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1. Introduction 
 

Most of the previous research efforts on cable vibration 

control have been based on the assumption of taut strings. 

Adopting this assumption makes the analysis convenient 

and analytical solution possible. Kovacs (1982) was among 

the first to investigate cable vibration mitigation based on a 

taut string model. He studied the damper optimization by 

finding the intersection between the frequency response 

curves when the damper coefficient is zero and infinite, 

respectively. Making use of a taut string model, Yoneda and 

Maeda (1989) conducted complex eigenvalue analysis to  
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evaluate the optimal damper coefficient and damping effect 

of cables attached with dampers. By judiciously grouping 

the cable and damper parameters into nondimensions, 

Pacheco et al. (1993) proposed a „universal curve‟ of the 

normalized damping ratio versus the normalized damper 

coefficient for taut cables incorporating viscous dampers. 

Krenk (2000) and Main and Jones (2002a) investigated free 

vibrations of taut cables attached with viscous dampers via 

complex modal analysis method. Main and Jones (2002b) 

further extended their study to the free vibrations of taut 

cables attached with nonlinear dampers. Using complex 

modal analysis, Caracoglia and Jones (2007) explored the 

damping a taut cable using two viscous dampers on a single 

stay; Xu et al. (2007) proposed the method by using the 

adjustable fluid dampers to realize the reduction of cable 

vibration; Wu and Cai (2007) proposed a TMD-MR damper 

for vibration mitigation of a taut cable; Zhou et al. (2014a, 

2015) investigated the free vibration of a taut cable with a 

spring, and with a damper and a concentrated mass; Zhou et 

al. (2014b) conducted the full-scale cable vibration 

mitigation experiment which shows the good capacity of 

viscous damper; Sun and Chen (2015) studied the free 

vibrations of a taut cable with a general viscoelastic damper 

modeled by fractional derivatives; and Cu et al. (2015, 

2016) investigated the high damping rubber dampers and 

tuned mass-high damping rubber damper for a taut cable. 
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Using the state-space method, Lu et al. (2017) investigated 

an inertial mass damper for mitigating taut cable vibration 

and its results implied that this kind of passive damper 

could provide a greater energy dissipation capacity than the 

traditional viscous damper. Duan et al. (2019) proposed the 

general design formulas for vibration control of taut cable 

using passive MR dampers. All these studies modelled the 

cable as a taut string.  

On the other hand, advances in modern construction 

technology have resulted in increasing applications of long-

span cables in cable-stayed bridges. For instance, as the 

world‟s first two cable-stayed bridges with their main span 

exceeding 1000 m, the Stonecutters Bridge has its longest 

stay cables of 536 m and the Sutong Bridge has its longest 

stay cables of 577 m. These long stay cables exhibit 

considerably large sags, and consequently, the effect of sag-

extensibility on the cable dynamic characteristics is 

noticeable. A taut string model that neglects cable sag and 

inclination is valid for vibration control design of the cables 

with short to moderate lengths, but may result in inaccurate 

evaluation of damper parameters and damping performance 

in the vibration control design of long-span stay cables. 

Several researchers have examined this issue. Xu and Yu 

(1998) studied the mitigation of cable vibration using oil 

dampers by considering cable sag and inclination and 

showed that the sag significantly affected the maximum 

attainable damping ratio for long cables. Tabatabai and 

Mehrabi (2000) studied the influence of both cable sag and 

cable bending stiffness on the system damping ratios when 

using viscous dampers. Cremona (2001) generalized the 

Pacheco‟s „universal curve‟ (Pacheco et al. 1993) for 

inclined cables by taking account of the sag-extensibility 

parameter. Krenk and Nielsen (2001) investigated 

vibrations of shallow cables attached with viscous dampers 

and derived an asymptotic solution accounting for the 

influence of cable sag. Krenk and Hogsberg (2005) studied 

the damping performance of shallow cables attached with 

visco-elastic dampers. Johnson et al. (2003) proposed a 

control-oriented model in consideration of cable sag and 

inclination and compared the damping performance of 

cables using passive, active and semiactive dampers, 

respectively. Wang et al. (2005) designed a new method for 

optimal design of viscous dampers to achieve multi-mode 

cable vibration control. Cheng et al. (2010) designed an 

optimal viscous damper for sagged cable using energy-

based approach, without restriction on the damper location. 

