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1. Introduction 
 

Cables are critical members of a cable-stay bridge. Due 

to their large flexibility, the relatively small mass and the 

extremely low inherent damping ratio, typically in the order 

of 0.1% (Yamaguchi and Fujino 1998), cables are prone to 

be excited by direct loads from wind, a combination of 

wind and rain, or via motion of the supported structure 

(Watson and Stafford 1988). Because the cable vibrations 

are often dominated by the resonance phenomena, a 

significant mitigation can be achieved at selected 

frequencies by properly tuning a passive damper (Krenk 

and Høgsberg 2005). This idea, firstly proposed in the early 

1980’s (Carrie 1980, Kovacs 1982), has been demonstrated 

its efficiency with various kinds of dampers, such as 

viscous dampers (Pacheco et al. 1993, Xu and Yu 1998, Yu 

and Xu 1998, Tabatabai and Mehrabi 2000, Krenk and 

Nielsen 2002, Main and Jones 2002a, Main and Jones 

2002b, Fujino and Hoang 2008, Zhou et al. 2014), friction 

dampers (Weber et al. 2010), tuned mass dampers (Gu et al. 

1994,  Cai  e t  a l.  2006, Wu and Cai 2006)  and 

magnetorheological dampers (Chen et al. 2004, Duan et al.  

                                           

Corresponding author, Professor 

E-mail: lxlst@tongji.edu.cn 

 

 

2005, Wang et al. 2005, Duan et al. 2007, Or et al. 2008, 

Duan et al. 2019b, Duan et al. 2019c). All these dampers 

can provide optimal additional damping ratios (Tabatabai 

and Mehrabi 2000, Zhou et al. 2014) for the specified 

modes of a cable after carefully choosing the damper 

parameters.  

Because the cable itself has a very small transverse 

stiffness, the positive stiffness introduced by a passive 

damper, will decrease the damper’s displacement which is 

already limited by its closeness to the support, and impair 

the efficiency of the dampers (Duan et al. 2006, Chen et al. 

2015a). To solve this problem, an innovative passive 

damper called the inertial mass damper (IMD) (Lu et al. 

2017) or tuned inerter damper (Lazar et al. 2015, Lazar et 

al. 2016, Luo et al. 2016) has been investigated by many 

researchers as alternative devices. Due to its pseudo 

negative stiffness and large inertial mass effect, the 

achievable modal damping ratios provided by the IMD can 

be up to nearly an order of magnitude larger than that of the 

traditional linear viscous damper (Lu et al. 2017). 

In fact, inerters can refer to a family of dampers which 

harness the amplified inertial mass effect generated through 

a certain mechanism, especially in the field of mechanical 

engineering or automotive engineering. An inerter can be 

designed as a liquid-based (Kawamata 1989, Wang et al. 

2011, Swift et al. 2013) damper or a mechanical-based 

damper. The latter is more widely reported and can be 
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Abstract.  Cables are prone to vibration due to their low inherent damping characteristics. Recently, negative stiffness dampers 

have gained attentions, because of their promising energy dissipation ability. The viscous inertial mass damper (termed as VIMD 

hereinafter) can be viewed as one realization of the inerter. It is formed by paralleling an inertial mass part with a common 

energy dissipation element (e.g., viscous element) and able to provide pseudo-negative stiffness properties to flexible systems 

such as cables. A previous study examined the potential of IMD to enhance the damping of stay cables. Because there are 

already models for common energy dissipation elements, the key to establish a general model for IMD is to propose an 

analytical model of the rotary mass component. In this paper, the characteristics of the rotary mass and the proposed analytical 

model have been evaluated by the numerical and experimental tests. First, a series of harmonic tests are conducted to show the 

performance and properties of the IMD only having the rotary mass. Then, the mechanism of nonlinearities is analyzed, and an 

analytical model is introduced and validated by comparing with the experimental data. Finally, a real-time hybrid simulation test 

is conducted with a physical IMD specimen and cable numerical substructure under distributed sinusoidal excitation. The results 

show that the chosen model of the rotary mass part can provide better estimation on the damper’s performance, and it is better to 

use it to form a general analytical model of IMD. On the other hand, the simplified damper model is accurate for the preliminary 

simulation of the cable responses. 
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realized by either a ball screw-ball nut system (Ikago et al. 

2012a, Watanabe et al. 2012, Nakamura et al. 2013, 

Nakamura et al. 2014) or a rack and pinion system (Smith 

2002, Saitoh 2012, Lazar et al. 2014b, Makris and Kampas 

2016). Other designs for the inerters (Lazar et al. 2014b) 

have been proposed, such as the mechanical snubber 

(Severud and Summers 1980, Kawaguchi et al. 1991, Kelly 

1997), the inertial mass damper (IMD) (Ohtake et al. 2006, 

Nakamura et al. 2014), the gyro-mass damper (GMD) 

(Saitoh 2012), the rotational inertia damper (RID) (Hwang 

et al. 2007) and the rotational inertia mass damper (RIMD) 

(Okamoto et al. 2017). Despite differences in specific 

details, all these devices share the same basic working 

principle, i.e., transferring the linear motion of the damper’s 

ends to the high-speed rotation of the rotary mass through a 

certain mechanical system in order to generate very large 

inertial mass effect.  

On the other hand, the energy dissipating ability of the 

inerter is very limited and mainly caused by friction: 

therefore, researchers intend to connect damping elements 

with the inerter, such as viscous element (Saito et al. 2004, 

Hwang et al. 2007, Ikago et al. 2012a, Saitoh 2012, Lu et 

al. 2017), electromagnetic element (Nakamura et al. 2014, 

Gonzalez‐Buelga et al. 2015, Hјgsberg and Krenk 2016, 

Wang et al. 2016, Høgsberg and Krenk 2017) or eddy-

current element (Chen et al. 2015b, Wen et al. 2016). 

To the author’s knowledge, in the 1970s, the inerter is 

firstly used by Japanese scholars as a kind of mechanical 

snubber for the vibration control of the pipe line in a 

nuclear power plant, given its insensitivity to high 

temperature and radiation (Severud and Summers 1980, 

Kawaguchi et al. 1991, Kelly 1997). Afterwards, Smith 

(2002) completes the analogy between mechanical and 

electrical systems (Firestone 1933) by treating the inerter as 

an analogy to the ungrounded capacitor. Then by using this 

method, the advantages of inerter have been 

comprehensively investigated, especially in automotive 

engineering (Chen et al. 2009, Papageorgiou et al. 2009, 

Liu et al. 2015, Chen et al. 2016a, Chen et al. 2016b, Shen 

et al. 2016a, Shen et al. 2016b).  

