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1. Introduction 
 

Vibration control of stay cables has received 

considerable attention during the last decades (Virlogeux 

1998, Johnson et al. 2007, Zhou et al. 2014, Sun et al. 

2017, Wang et al. 2005, Wang et al. 2018, Zhou et al. 

2018). The cables of the cable-stayed bridges are prone to 

vibrations with excessive or unanticipated amplitudes by 

external excitations (e.g., wind, rain, support motion), 

owing to their low intrinsic damping and high flexibility 

(Hikami and Shiraishi 1988, Ko et al. 2002, Chen et al. 

2004, Jing et al. 2016). Magnetorheological (MR) dampers 

have been proposed for the cable vibration mitigation by 

various experimental and analytical studies, and 

engineering applications as well (Carlson and Spencer 

1996, Ko, et al. 2003, Duan 2004, Duan et al. 2005, 2006, 

2009a, b, Jung et al. 2004, Li et al. 2007, Guan et al. 2012, 

Huang et al. 2015, Wang et al. 2019). The smart MR 

damping system for cable vibration control has salient 

advantages over passive or fully active control systems, in 

either open-loop control mode or closed-loop control mode 

(Hikami and Shiraishi 1988, Pacheco and Fujino 1993, 

Matsumoto et al. 1995, Poston 1998, Verwiebe 1998, 

Persoon and Noorlander 1999, Tanaka 2003, Ni et al. 2007). 

In the open-loop control mode, MR dampers of same size 

can be used for cables of different configurations in a cable-

stayed bridge to achieve optimal or suboptimal control 

effectiveness; through altering the input of voltage/current 

to the dampers, the MR dampers can achieve optimal or  
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suboptimal control effectiveness for different modes under 

different vibration amplitudes that cannot be specified a 

priori. In the closed-loop control mode, with the aid of an 

appropriate control strategy, the semi-active MR dampers 

can achieve much better damping effectiveness than 

optimal passive dampers, but at much less cost or with 

lower power requirements than fully active control systems. 

Due to the intrinsic nonlinearity and changeable 

damping nature of MR dampers, development of control 

strategies that are practically implementable and can fully 

utilize the semi-active capability of MR dampers and 

modeling of MR dampers to facilitate the implementation of 

control strategies is still a challenging task. On one hand, 

the control strategies should take into account the 

characteristics of both the hosting structures − stay cables 

and the damping devices − MR dampers. On the other hand, 

although a number of mathematical models for MR 

dampers are available (Butz and Stryk 2002, Jung et al. 

2004, Kazakov et al. 2016), very few are convenient for 

structural control design. In control design, the model of 

MR dampers has to be integrated with the governing 

equation of the controlled structure hosting the dampers. 

Therefore, a simple, yet reasonably accurate model, which 

relies on a limited number of parameters and therefore can 

be easily incorporated into the control strategies, is desired. 

In order to facilitate the damper design in engineering 

implementation, a general formula has been proposed 

(Duan 2004, Duan et al. 2006) that evaluates the achieved 

damping ratio of the cable-damper system, taking into 

account damper mass, damper stiffness, stiffness of damper 

support, nonlinearity of damper, as well as the cable sag and 

inclination. Based on this general formula, the design of 

open-loop control strategies for single-mode optimal control 

and multi-mode suboptimal control becomes direct and 
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convenient in an analytical way. In the derivation of this 

general formula, the damper was modeled as a mechanical 

analogue consisting of a viscous dashpot, a spring, and a 

frictional element in parallel - the three-element model 

originally proposed for electrorheology (ER) dampers by 

Powell (1994). The coefficients of these three elements 

were regarded as changeable with input voltage/current, 

vibration frequency and amplitude. However, the 

relationship between these parameters with the 

voltage/current inputs for MR dampers under different 

operation conditions (with different vibration amplitudes 

and frequencies) and how to incorporate the model into 

control strategies for practical application remain 

unaddressed. In this paper, we address these two issues by 

exploring the modeling of a full-scale MR damper and 

demonstrating its application in vibration control design of 

a typical stay cable on a cable-stayed Bridge. 

Laboratory tests are first carried out by means of 

sinusoidal excitation with different frequencies, amplitudes, 

and voltage/current inputs to the MR damper. The 

hysteresis loops of force versus displacement, and force 

versus velocity are obtained. Then the parameters of the 

three-element model are identified from the experimental 

data and expressed by polynomial functions in terms of 

vibration frequency, amplitude, and voltage input. Thus a 

parameter-adaptive three-element model is fully developed. 