Duan et al. (2018) investigated the damping effect of the 

viscous damper for a sagged cable using real-time hybrid 

simulation method.  

Recent research interest on cable vibration control has 

been given to MR dampers and the first application of MR 

damping technology to bridge structures has been 

implemented on Dongting Lake Bridge for mitigation of 

cable vibration (Chen et al. 2004, Ko et al. 2002, Duan 

2004, Duan et al. 2006). Johnson et al. (1999, 2003, 2007) 

formulated semi-active vibration control strategies for taut 

and sagged cables incorporating MR dampers, using state-

space method. Duan et al. (2005) proposed the state-

derivative feedback cable control using MR dampers. An 

experimental investigation of a taut cable with a MR 

damper was reported by Maslanka et al. (2007), which 

implied that an appropriately controlled MR damper 

provides a nearly constant damping in a wide range of cable 

vibration amplitudes. Or et al. (2008) developed the MR 

damper with embedded piezoelectric force sensors to 

facilitate the closed-loop cable vibration control. Zhou et al. 

(2006) investigated the semi-active control of three-

dimensional vibrations of an inclined sag cable with 

magnetorheological dampers. Zhou et al. (2008) further 

studied the semi-active control performance of MR damper 

for shallow cable under harmonic axial support motion. 

Zhao and Zhu (2011) conducted the stochastic optimal 

semi-active control of stay cables by using magneto-

rheological damper. Huang et al. (2012, 2015) used an 

optimally tuned MR damper to mitigate the vibration of 

stay cable and conducted a full-scale experimental 

verification for this optimally tuned MR damper. Chen et al. 

(2016) investigated the damping effect for stay cables using 

a newly developed self-sensing magnetorheological (MR) 

damper. From these researches, it is found that semi-active 

MR dampers with the aid of an appropriate real-time 

closed-loop control strategy are capable of offering much 

better damping performance than optimal passive dampers 

for cable vibration control.  

In addition to the effectiveness in closed-loop control, 

MR dampers are superior to viscous dampers for cable 

vibration mitigation even when they are used in the passive 

mode (Duan 2004, Duan et al. 2016, Zhou and Sun 2013, 

Wang et al. 2018, Zhou et al. 2018). Viscous dampers of the 

same size can only afford optimal damping to one or a few 

cables on a cable-stayed bridge while the vibration in other 

cables attached with the same dampers may still fail to be 

suppressed due to insufficient damping. However, MR 

dampers of the same size can provide optimal or sub-

optimal damping to each of the cables by tuning the damper 

voltage/current input to appropriate values. Even for a same 

cable, the dominant vibration mode can be different in 

different rain-wind-excitation events and can not be 

specified a priori. The passive (viscous) dampers designed 

for achieving optimal performance in one specific mode or 

appropriate (but not necessarily optimal) damping 

performance for several concerned modes are unalterable 

after they are installed and may provide insufficient 

damping even when the dominant mode is identified after 

the installation. Contrarily, MR dampers can provide the 

optimal (maximum) damping performance for the dominant 

mode after the dampers are installed, through adjusting the 

voltage/current input without changing the damper size. 

When being targeted to enhance the cable damping to 

suppress rain-wind-induced vibration, implementing MR 

dampers in an adjustable passive control mode is more 

practical and economical than in closed-loop control mode. 