Applications of inerters in civil structures have also 

been widely investigated. As these devices have large 

inertial mass effect with small self-weight, one promising 

strategy is to connect a spring in series with the inerter and 

make it tunable. The tuned inertial mass damper (TIMD) 

(Nakamura et al. 2013), tuned viscous mass damper 

(TVMD) (Ikago et al. 2012a) and tuned inerter damper 

(TID) (Lazar et al. 2014b, Lazar et al. 2014a, Lazar et al. 

2014c, Wen et al. 2016), can all be viewed as realizations of 

this idea, and it is fair to classify them together as the tuned 

inerter-based damper (TIBD) (Wen et al. 2016). By 

determining the optimal damper parameters according to 

the fixed-point theory, the efficiencies and advantages of 

TIBD have been verified in details (Ikago et al. 2012a, 

Ikago et al. 2012b, Lazar et al. 2014b, Lazar et al. 2014a, 

Lazar et al. 2015, Lazar et al. 2016, Zhang et al. 2016, 

Zhang et al. 2017). Another plausible idea of the usage of 

inerter is to connect it with a traditional TMD, called tuned 

mass-damper-inerter (TMDI) (Marian and Giaralis 2013, 

Marian and Giaralis 2014, Giaralis and Marian 2016, 

Giaralis and Petrini 2017, Pietrosanti et al. 2017). This idea 

could efficiently reduce the actual mass needed from the 

traditional TMD and diminish the concern that the TIBD 

may not be excited sufficiently during the external 

excitation, especially when it is installed between stories. 

Meanwhile, the inerter has proved to be a good candidate as 

the energy dissipation devices in structures with base 

isolation (Saitoh 2012) and the stay-cable with an attached 

damper (Lazar et al. 2015, Lazar et al. 2016, Luo et al. 

2016, Lu et al. 2017). 

Usually, the damper force of the inerter is simplified as 

the product of an equivalent inertial mass and the relative 

acceleration of the damper’s ends, which means the damper 

force should be linearly related to the damper displacement. 

However, testing results of inerters with different scales 

reveal that: the damper force-displacement curve has clear 

nonlinearities, and damper force results contain high-

frequency components. There is still no unanimous 

conclusion for this phenomenon. The possible reasons 

might be associated to friction (Wang et al. 2011, Nakamura 

et al. 2014, Hessabi and Mercan 2016, Gonzalez-Buelga et 

al. 2017), backlash (Nakamura et al. 1988), internal 

stiffness (Wang and Su 2008a), loading method 

(Papageorgiou and Smith 2005, Papageorgiou et al. 2009) 

or some combinations of above factors (Wang and Su 

2008a; Wang and Su 2008b, Sun et al. 2016). On the other 

hand, it is reported that the nonlinearities of inerters might 

only have little influences on the performances of GMD on 

the vehicle suspensions (Wang and Su 2008a) or optimal 

configured TIBD (Gonzalez-Buelga et al. 2017). But there 

are still no investigations about the influences of these 

nonlinearities on the performance of cable-IMD systems. 

In this paper, the inerter with a “ball screw/ball nut” 

system, designated as IMD for short, is chosen to be 

investigated, because it is commonly proposed to be used in 

civil structures. Characteristics of the IMD are illustrated by 

numerical analysis and experimental tests. Two small-scale 

mechanical snubbers are selected, because they can be 

viewed as typical IMDs having only the rotary mass. The 

performance tests of the dampers are conducted under a 

series of harmonic excitations, and fundamental properties 

of the damper performance are demonstrated. Then, the 

mechanism of nonlinearities in the damper force is 

discussed in details, and an analytical damper model with 

variant stiffness is formed and validated with experimental 

results. Finally, the accuracy of the developed damper 

model is further evaluated by a real-time hybrid simulation 

test. Also, the effects of damper nonlinear responses over 

the performance of the cable-IMD system are assessed. 

 

 

2. Description of a typical viscous IMD 
 

A typical schematic of viscous IMD (VIMD) is shown 

in Fig. 1, which is based on the same concepts of the inertial 

mass damper proposed by Ikago et al. (2012a) and 

Nakamura et al. (2014). The VIMD consists of an inertial 

mass part and a viscous damping part. The inertial mass 

part is composed by a “ball screw” and a “ball nut” 

connected with a mass tube (flywheel). The viscous  
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damping part consists in three components: (i) a piston rod 

connected to a ball screw; (ii) a piston head (valve); and 

(iii) viscous fluid material. These components are covered 

by the same housing for modularity purposes. 

Therefore, the common simplified damper forces  F
d̅
 

expression is 

( )rd e r d r signF uF m u c u= + +
 

(1) 

where me̅̅ ̅  stands for the inertial mass generated by 

rotation, cd̅  stands for the viscous damping coefficient 

provided by the damping component, ur represents the 

relative displacement between two ends of the damper and 

Fr̅ stands for the damper friction. 

In the VIMD, the inertial mass me̅̅ ̅ can be estimated by 

the following equation 

( ) ( )
2

2 2 2 2

1 2 l 2 1 02e s m

d

m r r h r r n m
L


 

 
= + − =  

   

(2) 

where Ld represents the lead of ball screw; ρ
s
 is the density 

of the tube; r1 and r2 are respectively the inner and outer 

radius of the tube; hl is the length of the tube; m0̅̅̅̅ =ρ
s
πh1(r2

2-

r1
2) is the actual mass of the tube; and  nm=2(π/Ld)2(r2

2+r1
2) 

is the magnification factor. It is reported that, the inertial 

mass me̅̅ ̅ could reach about 32 tons when the outer radius of 

the tube r2 is just about 80 mm, and the related mass 

amplification factor nm can practically achieve around 5000 

or more (Lu et al. 2017). 

 

 

3. Harmonic tests and results analysis 
 

Previous studies are primarily based on the simplified 

damper model as presented in Eq. (1). In order to further  

 

 

 

 

investigate the characteristics of different IMDs, a more 

detailed analytical model is required. Because there are 

already many mature models for other energy dissipating 

components, the key to establishing a universal analytical 

model of the IMD is to find a proper representation of the 

inertial mass part. In this section, damper performance tests 

of two mechanical snubbers are conducted, and the related 

analytical model is proposed after carefully analyzing the 

experimental data.  