By incorporating the damper model into the general 

formula, the open-loop control strategies can be directly 

implementable by altering the voltage/current inputs to the 

dampers, taking into account damper mass, damper 

stiffness, stiffness of damper support, nonlinearity of 

damper, and inclination and sag of the cable. The control 

strategies and implementation issues are addressed. 

 

 

2. Test description and results 
 

A linear stroke damper RD-1005 (Fig. 1) manufactured 

by Lord Corporation was adopted in the tests. The damper 

is 15.5 cm long in its extended position, and has a stroke of 

 2.5 cm. The main cylinder is 3.8 cm in diameter and 

houses a piston, a magnetic circuit, an accumulator, and 50 

ml of MR fluid. The MR fluid valve is formed by an 

annular orifice and an associated magnetic circuit that is 

fully contained within the piston. A controllable force of the 

range of 50-2500 N can be generated by this damper. The 

force is stable over a broad temperature range, varying by 

less than 10% in the range of -40 − 150℃. The resistance of 

the magnetic circuit is about 5 Ohms at an ambient 

temperature of 25℃, and the maximum voltage/current 

input is 10V/2A (Carlson and Spencer 1996). Although the 

damper contains approximately50 ml of MR fluid, the 

actual amount of fluid that is activated in the magnetic 

valve at any given instant is only about 0.3 ml. It is 

interesting to note that an ER fluid damper of comparable 

performance would require about 30 ml of active fluid in 

the valve at any given instant (Carlson and Spencer 1996). 

 

 

 

 

 

Fig. 1 MR damper RD-1005 (Lord Corporation) 

 

 

 

Fig. 2 Experimental setup 

 

 

As shown in Fig. 2, the MR damper was tested in a 

computer-controlled MTS machine (Model 858, 15 kN). 

The MR damper is installed between the upper and lower 

grippers. The upper moving arm is actuated through the 

computer-controlled hydraulic supplier, while the lower arm 

is fixed. The load cell is located in the lower static arm; 

therefore, its acceleration equals zero and the measured 

force is the exact force exerted on the rod of the damper. 

Tests of sinusoidal vibration were carried out at 

frequencies of 1 Hz to 6 Hz, displacement amplitudes of 2 

mm to 8 mm, and voltage inputs of 0 V to 8 V. Typical 

results are shown in Figs. 3-5, with hysteresis loops of force 

versus displacement and force versus velocity. The results 

represent three categories of tests: (i) To investigate the 

variation of hysteresis loops with voltage input V at a given  
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frequency f and amplitude A. Fig. 3 shows the results of f = 

3 Hz and A = 6 mm, with the voltage input V varying from 

0 V to 8 V. The damper force is found to increase as the 

voltage input increases, but the rate of increase gradually 

decreases due to magnetic saturation. (ii) To investigate the 

variation of hysteresis loops with vibration amplitude A at a 

given frequency f and voltage input V. Fig. 4 shows the 

results of f = 3 Hz and V = 6 V, with a displacement 

amplitude A of 1 mm, 2 mm, 4 mm, and 6 mm. It is clear 

that for the given excitation frequency and voltage input,  

 

 

 

the damper force shows a slight but evident increase as the 

displacement amplitude increases. (iii) To investigate the 

variation of hysteresis loops varying with excitation 

frequency f at a given amplitude A and voltage input V. Fig. 

5 shows the results of A = 4 mm and V = 4 V, with the 

frequency varying from 1 Hz to 6 Hz. It is observed that 

both the force-displacement and force-velocity hysteresis 

loops are dependent on the frequency. Therefore, when 

modelling the damper it is necessary to consider the effect 

of the frequency, as well as the voltage input and the 

vibration amplitude. 

  
(a) Force versus displacement (b) Force versus velocity 

Fig. 3 Experimental hysteresis loops with different voltage inputs (f = 3 Hz, A = 6 mm) 

  
(a) Force versus displacement (b) Force versus velocity 

Fig. 4 Experimental hysteresis loops with different amplitudes (f = 3 Hz, V =6 V) 

  
(a) Force versus displacement (b) Force versus velocity 

Fig. 5 Experimental hysteresis loops with different frequencies (A = 4 mm, V = 4 V) 
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3. Proposed model and parameter identification 

 

Due to its simplicity in expression and satisfactory 

accuracy in representing the characteristics of MR dampers, 

the well-known three-element model (Powell 1994) is 

adopted here. In the mechanical analogue of the three-

element model, if 
e

k  is the stiffness coefficient, ec is the 

viscous coefficient, and IF  is the frictional coefficient, the 

damper force can be expressed as 

( )e e IF k x c x F sign x    (1) 

It should be noted that the three parameters 
e

k , ec , and 

IF  are dependent on the vibration frequency, displacement 

amplitude, and voltage/current input, as will be discussed in 

detail later. 