In this paper, a method is developed for analyzing the 

damping performance of inclined sagged cables 

incorporating MR dampers in the passive control mode, by 

using a three-element damper model (Powell 1994) and 

complex modal analysis (Krenk 2004). It takes into account 

the combined effect of the cable sag and inclination, damper 

coefficient, stiffness and mass, and stiffness of damper 

support. Then analytical formulas and a universal curve are 
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derived from the asymptotic solution for designing the 

parameters of MR dampers to achieve the maximum 

damping ratio for a sagged cable. A comprehensive 

parametric study is conducted to evaluate the effects of 

cable and damper parameters on the system damping 

performance. Based on the parametric study, two sag-

affecting coefficients are defined for quantifying the 

influence of cable sag and inclination on the system 

damping ratio and the optimal damper coefficient. A case 

study is carried out on the adjustable passive control of the 

longest cable (536 m) on Stonecutters Bridge. 

 

 

2. Formulation 
 

2.1 Equation of motion 

 

An inclined sagged cable incorporating MR dampers is 

shown in Fig. 1. The distance between the supports is l, and 

the inclination angle (the angle between the chord OO’ and 

the horizon) is θ. The MR damper subsystem, represented 

by the concentrated damper mass M, stiffness coefficient ke, 

viscous coefficient ce, frictional coefficient FI and support 

stiffness ks, is located at the distance xd from the lower end. 

The cable has an axial elastic stiffness EA, and the ends of 

the cable are supported via springs with linear stiffness k1 

and k2. The sag at the mid span is f. When 
8

1
/ lf , the 

cable can be described using the shallow-cable theory that 

is based on the assumption of uniform mass distribution 

along the horizontal projection of the cable (Irvine 1981). 

The mass per unit length and the cable tension force along 

the chord OO’ (x-axis) are denoted as m and T0. 

The governing equation for free oscillation of the cable-

damper system can be expressed as Irvine (1981) 
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Fig. 1 Sagged cable-damper system 

 

where y  is the cable dynamic response around its static 

equilibrium configuration 
0

y .; T  is the additional tension 

force due to cable vibration; and 
d

F  is the MR damper 

force represented by Powell (1994) 
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in which 
d

y  is the cable movement at the damper 

location; and   the relative displacement between the 

damper piston and cover. The static equilibrium 

configuration 
0

y  and the sag at mid span f are expressed 

by 
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The additional tension force T stemming from cable 

vibration can be obtained by Krenk and Nielsen (2001) 
















1

02

21

),(
811

dxtxy
l

f

kkEA

L
T e  (4) 

where l
l

f
dx

dx

ds
L

l

e





























 

2

0

3

81 is the effective length 

and can be approximated as l in practice. 

 

2.2 Complex modal analysis 
 

The cable vibration, additional cable tension force, 

damper force, and damper relative displacement are written 

in the following complex format 
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Following the similar procedure of complex modal 

analysis by Krenk and Nielsen (2001), the determinant 

equation that permits non-trivial solutions for the cable 

vibration amplitude at the damper location 
d

y~  and the 

additional tension force amplitude T
~

 is obtained as 
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where 
dd

xlx  ,   is the wavenumber defined as 
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and 2  is the sag-extensibility parameter defined by Irvine 

and Caughey (1974) 
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It is clear from Eq. (6) that the effect of the damper is 

reflected in the right-hand side of the equation and that the 

left-hand side of the equation will be equal to zero when the 

cable is undamped. It is also seen that the effect of cable sag 

on the damping ratio of the cable-damper system is 

uncoupled with all the damper parameters (damper mass, 

stiffness coefficient, viscous coefficient, frictional 

coefficient and support stiffness). 

Using the equivalent energy method (Weber and Boston 

2010, Huang and Jones 2011, Duan et al. 2019), an 

equivalent damping coefficient for frictional force can be 

obtained 
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where, 
I

c  is the equivalent viscous coefficient of frictional 

force;   is the velocity amplitude of damper motion; 

  is the displacement amplitude of damper motion, is the 

energy dissipated within one cycle by dampers. 