 

3.1 Damper description and test setup 
 

Two mechanical snubbers (Type SMS-B), provided by 

Sanwa Tekki Corporation are studied in this paper, as 

shown in Fig. 2. The specifications for the specimens are 

given in Table 1. The snubbers are mainly composed of a 

ball screw-ball nut system and a tube-like rotary mass, 

without any additional energy dissipation element. So they 

can be viewed as typical IMDs having only the rotary mass, 

which makes them perfect specimens to study the 

performances of rotary mass through a set of harmonic 

tests.  

The loading assembly considered for this harmonic test 

is a MTS 204.63 servo-hydraulic actuator system, located at 

the Newmark Civil Engineering Laboratory from University 

of Illinois, Urbana-Champaign (USA), as shown in Fig. 4. 

 

 

Table 1 Damper specifications 

Damper 

Type 

Stroke 

(mm) 
Lead (mm) 

Load range 

(kN) 

Labeled inertial 

mass (kg) 

Type I ±80 4 1.5 1500 

Type II ±50 4 1.5 1500 

 

 

Fig. 1 Schematic of the VIMD 

 

Fig. 2 IMD test specimens: (top) type I, (bottom) type II 
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The dynamic actuator has a maximum load capacity of 

100 kN (22 kips), with a maximum stroke capacity of ±75.2 

mm (±3 in), and a servo valve with a rated flow of 15 gpm 

(gallons per minute), working at 3,000 psi of pump 

pressure. This loading assembly is adequate to conduct both 

harmonic tests and real-time hybrid simulation tests, as it 

will be explained in the following sections. For data 

acquisition purposes, a Vibpilot signal analyzer is included 

in the test setup, as shown in Fig. 3. The sampling rate for 

the harmonic tests is 2048 Hz.  

According to the limitations of the damper and loading 

assembly, the load protocols are carefully selected to cover 

the interested frequency range (0.1 Hz to 15 Hz). The 

loading amplitude at each frequency is gradually increased. 

Maximum load amplitudes at the typical frequencies are 

shown in Table 2. The tapered load function embedded in 

the MTS control platform is used in order to reduce the 

pulse effect caused by the discontinuity of acceleration at 

the beginning and the end of each load case to protect the 

damper from overload (when the damper force is larger  

 

 

 

 

 

 

than its limitations). However, this function doesn’t work 

well until the loading frequency is higher than 0.3 Hz. 

Therefore, the maximum amplitude of 0.2 Hz is smaller 

than those of 0.1 Hz and 0.3 Hz, and selected for safety 

purposes. 

 

3.2 Test results and analysis 
 

Fig. 5 shows time history plots of damper responses. As 

the responses of the two specimens are very similar to each 

other, only typical results of type II are shown here. To 

eliminate the noise effect, the experimental data have all 

been post-processed by a zero-phase low-pass filter, with its 

cut off frequency as 20 Hz, which is out of the main 

frequency ranges of damper responses. 

Meanwhile, as shown in Figs. 5(d)-5(j), the damper 

force responses have significant high frequency components 

when the damper acceleration and displacement reach their 

local extremum. It is inconsistent with the simplified 

damper model, in which the damper force response should 

Table 2 Maximum loading amplitudes (mm) 

Frequency (Hz) 0.1 0.2 0.3 0.4 0.6 0.8 1 2 3 4 13 

Type I 30 20 10 10 10 10 5 2 1 0.7 - 

Type II 40 20 50 15 20 15 15 3 1 1 0.3 

 

Fig. 3 Schematic plot of damper performance test 

  
(a) Loading assembly (b) Connection details 

Fig. 4 Loading assembly and connection details of the specimen 
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(a) Damper displacement (mm), 0.2 Hz (b) Damper force (N), 0.2 Hz 

  

(c) Damper displacement (mm), 0.6 Hz (d) Damper force (N), 0.6 Hz 

  

(e) Damper displacement (mm), 1.0 Hz (f) Damper force (N), 1.0 Hz 

  

(g) Damper displacement (mm), 2 Hz (h) Damper force (N), 2 Hz 

  

(i) Damper displacement (mm), 4 Hz (j) Damper force (N), 4 Hz 

  

(k) Damper displacement (mm), 13 Hz (l) Damper force (N), 13 Hz 

Fig. 5 Typical time history results of Type II damper in harmonic tests 
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be a smooth sinusoidal curve. The result at 1 Hz is shown in 

Fig. 6, where “Measured” stands for the measured data 

from the experiment, “High freq.” represents the result of 

the damper force filtered by a high-pass filter whose cut-off 

frequency is 3 Hz, “Low freq.” is the result of the damper 

force filtered by a low-pass filter whose cut-off frequency is 

3 Hz, and “High+low” stands for the result which is the 

summation of the low and high frequency components. The 

result of the “High+low” case matches well with the 

measured data, and it is obvious that the high frequency 

component can’t be ignored when analyzing the damper 

force responses. 

By comparing the data of the low frequency component 

and the results of the simplified model, as shown in Fig. 7, 

it can be observed that the simplified damper model is able 

to capture the low frequency component of the damper 

force, but not the high frequency component. Fig. 8 shows 

the power spectrum density (PSD) results of the measured 

damper force and the PSD of the same damper force filtered 

by the high-pass filter. It can be found that the range of the 

high frequencies is around 10~13 Hz, while there is a  

 

 

 

 

 

nonlinear increase of damper force for13 Hz as shown in 

Fig. 5(l), mainly associated to the resonance phenomenon. 

Therefore, it is safe to conclude that the high frequency 

components is connected with the damper self-vibration. As 

shown in the damper force responses of Figs. 5 and 6, this 

self-vibration happens when the damper acceleration and 

displacement reach their local extremum; a fluctuation of 

damper force can be observed which leads to an oscillation; 

therefore, the amplitude of the vibration is relatively larger 

when the damper is compressed and is relatively smaller 

when the damper is stretched. 

Fig. 9 shows typical damper hysteretic loops 

corresponding to the time history results in Fig. 5. A 

negative stiffness and nonlinearities can be observed in the 

Figs. 9(a)-9(e), and the nonlinearities are more obvious in 

the upper part of the hysteretic loops. As the range of the 

damper’s natural frequency is relatively fixed, the hysteretic 

loop becomes smoother with the increase of the load 

frequency. Fig. 10 shows the typical hysteretic loops related 

to maximum load amplitudes with different frequencies. 

Because the damper force is mainly contributed by the  

 
(a) Damper force responses (1 Hz) 

 
(b) Close-up view of damper force responses (1 Hz) 

Fig. 6 Different frequencies components of damper force responses (1 Hz) 

 

Fig. 7 Comparison between low frequency component results and simplified model (1 Hz) 
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equivalent inertial mass, the damper stiffness becomes 

smaller with the increase of the load frequency. Meanwhile, 

the maximum allowable displacement decreases, due to the 

damper force limitation. Also, because there is no energy 

dissipation element in the tested damper, the resulting 

hysteretic loops are very small and narrow. 