By using the nonlinear least-square method, the three 

parameters can be identified from the experimental data by 

minimizing the error of 

 

 

2

( )
i i i iF t e t e t I tError F k x c x F sign x      (2) 

where it  is the sampling instant during the experiments. 

Figs. 6 and 7 show two cases of the identified model 

compared with the experimental data. In the former case, 

the displacement amplitude A = 2 mm, the voltage input V = 

0 V, and the vibration frequency f = 6 Hz; while in the latter 

case the displacement amplitude A = 6 mm, the voltage 

input V = 6 V, and the vibration frequency f = 1 Hz. The two 

cases show that the proposed model can well represent the 

hysteresis loops of force versus displacement and force 

versus velocity, as well as the time history of the damper 

force. 

The identified parameters, ek , ec , and IF , are 

dependent on the voltage/current input, displacement 

amplitude, and vibration frequency. A set of empirical 

formulae have been obtained through curve fitting to 

characterize the dependence. Figs. 8-10 show the 

dependence of the stiffness coefficient ek . 

 
 

(a) Time history of damper force (b) Force versus displacement 

 
(c) Force versus velocity 

Fig. 6 Comparison of the model with the experimental data (A = 2 mm, V = 0 V, f = 6 Hz) 
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The circles represent the identified values of the parameter 

from the experimental data, while the dashed line shows the 

results of empirical formulae that will be discussed later. It 

is found that the dependence of the stiffness coefficient ek  

on voltage input V, displacement amplitude A, and vibration 

frequency f can be expressed by a second-order polynomial 

of the three parameters, respectively. Figs. 11-13 show the 

dependence of the viscous coefficient ec . It turns out that 

the viscous coefficient ec  is of the second order of 

polynomial of the voltage input V and the vibration 

frequency f, but is proportional to the displacement 

amplitude A. Similarly, it is seen from Figs. 14-16 that the 

frictional coefficient IF  is also of the second order of 

polynomial of the voltage input V and the vibration 

frequency f, but is proportional to the displacement 

amplitude A. Therefore, through nonlinear least square 

method, the empirical formulae of the stiffness coefficient 

ek , the viscous coefficient ec , and the frictional coefficient 

IF  can be given as 
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(3b) 
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(3c) 

The empirical formulae (marked by dashed lines) fit well 

with the experimental results (marked by circles) as 

illustrated in Figs. 8-16. The relative errors of these 

empirical formulae are within 10% for a displacement 

amplitude A = 0 − 7 mm, a voltage input V = 0 − 6 volts, 

and a vibration frequency f = 0 − 5 Hz, which is a broad 

enough range for the actual application in the open-loop 

control of rain-wind-induced cable vibration.  

 
 

(a) Time history of damper force (b) Force versus displacement 

 
(c) Force versus velocity 

Fig. 7 Comparison of the model with the experimental data (A = 6 mm, V = 6 V, f = 1 Hz) 
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Fig. 8 Dependence of the stiffness coefficient ke on the 

voltage input V 

 

 

Fig. 9 Dependence of the stiffness coefficient ke on the 

displacement amplitude A 

 

 

Fig. 10 Dependence of the stiffness coefficient ke on the 

frequency f (A = 4 mm) 

 

Fig. 11 Dependence of the viscous coefficient ce on the 

voltage input V 

 

 

Fig. 12 Dependence of the viscous coefficient ce on the 

displacement amplitude A 

 

 

 

Fig. 13 Dependence of the viscous coefficient ce on the 

frequency f (A = 4 mm) 
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Fig. 14 Dependence of the frictional coefficient IF  on 

the voltage input V 

 

 

Fig. 15 Dependence of the frictional coefficient 
I

F  on 

the displacement amplitude A 

 

 

Fig. 16 Dependence of the frictional coefficient 
I

F  on 

the frequency f (A = 4 mm) 

 

 

In order to find out the variation in the parameters of the 

identified model of the MR damper, the tests on two 

randomly selected dampers of the same type were carried 

out. It was found that the parameters of different dampers 

were of slight difference, which indicated that the 

investigated type of MR damper is of good quality in 

stability. 