Substituting Eqs. (5(c)), (5(d)) into Eq. (2) and replacing 

)sgn(
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F  by 
I

c  leads to 
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For brevity, the following dimensionless parameters are 

defined 
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where 2 , n = 1, 2, 3… is the circular frequency of the 

undamped cables. 

By combining Eqs. (2), (5), (10) and (11), Eq. (6) can be 

expressed as 
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(12) 

which will be used for solution of the wavenumbers for the 

cable-damper system taking into account the 

(dimensionless) damper mass 
M

 , stiffness coefficient 
k

u , 

viscous coefficient 
c

 , frictional coefficient 
I

 , support 

stiffness 
s

u , as well as the cable sag and inclination 

characterized by 2 . 

 

 

3. Solution of free vibrations 
 

The free oscillation of a damped cable with sag and 

inclination occurs in two types of vibration modes: nearly 

antisymmetric modes and nearly symmetric modes (Krenk 

and Nielsen 2001). In the nearly antisymmetric modes, the 

cable is lifted at one side to the mid-span while being 

lowered at the opposite side with respect to the static 

profile; in the nearly symmetric modes, the cable is lifted 

simultaneously at both sides (for small 2 ), or the side 

parts of the cable near the supports are lowered when the 

middle part of the cable is lifted with respect to the static 

profile (for large 2 ). Both numerical and asymptotic 

solutions for the nearly antisymmetric and nearly symmetric 

vibrations are obtained. 

 

3.1 Nearly antisymmetric vibrations 
 
3.1.1 Numerical solution 

By dividing both sides by )
2

cos(
l

, Eq. (12) can be 

expressed as 
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where  , which reflects the effect of the damper force, is 

expressed by 
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and  , which reflects the effect of the sag-extensibility, is 

expressed by 

 
(13c) 

The numerical solution is obtained by the fixed-point 

iteration of Eq. (13), i.e., substituting the current estimate of  

l into the right-hand side and then using the equation to 

calculate a new estimate (Duan 2004). The iteration is 

started from the wavenumber of undamped vibrations 
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.... ,4,2,0  nnl
n

  (14) 

The solution is found on a branch of the tangent 

function where 
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where n=2k and k = 1, 2, 3, …  

The numerical solution converges rapidly when 
l

nx
d  is 

less than 0.5, i.e., when the damper is located between the 

cable end and the nearest antinode. After solving l
n

 , the 

equivalent modal damping ratio of the cable-damper system 

for nearly antisymmetric vibrations is obtained as (Duan 

2004) 
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3.1.2 Asymptotic solution 
The asymptotic solution is obtained by substituting the 

undamped wavenumbers 
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side of Eq. (13(a)), which leads to 
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Using the approximation given in Eq. (15) and 

substituting Eq. (13b) into Eq. (17) leads to 
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where 
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From Eqs. (18) and (16), the normalized damping ratio 

of the cable-damper system for nearly antisymmetric 

vibrations is obtained as 
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In the above, 
sMk

U
,,

 is a factor accounting for the 

coupled effect of the damper stiffness 
k

u , damper mass 

M
  and support stiffness 

s
u ; 

Mk
U

,
 is a factor accounting 

for the coupled effect of the damper stiffness and mass; and 

sM
V

,
 is a factor accounting for the coupled effect of the 

damper mass and support stiffness. When 15.0
l

nx
d , the 

solution is almost unaffected when approximating S and C’ 

to 1(Duan 2004). For nearly antisymmetric vibrations the 

value of 0

n
  is equal to 

l

n
. 