Also, when the load frequency is close to the damper’s 

natural frequency as shown in Fig. 9(f), an elliptical 

hysteretic loop with positive stiffness can be observed, 

which is associated with the damper’s resonance. As a  

 

 

 

 

consequence, the inertial mass damper can also serve as a 

perfect dynamic spring under high frequency excitation 

(Severud and Summers 1980, Kawaguchi et al. 1991). 

However, in the field of cable vibration control, low 

frequency components make main contributions to the cable 

responses. Therefore, the research and discussion in the 

following sections will be focused on the results with the 

frequencies lower than 4 Hz. 

As the nonlinearities are closely related to the damper’s 

self-vibration, it is also important to discuss how the  

  
(a) PSD of the measured force (b) PSD of the high-frequency components 

Fig. 8 PSD of measured force and high-frequency components (1Hz) 

  
(a) Damper force-displacement plot, 0.2 Hz (b) Damper force-displacement plot, 0.6 Hz 

  

(c) Damper force-displacement plot, 1.0 Hz (d) Damper force-displacement plot, 2 Hz 

  

(e) Damper force-displacement plot, 4 Hz (f) Damper force-displacement plot, 13 Hz 

Fig. 9 Typical damper force-displacement plots, damper Type II 
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vibration can be excited. As mentioned in the previous 

section, the possible explanations may relate to the backlash 

within the damper-actuator system, the internal friction, and 

the loading method. Usually, when a gap is closed, a pulse 

may be introduced and results in a vibration. For the IMD, 

the gap within the damper-actuator system will close when 

the direction of the acceleration/load changes at the neutral 

position (as shown in Figs. 11 and 12), and the damper 

force will almost remain the same during this process. 

However, because the damper force is mainly contributed 

by the inertial mass effect, as the acceleration is very small 

at that point, the damper force should be very small too. 

Similarly, the direction of the friction does change at the 

peaks of the damper displacement, but the value of friction 

is also relatively small (Nakamura et al. 2014) compared to 

the large damper force. Therefore, the gap and the internal 

friction are not the main reasons for the nonlinearities of the 

damper force. 

 

 

 

 

 

 

On the other hand, because the load process is 

displacement-controlled, the input displacement curve is 

relatively smooth, while the input acceleration curve is not 

smooth especially at those peak points, as shown in Fig. 13. 

Because the response of the IMD damper is related to the 

acceleration, a fluctuation in acceleration will lead to a 

fluctuation in the damper force, which will result in the self-

vibration of the damper. Further, as shown in Fig. 14, the 

measured damper force cannot be estimated accurately by 

the simplified model even using the input acceleration. But 

the places where the fluctuations happen in both results, are 

close to each other. Therefore, it can be concluded that the 

nonlinearities in the damper forces during the sinusoidal 

tests are closely related to the internal stiffness of the IMD 

and excited by the unsmooth input acceleration due to the 

displacement-controlled load process. Note that, the input 

acceleration will not be smooth when the IMD is in the 

actual service, i.e., under seismic or wind load.  

 

Fig. 10 Hysteretic loops under different loading frequencies 

 

 

(a) Velocity diagram (b) Force diagram 

Fig. 11 Damper analytical diagram (Damper is stretching out and moving toward neutral position) 

 
 

(a) Velocity diagram (b) Force diagram 

Fig. 12 Damper analytical diagram (Damper is compressed and moving away from neutral position) 
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Therefore, it is important to consider the internal stiffness of 

the IMD when forming an analytical damper model for 

further researches. 

 

 

4. Analytical model of the IMD and model 
verifications 
 
4.1 Analytical model of the IMD with variant 

stiffness 
 

Ideally the IMD can be represented by the following 

three main parts: rotary mass, ball screw and ball nut, as 

shown in Fig. 15, where ud represents the relative 

displacement of the damper; θi and θd are the angular 

displacements of the rotary mass and bal l screw, 

respectively; ld as the lead of the ball screw; lc is set as the  

 

 

 

 

distance between the middle point of the rotary mass and 

the middle point of the ball nut, and it is time-variant; lr is 

the length of the rotary mass; lf is the distance between the 

middle point of the rotary mass and the middle point of the 

bass screw, holding lc(t)= lf+ ud(t). Based on the 

force/displacement diagram, a detailed force analysis can be 

conducted, as shown in Fig. 16, where ke̅ is the equivalent 

stiffness of the damper, which can be safely assumed to be 

equal to the axial stiffness of the damper’s components in 

this case; ci is damping coefficient; Ji is the moment of 

inertial of the rotary mass; Ts represents the torque of the 

ball screw. 

It can be viewed that ke̅  is contributed by the 

axial/rotational stiffness of the ball screw/ball nut system, 

and the axial stiffness of the axial bearing and housing 

system. The value of latter two are relatively large, so it is 

reasonable to assume that ke̅ is mainly contributed by the  

 
(a) Time history of the input displacement, 1 Hz 

 
(b) Time history of the input acceleration, 1 Hz 

Fig. 13 Comparison of the input displacement and the acceleration, 1 Hz 

  

(a) 0.4 Hz (b) 0.6 Hz 

Fig. 14 Comparison between the measured force and the force derived by the simplified model 
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axial stiffness  ks̅  and rotational stiffness kT̅  of the ball 

screw/ball nut system, as follows 

( )
2

se T d

1 1 1
=

2kk k l
+

 

(3) 

Substitute the equations of ks = AE/lc(t)  and 

kT=GJs//lc(t) into Eq. (3), where A, E, G and Js are the 

section area, elasticity modulus, shear modulus and the 

moment of inertial of the ball screw respectively. Note that 

lc(t)= lf+ ud(t), therefore, ke̅ can be represented as a variant 

stiffness related to the damper displacement 

( )
( )

f
e 0

f d

=
l

k t k
l u t


+
 

(4) 

where 

b
0 2

d
f b

s

E
=

E
1+

G 2

A
k

lA
l

J






  
  

     

(5) 

where γb is the compensation factor indicating the influence 

of the axial stiffness of the bearing/housing system on the 

ks, which is set as 1 in this paper. 