 

Fig. 17 Sagged cable-damper system 

 

 

4. Application in open-loop control of cable vibration 
 

For a sagged cable-damper system as shown in Fig. 17, 

the MR damper, represented by the concentrated damper 

mass M , stiffness coefficient ek , viscous coefficient ec , 

frictional coefficient IF  and support stiffness sk , is 

located at the distance dx  from the lower end. 

Supposing that the motion amplitude of the damper 

piston relative to its cover is A and the vibration frequency 

is f , for any given voltage input V to the MR damper, the 

damper parameters ek , ec , and IF  can be obtained by Eq. 

(3).  

Using the equivalent energy method (Weber and Boston 

2010, Huang and Jones 2011, Duan et al. 2019a, b), an 

equivalent damping coefficient Ic  for frictional force IF  

can be obtained 

T

0
W sgn( ) 4I IF dt F      (4a) 

T

0
W= =I Ic dt c     

(4b) 

4 I
I

F
c




  
(4c) 

For brevity, the following dimensionless parameters are 

defined 
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0

s

s

k l
u

T


 
(5d) 

0 2

0

( )
n

M

M l

T


 

 
(5e) 

where 0
n , n = 1, 2, 3…, is the circular frequency of the 

undamped cables. 

The damping ratio   achieved by sagged cable-

damper setup (Fig. 17) can then be determined from a 

general formula as (Duan et al. 2019b) 

2

2

2

2
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l l

 

 

 

  


  




 
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 

 
(6a) 

where 

, , (1 )k d

k M s M

s

u x
U

u l
   (6b) 

, ( ) d

k M k M

x
U u

l
 

 
(6c) 

4 I
I

F
c





,

1
(1 )d d d

M s M

s

x x x
V

u l l l


   
     

    
(6d) 

The sag-extensibility parameter 
2  (Irvine and Caughey 

1974) can be obtained as 0.09 from Eq. (7) 

3
0

2 2
1 2

1 1 1

( cos )

eL l T

EA k l k l mgl 

 
   
 

 (7) 

where m and T0 are the mass per unit length and the cable 

tension force along the chord 'OO  (x-axis); l is the 

distance between the supports, and   is the inclination 

angle (the angle between the chord 'OO  and the horizon);

g  is the gravity acceleration; EA is the axial elastic 

stiffness of the cable; 1k  and 2k  are the spring stiffness at 

the cable ends; eL  is the effective length as expressed in 

Eq. (8(a)) and can be approximated as l  in practice; f is 

the sag at the mid span, as expressed in Eq. (8(b)). 

3 2

0
1 8

l

e

ds f
L dx l

dx l

    
      

     
  (8a) 

2

08

cosmgl
f

T




 

(8b) 

The modification factors 2,
W

 
 and 2,

W
 

 due to sage 

can be obtained by (Duan et al. 2009b) 

2

2 2 2 2

2

1 0 11 1 0 035 1 10

1 1 10,

. ( . ) ,

,

n
W
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  
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 (9a) 

 

Table 1 Main parameters of the studied cable 

Parameter EA (MN) m (kg/m)   (o) 0
T  (kN) l (m) 

Value 1254 51.8 36.9 3095 114.719 

 

 

2

2 2

2

1 0 035 1 10
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,

n
W

n 

 



   
 

   

(9b) 

The damping ratio  of the general cable-damper 

system can be obtained in an analytical way by Eq. (6), 

rather than by finite element model or time-consuming 

numerical simulation. The solution includes at least two 

aspects: (i) when the damper parameters are given, the 

achieved damping ratio for the cable-damper system can be 

obtained and therefore control strategies achieving 

maximum or sub-maximum damping ratios can be 

developed, which will be discussed later; (ⅱ) when the 

parameters of the cable are given, a customized 

damper/support system that achieves the optimal or 

suboptimal control effectiveness can be designed. 

In order to show the procedure in detail, we take one 

typical cable in a cable-stayed bridge as an example. The 

main parameters are shown in Table 1. The first three modal 

frequencies are 1.11 Hz, 2.23 Hz, and 3.34 Hz, respectively. 

Control strategies can be achieved by following steps.  

