 5.05 0-150 8.00 0-150 201.25 

3 11 1 11.28 0-150 8.00 0-150 297.32 

4 13 1 22.00 0-150 8.00 0-150 462.64 

5 15.5 1 44.46 0-150 8.00 0-150 809.00 

6 19 1 100.38 0-150 8.00 0-150 1671.36 

Note: df and tf denote the diameter and thickness of the REIMD flywheel 
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It is seen that the optimal resistance of the second mode is 

larger than that of the first mode, and the optimal inertial 

mass of the second mode (case 3) is smaller than that of the 

first mode (case 5). Hence, it can be concluded that both the 

optimal damping coefficient and the inertial mass of the 

REIMD decrease with the increase of the mode order of the 

cable, which is consistent with the theoretical analysis 

results in the section 3.2. 
 

 

 

 

To demonstrate negative stiffness characteristics of the 

REIMD, Fig. 16 compares typical measured hysteretic 

loops of the REIMD for the second mode of the cable. 

Since the load resistance of the REIMD for each case is 

fixed as 70Ω, corresponding equivalent damping coefficient 

is almost the same. The REIMD can dissipate more energy 

with the increase of the damper displacement induced by 

the inertial mass. However, the displacement of the REIMD 

will begin to reduce when the inertial mass is beyond  

 

Fig. 14 Time history responses of acceleration at quarter-span of the cable for the second mode (a) Without control; (b) 

RED (case 1) with 70 Ω and (c) REIMD (case 4) with 70 Ω 

 

Fig. 15 Plot of additional modal damping ratios versus load resistances for the second mode of the cable 

 

Fig. 16 Hysteretic loops of the REIMD with optimal resistance ( 70LR   , the second mode of the cable) 
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optimal value depicted as the case 3. Similar comparison 

results for the displacements of the REIMD are shown in 

Fig. 17. Hence, there is an optimum inertial mass such that 

the displacement of the REIMD is most profitably enlarged 

and the energy dissipation of the REIMD reaches its best 

efficacy. 
 

4.5 Comparisons of theoretical and test modal 
damping ratios 

 
Fig. 18 compares theoretically estimated and experimen-

tally identified additional modal damping ratios of the test 

cable for each test case when the REIMD is with an optimal 

load resistance. It is seen that the theoretically predicted 

modal damping ratios are always larger than those test 

results when the inertial mass of the REIMD is smaller than 

its optimum value. However, when the inertial mass of 

REIMD is larger than its optimal value, the theoretically 

predicted modal damping ratios are always smaller than 

those test results. There are four main reasons causing the 

difference between the theoretical and experimental modal 

damping ratios. (1) The effects of the cable sag (Xu and Yu 

1998, Johnson et al. 2003, Christenson et al. 2006, Duan et 

al. 2019b, Wang et al. 2019) has not been evaluated in the 

ideal taut-cable model adopted in the theoretical analysis. 

(2) The cable flexural rigidity together with the cable 

boundary conditions will significantly affect the achievable 

modal damping ratios of the cable (Fujino and Hoang 2008, 

Cheng et al. 2010), especially for the REIMD has a large 

negative stiffness (Shi et al. 2017). (3) The inevitable 

support stiffness of the REIMD can also induce the 

difference between the theoretical and experimental modal 

damping ratios (Fujino and Hoang 2008, Fournier and 

Cheng 2014, Duan et al. 2019a). (4) There are experimental 

identification errors of the inertial mass and the equivalent 

damping coefficient of the REIMD. 

 
 

 

Fig. 18 Comparisons of theoretical and test modal 

damping ratios of the cable 

 
 
5. Conclusions 

 

The proposed REIMD can provide variable damping 

force by a rotary generator with different load resistance 

and large inertial force with amplified inertial mass through 

the ball screw mechanism. The accuracy of the derived 

theoretical mechanical model of the REIMD has been well 

verified by performance tests. Vibration control of a stay 

cable with a REIMD was investigated through both 

theoretical analysis and experimental evaluation. The main 

conclusions are summarized as follows:  

 The theoretical analyses indicate that modal damping 

ratios of the cable with certain properties are a function of 

the damping coefficient, the inertial mass and the location 

of the REIMD. Both the optimum damping coefficient and 

the inertial mass of the REIMD will decrease with the 

 

Fig. 17 Displacement time histories of the REIMD with optimal load resistance ( 70LR   , the second mode of the cable) 
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increase of mode order of the cable and the location of the 

REIMD, and increases with the increase of the tension force 

of the cable.  

 The experimental results show that REIMD can 

provide larger additional modal damping ratios to the cable 

for the first two modes than those of conventional passive 

viscous dampers. As for the cable model in this study, the 

first and second attainable maximum additional modal 

damping ratios of the cable provided by the REIMD can 

reach as 2.02 and 4.46 times of the theoretical optimum 

damping ratios for a passive linear viscous damper, 

respectively. 

 Both the theoretical and experimental results 

demonstrate that the proposed REIMD can provide superior 

vibration mitigation performance with respect to 

conventional passive viscous dampers, and the REIMD is 

confirmed to be quite feasible and cost-effective for 

vibration control of stay cables. The excellent control 

performance of the REIMD mainly owes to negative 

stiffness effect generated by the inertial mass, which can 

make the damper move with larger displacements and 

enhance energy dissipation ability. However, oversize 

inertial mass of the REIMD may lead to negative effect on 

the control performance of the cable.  
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