Then, the equation of motion of the damper can be 

formed as follows 

i i i i sJ c T + =
 

(6) 

where 

( ) ( )2 2 2

i r i o i o r o r o

1
  = 2 2

2
J m r r c c r l r c l r = + =，

 
(7) 

 

 

 

where mr is the mass of the rotary mass; ri and ro are the 

inner and outer radius of the rotary mass; rs is the radium of 

the ball screw; c is the viscous coefficient. Set xi is the 

horizontal displacement related to θi, following relationship 

can be formed 

i i

d

2
x

l


 =

 

(8) 

According to the force equilibrium of the ball screw 

s s s s d tanT r R r F = =
 

(9) 

where φ is the lead angle of the ball screw, that satisfies 

d

s

tan
2

l

r



=

 

(10) 

Also, the damper force F
d̅
 holds the following equation 

( )d e d iF k u x= −
 

(11) 

By substituting Eqs. (11) and (9) into Eq. (6), the 

analytical model of the IMD considering the self-stiffness 

of the damper can be established as follows 

d e i d i

e i d i e i e d

F m x c x

m x c x k x k u

 = +


+ + =  

(12) 

where me̅̅ ̅ is the equivalent inertial mass of the damper, and 

cd̅  is the equivalent damping coefficient of the damper, 

holding 

( ) ( )
2 2

e i d d d i2 ,   2m J l c l c = =
 

(13) 

 

Fig. 15 Displacement diagram of the IMD 

 

Fig. 16 Force diagram of the IMD 
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Note that, (2π/ld)2 is known as the amplifier factor. For 

the convenience of following discussions, equivalent 

natural frequency ωe= √k0/me̅̅ ̅  and equivalent damping 

ratio ξe=cd̅/2√k0me̅̅ ̅, are introduced. 

The diagram of the analytical model of the IMD is 

shown in Fig. 17, where Fr̅ is a possible friction force, 

which is usually small and can be neglected. Also, notice 

that this model can be a general damper model and used for 

other kinds of inertial mass damper using ball screw/ball 

nut system with different energy dissipating element. 

However, in those cases, the equations of me̅̅ ̅, ke̅ and cd̅ 

might be different. 

By introducing the relative displacement of the damper 

ends, xi=xr+ud, substituting this expression into Eq. (12), 

and multiplying both sides of the equation by the amplifier 

factor, the following relationship is obtained 

( )e r d r e r e d d dm x c x k x m u c u− + − = +
 

(14) 

It can be noticed that the right-hand-side of the equation 

is the damper force calculated by the simplified model, 

named as Fd0
̅̅ ̅̅ , meanwhile, -ke̅xr equals to the damper force 

calculated by the analytical model, named as Fd
̅̅ ̅. Therefore,  

 

 

 

Eq. (14) can be formulated as 

( )d d0 e r d rF F m x c x= + +
 

(15) 

And the term between brackets on the right-hand-side of 

the above equation, represents the force fluctuation caused 

by the self-vibration of the damper. 

 

4.2 Model validation 
 

In this section, parameters of the analytical model are 

identified, based on the data of the tested dampers and other 

data gathered from the literature. Through this parameter 

identification procedure, the feasibility of the chosen 

analytical model is verified. 

 

4.2.1 Parameter identifications for the tested damper 
To identify the model parameters of the tested 

specimens, an optimization problem is formulated. Set the 

objective function J as the root mean square error (RMSE) 

between the measured and the calculated damper force. 

 

 

 

Fig. 17 Analytical model of the IMD 

 

 
(a) Type I 

 
(b) Type II 

Fig. 18 Peak frequencies of different load amplitudes 
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(16) 

where Fci and Fti are the calculated and measured damper 

force at the time step i, respectively. Then, the problem is to 

find the optimal model parameters such that the objective 

function J is minimized. To solve this optimization 

problem, the pattern search method (Audet and Dennis Jr 

2002) is used, and the numerical implementation is 

developed in Matlab/Simulink. The equivalent inertial mass 

me̅̅ ̅  and the equivalent damping ratio ξe are chosen as 

parameters for identification. For this particular case, the 

friction is neglected, and the damping effect is 

approximated by the equivalent damping ratio ξe of the 

damper. The box constraints (i.e., lower and upper limits) 

for parameters me̅̅ ̅ and ξe are chosen as [1000, 5000] and 

[0.001, 0.5], respectively. 

The equivalent damper stiffness ke̅  is related to the 

damper displacement, so the high frequency components of 

the damper force distribute in a range, as it is shown in the 

case of 1Hz (Fig. 8). However, by calculating the peak 

frequencies of the high frequency components for different 

load amplitudes, it can be found that these frequencies vary 

slightly around their average value, as it is shown in Fig. 18. 

Note that only the cases of which loading amplitude is 

larger than ld, are selected (0.1 Hz-1 Hz), in order to 

exclude the influences caused by the high-order modes of 

the ball screw. Therefore, it is reasonable to assume that the 

peak frequency is related to the damper’s stiffness at the 

neutral position, and k0 can be derived by using the average 

value of the peak frequencies. 

The damper parameters are firstly identified for the 

typical experimental results of Type II when load 

amplitudes are the maximum reachable amplitudes at each 

frequency. The measured results and the simulated damper 

responses with these preliminarily identified damper 

parameters are shown and compared in Fig. 19. It indicates 

that the analytical model can properly simulate the behavior 

of the tested damper, showing negative stiffness and self-

vibration characteristics. The errors between the measured 

and simulated results may be attributed to the assumption of 

the equivalent damping ratio. Because the tested damper 

doesn’t have any energy dissipating element, and its 

mechanism of the energy dissipation is complicated and 

may come from friction and collision, which are hard to be 

estimated accurately by using the equivalent damping 

approach. Also, the simulated results show slower 

attenuations of the damper vibration than the experimental 

observations at the end of the loading process, especially for 

low frequency cases. One of the reasons for this effect 

might be that the actuator is involved in energy dissipation 

from the system at this stage because of the tapered load. 

Then, the damper parameters identification is conducted 

for all the load cases of both Type I and Type II dampers, 

and the relationships of the identified damper parameters 

with the load frequencies and amplitudes are analyzed.Figs. 

20 and 21 respectively show the results of identified me̅̅ ̅ 

and ξe under different load frequency and amplitude; the 

color shade of each data point indicates the load amplitude 

at each frequency; meanwhile, the error bars indicate the 

mean value and the standard variation at each frequency; 

also, the black solid line shows the mean value of the 

identified parameters, by removing a maximum and a 

minimum point, and the black dash line shows the mean 

value ±  one standard deviation of the identified 

parameters. 