(i) The sag-extensibility parameter 
2  (Irvine and 

Caughey 1974) can be obtained as 0.09 from Eq. (7). 

According to Eq. (9), the modification factors 2,
W

 
 and 

2,
W

 
 can be taken as 1. 

(ii) For any given voltage input V, vibration amplitude 

A, and modal frequency f, the damper stiffness ke, damper 

coefficient ce, frictional coefficient FI, and their normalized 

counterparts 
k

u , 
c

 , 
I

  can be obtained from Eqs. (3)-

(5) and . The support stiffness 
s

k , damper mass M , and 

their normalized counterparts 
s

u  and 
M  can be 

determined according to the actual installation.  

(iii) The achieved damping ratio is obtained by 

substituting the parameters into Eq. (6). 

(iv) By changing the values for voltage input V, 

vibration amplitude A, and modal frequency f, the 

relationship among the achieved damping ratio  , voltage 

input V, vibration amplitude A, and modal frequency f is 

obtained. 

 

 

5. Results and discussion 
 
5.1 Optimal voltage input and its dependence on the 

vibration amplitude 
 
Fig. 18 shows the normalized damping ratio of the third 

mode versus the voltage input V for various vibration 

amplitudes A = 0.5 mm, 2 mm, 4 mm, and 7 mm, 
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Fig. 18 Normalized damping ratio versus voltage input 

for various vibration amplitudes (3rd Mode, 0 05.dx

l
 ) 

 

 

respectively, when the damper location 0 05.d
x

l
 . For 

amplitudes A = 0.5 mm, 2 mm, and 4 mm, it is observed 

that there is an optimal voltage for achieving the maximum 

damping ratio for each vibration amplitude, as indicated by 

1
P , 

2
P , 

3
P  in Fig. 18(a) or 

1
P , 

2
P , 

3
P  in Fig. 18(b). 

It is obvious that the optimal voltage increases as the 

vibration amplitude increases. For A = 7 mm, the damping 

ratio increases as the voltage input increases and the 

optimal voltage does not appear. This is due to the 

limitations of the damping force provided by the selected 

MR damper. The damper force even when V = 6 V is not 

large enough to provide the maximum attainable damping 

ratio in this case. 

 

5.2 Effect of damper support stiffness and damper 
stiffness on the maximum damping ratio and optimal 
voltage input 

 
From the comparison of Figs. 18(a) and 18(b), it is 

observed that the support stiffness 
s

u  plays an important 

role in decreasing both the maximum damping ratio and the 

optimal voltage (damper coefficient). For ideal support 

1
0

s
u

 , the maximum normalized damping ratio is about 

0.5 for each vibration amplitude; while for softened support 

1
0 3.d

s

x

u l
 , the maximum normalized damping ratio 

decreases to 0.38, only about 75% of that for the ideal 

support. The optimal voltage correspondingly decreases 

from 0.8 V, 1.0 V, and 1.8 V to 0.6 V, 0.8 V, and 1.3 V, for 

the vibration amplitudes A = 0.5 mm, 2 mm, and 4 mm,  

 

 

Fig. 19 Normalized damping ratio versus voltage input for 

different modes (Vibration amplitude A = 1 mm, 

0 05.d
x

l
 ) 

 

 

respectively. It should be noted that the softening of the 

damping stiffness may result from the clearance of the 

connection between the damper and the support or between 

the damper and the cable, as well as from the flexibility of 

the support. Therefore, in actual installation, it is desirable 

to eliminate the connection clearance and use a sufficiently 

stiff support.  

It is also seen that for the ideal support the maximum 

normalized damping ratio is almost the same, with the 

maximum attainable value of 0.5, at different vibration 

amplitudes. This indicates that for the present application 

the effect of the damper stiffness ke or 
k

u  is slight. It 

should be noted that the damper mass M or 
M , which may 

increase the maximum damping ratio, is assumed to be 

zero. 