Fig. 2 illustrates the numerical and asymptotic solutions 

for nearly antisymmetric vibrations of a sagged cable 

attached with an ideal viscous damper ( 00 
Mk

u ， ) at 

the location 02.0
l

x
d  with ideal support ( 0/1 

s
u ). It is 

seen that the asymptotic solution provides a very good 

approximation of the numerical solution and the cable sag 

has a negligible influence on the curve of the normalized 

system damping ratio  lx
d

//  versus the normalized 

damper coefficient   which is defined as 
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3.2 Nearly symmetric vibrations 
 
3.2.1 Numerical solution 

By dividing both sides of Eq. (12) by )
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sin(
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 and 

using a trigonometric relation, one obtains 
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where   is defined in Eq. (13(b)) and 
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The numerical solution can be obtained by the fixed-

point iteration of Eq. (23), i.e., substituting the current 

estimate of l  into the right-hand side and then using the 

equation to calculate a new estimate. The initial guess for 

iteration is taken as the wavenumber of undamped 

vibrations. After solving l
n

 , the equivalent modal 

damping ratio of the cable-damper system for nearly 

symmetric vibrations is calculated using Eq. (16). 

 

3.2.2 Asymptotic solution  
The asymptotic solution for nearly symmetric vibrations 

of the cable-damper system can be derived upon some 

approximations. 
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The left-hand side of Eq. (25) is linearized around the 

undamped value. By introducing Eq. (25) into Eq. (23), one 

obtains 
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The approximation given in Eq. (27) is valid for 

1
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. Using this approximation and 

substituting the expression of   into Eq. (26) leads to 
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where 











M

s

M

k
u

uB 


)1( , 
dn

dn

x

x
S

0

0 )sin(




 , 1C , 

)
2

(tan
2

12
1

0

2

2
0

2, 2

ll
W nn




 








  

(29a-d) 

From Eqs. (28) and (16), the normalized damping ratio 

of the cable-damper system for nearly symmetric vibrations 

is obtained as 
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where 
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In the above, 
sMk

U
,,

, 
Mk

U
,

 and 
sM

V
,

 are factors 

accounting for the coupled effect of the damper stiffness 

k
u , damper mass 

M
  and support stiffness 

s
u ; and 2,

W  

is the sag-affecting coefficient of damping ratio 

characterizing the effect of cable sag on the damping ratio, 

  

(a) 2nd mode (b) 4th mode 

Fig. 2 Numerical and asymptotic solutions for nearly antisymmetric vibrations of a damped cable under different sag 

(xd/l= 0.02): (a) 2nd mode and (b) 4th mode 
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which is equal to 1 when 02  , and larger than 1 when 

02  . When 1
l

x
d , the solution is almost unaffected 

when approximating S and C’ to 1 (Duan 2004). 

For nearly symmetric vibrations the value of 0

n
  is 

different from 
l

n
. The sag-affecting coefficient of 

damper coefficient is introduced here to reflect this 

difference and for convenience of expression 






n

l
W n

0

, 2   (32) 

which is equal to 1 when 02   and larger than 1 when 

02  , for ... 5, 3, 1,=n  . 

Examining Eq. (20) for nearly antisymmetric vibrations 

(modes of even orders) and Eq. (30) nearly symmetric 

vibrations (modes of odd orders) and generalizing the sag-

affecting coefficient of damping ratio 2,
W  and sag-

affecting coefficient of damper coefficient 2,
W  as 
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(34) 

one obtains a general formula for evaluating the equivalent 

modal damping ratio of the sagged cable-damper system as 
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(35) 

where C and S are approximated as 1 when 15.0
l

x
d  

(Duan 2004); or in the expression 
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(36) 

where   is the normalized damper coefficient defined in 

Eq. (22). By defining a generalized system damping ratio 

and a generalized damper coefficient as 
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Eq. (36) becomes 
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(38) 

Eqs. (35), (36) and (38) are general formulas that can be 

used to evaluate the attainable damping ratio for a cable-

damper system, taking into account all the damper 

parameters as well as the cable sag and inclination. It is 

seen from Eq. (36) that a „universal curve‟ of the 

normalized system damping ratio versus the normalized 

damper coefficient similar to the Pacheco‟s curve (Pacheco 

et al. 1993) cannot be obtained for sagged cables because 

this relation also depends on the sag-extensibility parameter 
2 . However, after introducing the definition given in Eq. 