The identification results show that the equivalent 

inertial mass, me̅̅ ̅ , does not vary much for most load 

frequencies and amplitudes, except when the load frequency 

is 0.3 Hz and 0.4 Hz for Type I damper. Because the taped 

function of the loading system is malfunctioned at these 

cases, there is only one result for parameter identifications, 

which may introduce error. The fact that me̅̅ ̅ is insensitive 

to the variant of load frequencies and amplitude, indicates it 

doesn’t have a clear relationship with the load frequency 

and the amplitude, which is in agreement with the 

theoretical analysis from previous sections. 

As stated previously, the energy dissipation of the tested 

specimens might be associated with factors related to the 

load frequency or amplitude, such as friction or collision. 

As shown in Figs. 21 and 22, the equivalent damping ratio 

ξe has a clear correlation with the load amplitude, but it is 

less obviously connected with the load frequency. Because, 

as shown in Table 2, when the load amplitudes are similar 

for the load cases of 0.3-0.8 Hz, the values of ξe are also 

close to each other. It indicates that the energy dissipation 

of the tested damper is mainly provided by friction. Then, a 

fitting process is conducted to find a relationship between ξe 

and the load amplitude, and the results are shown in Eq. 

(17). 

1
e

l 2

c

A c
 =

+
 

(17) 

where Al stands for the load amplitude (mm); and ck (k=1,2) 

are the fitting coefficients. Table 3 shows the common 

indices for the evaluation of the fitting results, indicating it 

is an acceptable fitting. 

Note that, for the case when the load amplitude is very 

small (i.e., less than 0.1 mm), Eq. (17) will produce 

unrealistic large damping ratio. Also, the damping ratio is 

around 0.3 when the load amplitude is less than 0.1 mm, so 

it is reasonable to use a piecewise function for the 

equivalent damping ratio ξe, as shown in Eq. (20). 

Therefore, the identified parameters of the tested 

dampers can be determined and summarized in Table 4, and 

four common indices in Table 3 are involved to evaluate the 

fitting results: SEE stands for the Sum of Squares due to 

Error; RMSE stands for the Root Mean Square Error; R- 

square stands for the coefficient of determination; 

 

 

Table 3 Evaluation of the fitting results 

Damper 

Type 
SSE R-square 

Adjusted R-

square 
RMSE 

SMS-B 

Type I 
0.0269 0.8887 0.8847 0.03101 

SMS-B 

Type II 
0.0040 0.9609 0.9597 0.01112 
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Table 4 Identified damper parameters of the tested IMD 

Damper type me̅ (kg) k0 (N/m) 
ξe 

c1 c2 

SMS-B Type I 1509 0.9×107 0.100 0.236 

SMS-B Type II 1589 1.2×107 0.079 0.153 

 

 

 

 

Adjusted R-square stands for the degree-of-freedom 

adjusted coefficient of determination. The first two indicate 

a good curve fitting when their values are close to 0; while 

the others indicate a good fitting when their values are close 

to 1. 

It can be found that the two tested specimens have 

similar parameters, except the stiffness of Type I is slightly 

lower in accord with its longer stroke.  

  

(a) Damper force, 0.6 Hz (b) Damper force-displacement, 0.6 Hz 

  

(c) Damper force, 0.8 Hz (d) Damper force-displacement, 0.8 Hz 

  

(e) Damper force, 1 Hz (f) Damper force-displacement, 1 Hz 

  

(g) Damper force, 2 Hz (h) Damper force-displacement, 2 Hz 

  

(i) Damper force, 4 Hz (j) Damper force-displacement, 4 Hz 

Fig. 19 Comparison of damper responses with preliminarily identified model parameters 
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Table 5 Key experimental parameters of the  EIMD (Nakamura et al. 2014) 

Damper type 
Flywheel’s equivalent 

mass (kg) 

Terminal resistance  

(Ω) 

Damping coefficient 

(Ns/m) 

Load frequency  

(Hz) 

Load amplitude 

(mm) 

Small-scale 6.00×103 0 1.15×103 1 6 

Full-scale 2.00×106 0 3.05×106 0.5 10 

 
(a) Type I 

 
(b) Type II 

Fig. 20 Identified me̅̅ ̅ under different load frequencies and amplitudes 

 
(a) Type I 

 
(b) Type II 

Fig. 21 Identified ξe under different load frequencies and amplitudes 
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(a) Type I 

 
(b) Type II 

Fig. 22 Relationship between ξe and displacement amplitude under different frequency 

 
(a) Type I 

 
(b) Type II 

Fig. 23 Fitting curve of ξe and displacement amplitude 
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Meanwhile, comparisons between the measured and 

simulated damper forces are shown in Figs. 24 and 25. Note 

that the errors are slightly larger than those in Fig. 19 for 

Type II, but still acceptable. 

1
l

l 2e

l

     0.1

0.3          0.1

c
A

A c

A






+= 
   

(18) 

 

 

4.2.2 Parameter identifications for reported EIMDs 
It is important to verify the capability of the proposed 

damper model in predicting the performances of other 

IMDs, especially the large-scale dampers with the energy 

dissipation element. Two typical experimental results of the 

electromagnetic inertial mass damper (EIMD) reported in 

the previous study (Nakamura et al. 2014) are simulated by 

the proposed analytical damper model and the ideal  

  

(a) Damper force, 0.6 Hz (b) Damper force-displacement, 0.6 Hz 

  

(c) Damper force, 0.8 Hz (d) Damper force-displacement, 0.8 Hz 

  

(e) Damper force, 1 Hz (f) Damper force-displacement, 1 Hz 

  

(g) Damper force, 2 Hz (h) Damper force-displacement, 2 Hz 

  

(i) Damper force, 4 Hz (j) Damper force-displacement, 4 Hz 

Fig. 24 Comparison of damper responses with identified model parameters, Type I 
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simplified model. The electromagnetic element is 

approximated by a viscous element, i.e., the dash-pot 

element (cd̅) in the proposed damper model, and the  

unsmooth input acceleration is simulated by a backlash 

block in MATLAB. Key testing parameters of the EIMD are 

summarized in Table 5. Note that the small-scale/large-scale 

in the column of damper type are determined by the 

equivalent mass of the flywheel. 

 

 

Through the parameter identification procedure 

mentioned previously, the optimal damper parameters of the 

EIMDs are obtained and are presented in Table 6, where hd 

is the length of the backlash. Fig. 26 shows the comparison 

of the damper hysteretic plots of the testing results and 

simulation results. Note that, for the simplified model, the 

damper parameters are chosen from Table 5, which might 

not be their optimal parameters. 