 

5.3 Modal dependence of the optimal voltage input 
and design of multi-mode suboptimal open-loop control 

 
For the linear viscous damper, the optimal damper 

coefficient achieving the maximum damping ratio is only 

dependent on the modal number but independent of the 

vibration amplitude; for the frictional damper, the optimal 

damper coefficient is only dependent on the vibration 

amplitude but independent of the vibration mode. However, 

for the used MR damper, which is a combined viscous and 

frictional damper, the optimal voltage achieving the 

maximum damping ratio is not only dependent on the 

vibration amplitude, but also dependent on the vibration 

mode. As shown in Fig. 19, the optimal voltage input is 3.8 

V, 1.5 V, and 0.9 V, respectively, for the first three modes, 

when the vibration amplitude A = 1 mm and the damper 

location 0 05.d
x

l
 . It is obvious that the optimal voltage 

input is smaller for the higher vibration modes, similar to 

the case for the linear viscous damper (Pacheco et al. 1993). 
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Fig. 20 Normalized damping ratio versus vibration 

amplitude for various voltage inputs (3rd Mode) 

 

 

Fig. 19 also provides a design method for multi-mode 

suboptimal control. By setting the voltage input to 1.9 V, 

indicated by the intersection (P) of the curves for the first 

and third modes, a normalized damping ratio of no less than 

0.42, indicated by the coordinate of P, can be achieved for 

all of the three modes (i.e., 0.42 for the first and third modes 

and 0.48 for the second mode). 

 

5.4 Design of multi-switch single-mode optimal open-
loop control 

 

Since the optimal voltage input that achieves the 

maximum damping ratio changes with the vibration 

amplitude and vibration mode, the maximum or sub-

maximum damping ratio can be achieved for different 

vibration amplitudes and any given vibration mode by 

tracking the optimal voltage input in a multi-switch way. 

For the third modal vibration as shown in Fig. 20 (a), when 

the damper location is 0 02.d
x

l
 , the optimal voltage is 

2.5 V for amplitudes smaller than 1.5 mm, 4.0 V for 

amplitudes between 1.5 mm and 3.0 mm, and 6.0 V for 

amplitudes larger than 3.0 mm. By setting voltage inputs 

equal to 2.5 V, 4.0 V, and 6.0 V corresponding to these three 

ranges in amplitude, the maximum modal damping ratio can 

be always achieved. Fig. 20(a) also shows the normalized 

damping ratio achieved for voltage inputs of 0 V and 1 V. 

The maximum attainable damping ratio ( 0 5.d
x

l
  ) 

cannot be achieved for any vibration amplitude range here, 

due to the excessively small damper force provided by these 

two voltage inputs. It should be noted that the case of 0 V 

gives the passive-off damping ratio by the MR damper, 

which can still be in function even when the power supply 

fails. In contrast to Figs. 20(a) and 20(b) shows the case of 

0 05.d
x

l
 , from which we see that the optimal voltage is 

1.0 V for amplitudes of smaller than 2.4 mm, 1.5 V for 

amplitudes between 2.8 mm and 4.6 mm, and 3.0 V for 

amplitudes larger than 4.6 mm. Therefore, when the damper 

is located further away from the closer end of the cable (i.e., 

the value of dx

l
 is larger), the value of the optimal voltage 

input is smaller. 

 

 

6. Conclusions 
 

This paper presents the modelling of the full-scale MR 

damper RD-1005, based on experimental tests, and its 

application in the open-loop vibration control design of a 

115 m long stay cable in single-damper setup. The results 

from those works are summarized as follows: 

(i) A parameter-adaptive three-element model was 

developed for a full-scale MR damper and integrated into 

the general formula to evaluate the maximum attainable 

damping ratio of general cable-damper system.  

(ii) There is an optimal voltage input that achieves the 

maximum modal damping ratio of the damper-cable system. 

It turns out that the softening of support stiffness due to the 

flexibility of the support and/or the clearance of the 

connections between the damper and the cable and between 

the damper and the support can obviously decrease the 

maximum damping ratio and the optimal voltage input. The 

damper stiffness of the damper RD-1005 is minor and its 

effect is not significant despite the fact that it decreases the 

maximum damping ratio and increases the optimal damper 

coefficient/voltage input. The optimal voltage input also 

depends on the vibration amplitude and vibration mode, as 

well as on the location of the damper. For a given vibration 

mode, the optimal voltage input increases as the vibration 

amplitude increases. For the same vibration amplitude, the 

optimal voltage is larger for the lower modes and smaller 

for the higher modes. For a given vibration amplitude and 

vibration mode, the optimal voltage input is larger when the 

damper is further away from the closer end of the cable. 

Therefore, after the location of the damper has been decided, 

the multi-mode suboptimal open-loop control and multi-

switch single-mode optimal open-loop control strategies can 

be applied to achieve the sub-maximum or maximum 

damping ratio for different vibration amplitudes and 

different vibration modes. 
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