  

(a) Damper force, 0.6 Hz (b) Damper force-displacement, 0.6 Hz 

  

(c) Damper force, 0.8 Hz (d) Damper force-displacement, 0.8 Hz 

  

(e) Damper force, 1 Hz (f) Damper force-displacement, 1 Hz 

  

(g) Damper force, 2 Hz (h) Damper force-displacement, 2 Hz 

  

(i) Damper force, 4 Hz (j) Damper force-displacement, 4 Hz 

Fig. 1 Comparison of damper responses with identified model parameters, Type II 
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In Fig. 26, the experimental results are labeled as 

“Testing”, while the simulation results of the proposed 

model and the previous simplified model are labeled as 

“Proposed” and “Simplified” respectively. From Fig. 26, it 

can be observed that: (i) the proposed model can have a 

better approximation on the damper’s performances; (ii) the 

inaccuracies mentioned in the previous section are largely 

reduced by the additional electromagnetic element.  

However, there are still some differences between the 

experimental data and simulation results with the proposed 

model. One of the reasons is due to the simplified behavior 

of the electromagnetic damper into a viscous element, 

which can be overcome by using a proper model of the 

electromagnetic damper in future studies. 

 

4.3 Discussions on the applicability of different 
damper models 

 

As it is concluded in this section, the proposed 

analytical model of IMD is better for capturing the 

damper’s self-vibration. Because the IMD device is usually 

paralleled with an additional energy dissipation device, like 

a viscous damper, the self-vibration of IMD might be 

significantly mitigated when the equivalent damping ratio ξe 

is large enough. In that case, the simplified damper model 

can be used to replace the proposed analytical model. For 

example, if the ξe of the tested damper (Type II) equals to 

0.1, the damper responses simulated by the two damper 

models will be close to each other, as shown in Fig. 27. 

Further, Eq. (15) indicates that: the damper force 

fluctuation caused by the self-vibration of the IMD can be 

ignored, when the amplitude of xr is much smaller than that  

 

 

 

 

of ud. Note that, xi=xr+ud, so the transfer function of Xi/Ud 

can be derived from Eq. (14) 
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(19) 

By setting the frequency ratio γ=ω/ωe, Eq. (19) can be 

formulated as 
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(20) 

Fig. 28 shows the magnitude plot of transfer function 

GXiUd(γ) for different values of damping ratio ξe. It indicates 

that: only when the frequency ratio γ is close to 1, and the 

equivalent damping ratio ξe is relatively small, the effect of 

the self-vibration are significant; on the contrary, when γ is 

small enough (less than about 0.3), or ξe is relatively large 

(larger than about 0.5), the effect of the self-vibration 

becomes negligible; when γ is large enough (larger than 

about 1.2), xi becomes smaller than ud, and the force-

displacement plot will show a positive stiffness, which is in 

accordance with the results shown in Fig. 9(f).  

 

 

Table 6 Identified damper parameters of the EIMDs 

Damper type me̅̅̅̅  (kg) cd̅ (Ns/m) k0 (N/m) hd (mm) 

Small-scale 6.00×103 1.61×103 1.03×108 0.01 

Full-scale 2.20×106 2.72×106 1.37×108 0.40 

 

 
 

(a) Results of small-scale EIMD (b) Results of full-scale EIMD 

Fig. 26 Damper force-displacement plots of the experimental results and simulation results 

  
(a) 0.4 Hz (b) 1.0 Hz 

Fig. 27 Damper responses comparison, ξe=0.1 
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Take the case when γ =1 as an example. If xi<1.1ud is 

treated as the criterion for judging whether the simplified 

damper model can be used to replace the proposed model, 

ξe should be large than 0.45 according to Eq. (23) 

  

G
X

i
U

d

(g = 1) =
1

2x
e

<1.1

 

(21) 

Note that, the above conclusions based on the transfer 

function of the damper model, are only accurate for the 

steady-state responses. Specific numbers mentioned above 

might not be accurate, if the transient responses of the 

damper are dominant in the practical engineering. 

 

 

5. Real-time hybrid simulation test for the IMD-cable 
system 

 

In this section, a real-time hybrid simulation test will be 

conducted in order to further examine the proposed damper 

model, and a comparison will be conducted between the 

results from the experiments and those obtained from the 

previous study (Lu et al. 2017). 

Real-time hybrid simulation (RTHS) is an experimental 

testing method used in structural engineering for 

performance evaluation of structural systems and its 

components, which is able to account for rate-of-loading 

effects on testing (Nakashima et al. 1992). This method 

consists in partitioning a reference structural system, such 

as a cable-stay bridge with supplemental energy devices, 

into a physical and numerical substructure. A mathematical 

model is developed for the numerical substructure, where 

computers are required to solve for the dynamic response. 

Meanwhile, the physical substructure is typically chosen to 

be a critical component of the testing system (e.g., a viscous 

damper), and is replaced by an experimental test specimen 

in a laboratory environment. The test specimen is attached 

to a loading assembly (i.e., actuator), and the experimental 

responses (displacements and restoring forces) are 

measured through sensors and data acquisition instruments. 

Then, the “online” structural testing of the physical 

specimen is possible, where: (i) the test specimen is loaded 

with a target displacement obtained from solving the 

numerical substructure at each time step; and (ii) the 

measured restoring forces from the test specimen are 

feedback to the numerical substructure, where the equations  

 

 

of motion are integrated to obtain the next target 

displacement to be applied to the test specimen. This 

“hybrid loop” must be performed at very fast speeds, in 

order to account for rate-of-loading effects. Therefore, the 

use of dynamically-rated actuators is fundamental to 

conduct the RTHS testing. In addition, fast computers and 

algorithms are necessary to execute the RTHS tests in a 

stable and accurate manner. Also, many cutting-edges  

improvements have been proposed on this method to make 

it faster and more reliable, like the new RTHS method 

based on vector form intrinsic finite element and field 

programmable gate array (Duan et al. 2019a). 

The main issue in RTHS testing is the synchronization 

of target and measured displacements of the test specimen. 

Since actuators have a dynamic response, a delay could be 

introduced in the feedback loop, that could affect the 

accuracy of the RTHS test or even destabilize the loading 

assembly (Horiuchi et al. 1996). Therefore, delay 

compensation techniques must be incorporated into the 

experimental design of any RTHS testing. 

 

5.1 Description of test substructures 
 

For this test, the cable-IMD system introduced in Lu et 

al. (2017) is considered as the reference structural system, 

with same structural parameters. This reference system is 

partitioned in two substructures as shown in Fig. 29, a 

numerical substructure consisting of the cable element with 

distributed mass and intrinsic damping, its supports and 

transverse loading; meanwhile, the experimental 

substructure was chosen as the type II inerter. Therefore, a 

boundary condition at the interface between damper and 

cable is chosen as a single-degree-of-freedom (SDOF) in 

RTHS testing, i.e., the stroke of the VIMD damper should 

be compatible with the transverse displacement of the cable 

at a distance x̅d from the left support. 

 
5.2 Test setup and control algorithm 
 

For RTHS test, the same MTS servo-hydraulic actuator 

system described in Section 3 is considered. In addition, a 

dSpace DS1103PPC micro-controller with PPC 750GX 

processor running at 1 GHz, is adopted. The micro-

controller will serve the purpose of storing the numerical 

substructure, conduct real-time numerical computations, 

and communicate with the MTS servo-controller through  

 

Fig. 28 Magnitude plot of transfer function GXiUd(γ)for different damping ratios ξe 
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16-bit digital-analog converters. In addition, a PCB Signal 

Conditioner is required for force readings from the PCB 

piezoelectric load cell. 

Henceforth, the RTHS control algorithm is composed of 

three main subsystems, as shown in Fig. 30: (1) numerical 

component, where the numerical substructure model, 

external loading, and numerical integration scheme are 

declared; (2) outer-loop controller, where the model-based 

compensation for servo-hydraulic system dynamics are 

defined; and (3) physical component, where, calibration 

corrections and digital-analog conversions are conducted to 

communicate with the external devices in real-time. 

 

 

 

 

For delay compensation, a model-based feedforward-

feedback controller is implemented (Phillips and Spencer Jr 

2012). The feedforward compensator is used primarily to 

satisfy the reference tracking (synchronization) objective; 

meanwhile, the LQG regulator is designed to increase the 

robustness of the system for any measurement noise or 

disturbance associated with model uncertainty. 

 

5.3 Results analysis 
 

The results of the distributed sinusoidal load are 

discussed in this section, while the cable model and load 

details are similar as those in previous paper (Lu et al. 

2017). 

 

Fig. 29 Numerical and experimental substructures chosen for RTHS test 

 

 

Fig. 30 Block diagram of RTHS algorithmy 

 

 

Fig. 31 Outer-control loop algorithm for RTHS testing 
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)t()xn()t,x(f nn  sinsin =  (22) 

where n is the mode number. In this paper, n is set to be 3, 

because damper optimal parameters of mode 3 can be 

achieved by a relatively small scale factor μf (about 59.6) 

(Lu et al. 2017). Other two scale factors μi/μo are also set at 

the input/output of the damper, in order to ensure that the 

damper displacement and force will not exceed any 

limitations of the testing system.  

Note that the optimal damper parameters of the cable-

IMD system are given as the normalized equivalent inertial 

mass me and the normalized equivalent damping coefficient 

cdxd in the previous paper (Lu et al. 2017), defined as 

follows 

2

e 0 d 0
d d e d2 2

        
m L c L

x x L m c
T T
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(23) 

where L is the cable length; T is the tension force of the 

cable; ω0 is the fundamental natural frequency of the 

undamped cable; and xd is the normalized damper location, 

preset as 0.02 in this paper. The target normalized optimal 

damper parameters are me=0.53, cdxd=0.015, and the 

realized ones in the RTHS are me=0.529, cdxd =0.0492. To 

analyze and demonstrate the experimental results, segments 

of the typical steady-state results are shown as below. 

From the results, it can be observed that the model-

based controller is able to compensate the actuator 

dynamics during RTHS test. Fig. 32 shows the time-history  

plot of the target, command, and measured displacements at  

 

 

 

 

the substructures interface, labeled as Xtarget, Xcmd and 

Xmeas respectively. It is clear that the target and measured 

signals are almost identical, and that the command signal is 

always leading the target signal, which was expected 

because of model-based compensation in RTHS testing. 

Meanwhile, Fig. 33 shows the synchronization subspace 

plot, which is a graphical representation of the tracking 

error in RTHS. This figure shows the measured vs. target 

displacement data; in the case of perfect tracking, the data 

should lay in a straight line with slope 1:1. Any deviations 

from this perfect tracking line can be related experimental 

errors due to actuator dynamics. Also, it can be seen that the 

test data follows very well the perfect tracking line; hence, 

the model-based compensation scheme is successful for 

conducting RTHS with the IMD device. In terms of 

performance indices, the root mean square error (RMSE) 

between the measured and target displacement is around 

1.13%, which is considered to be acceptable for this study. 

As shown in Fig. 34, the proposed analytical damper 

model can fit the peak damper forces better than the 

simplified damper model, and the damper force-

displacement plot shows a clearly negative stiffness loop. 

Meanwhile, the cable displacement responses can still be 

simulated accurately enough by both damper models. 

Therefore, the proposed analytical damper model can 

provide better prediction on the damper behavior, while the 

simplified damper model is sufficiently accurate for the 

preliminary simulation of the cable-VIMD system. It also 

further ensures that the previous conclusion derived with 

the simplified damper model is correct and reasonable. 

 

Fig. 32 Comparison of the target, command and measured displacement 

 

Fig. 33 Synchronization subspace plot of RTHS test results 
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6. Conclusions 
 

Previous research has shown that the inertial mass 

damper (IMD) has advantages in the cable vibration 

control. In this paper, by conducting the damper 

performance tests, the characteristics of IMD with only the 

rotary mass part are verified: (i) the inertial mass element 

can provide clear pseudo-negative stiffness; (ii) the damper 

force responses have significant high frequency 

components. Through a detailed analysis, the nonlinearities 

of the hysteretic loops are related to the damper self-

vibration, and the unsmooth input acceleration will lead to 

abrupt changes of the damper force and excite the high 

frequency vibration.  

Then, an efficient analytical model which can consider 

the damper’s self-vibration with variant stiffness, is 

introduced. In order to verify the feasibility of this model, 

parameter identification procedures are conducted based on 

the experimental results of the tested IMD as well as the 

data of EIMD from previous studies. By comparing the 

measured data with the simulation results, the chosen model 

shows good performance in estimating the behavior of a 

damper with an inertial mass element.  

Finally, the chosen model of the IMD is further 

validated through a real-time hybrid simulation (RTHS) 

test, while the accuracy of the simplified damper model is 

also discussed. It can be concluded that: the introduced 

model is better when evaluating the damper performances 

for conceptual design, while the simplified damper model is 

also feasible for estimating the overall responses of the 

cable-IMD system. 
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