(37), the relation between the generalized system damping 

ratio and the generalized damper coefficient is independent 

of 2  and therefore a „generalized universal curve‟ of the 

generalized system damping ratio versus the generalized 

damper coefficient can be generated using Eq. (38). This 

„generalized universal curve‟ can be easily used in 

designing MR dampers to achieve desired cable vibration 

control effectiveness (Duan 2004, Duan et al. 2005). It is 

known from Eq. (38) that the effects of damper parameters 

on the system damping performance for sagged cables are 

the same as those for taut cables because the sag-

extensibility parameter 2  does not explicitly appear in 

the equation. 

 

 

4. Analysis of damping performance 

 
4.1 Effect of damper parameters 

 

The maximum attainable damping ratio and the optimal 

damper coefficient for sagged cables can be obtained from 

0
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as 
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where the correction coefficient of damping ratio *


  and 

the correction coefficient of damper coefficient *


  are 

defined as 
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where C and S are approximated as 1 when 15.0
l

x
d  

(Duan 2004). 

The effects on the optimal damping ratio and damper 

coefficient of individual damper parameters can also 

explicitly expressed by the two sag-affecting factors *


  

and *


 . When there is no damper mass and the support is 

ideal, i.e. 0
1


M

s
u

 , the effect of damper stiffness is 

expressed as 
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(44) 

When there is no damper stiffness and the support is 

ideal, i.e. 0
1


k

s

u
u

, the effect of damper mass is given as 
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When there is no damper mass and stiffness, i.e., 

0
kM

u , the effect of support stiffness is derived as 
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(46) 

 

It is known from Eqs. (44)-(46) that apart from the 

effect of cable sag reflected by 2,
W  and 2,

W , the effects 

of damper parameters including the damper stiffness 
k

u , 

damper mass 
M

 , and stiffness of damper support 
s

u  on 

the system damping performance for sagged cables are the 

same as those for taut cables (Duan et al. 2019).  

It turns out that the damper stiffness decreases the 

maximum attainable damping ratio and increases the 

optimal damper coefficient; the damper mass counteracts 

the effect of the damper stiffness and may increase the 

maximum attainable damping ratio when the damper mass 

is appropriate; and softening of the support stiffness 

decreases both the maximum attainable damping ratio and 

the optimal damper coefficient. As a result, one should 

endeavor to eliminate damper stiffness, make damper 

support stiff enough, and utilize the benefit of damper mass 

in designing MR dampers for cable vibration control. To 

attain the maximum damping ratio for all cables on a cable-

stayed bridge, voltage/current input to the MR dampers 

should be adjusted with the optimal damper coefficient 

specific for each cable and vibration mode. 

 

4.2 Effect of cable sag 
 
The frequency of a symmetric vibration mode increases 

with an increase in the sag-extensibility parameter 2 , and 

can increase beyond the frequency of the antisymmetric 

mode immediately above: the so-called frequency crossover 

phenomenon (Irvine and Caughey 1974). For example, the 

1st modal frequency can be larger than the 2nd modal 

frequency. For an inclined cable, the frequency avoidance 

may replace the frequency crossover, because the curvature 

varying along the cable leads to modes that are hybrid in 

shape; i.e., neither symmetric nor antisymmetric 

(Triantafyllou 1984). For example, the 1st modal shape has 

zones of inverse motion near the supports; i.e. the side parts 

of the cable near the supports are lowered when the middle 

part of the cable is lifted with respect to the static profile. 

With sag-extensibility parameter 2  around the frequency 

crossover or avoidance value, the motion will be greatly 

reduced near the cable ends, and therefore render a damper 

in this region ineffective. For the undamped cable, the 

frequency avoidance occurs for the nearly symmetric 

vibration modes (n=1,3,5… ), when the sag-extensibility 

factor parameter 
222 )1(   n  (Krenk and Nielsen 2001, 

Duan 2004). 

Fig. 3 shows the numerical and asymptotic solutions for 

nearly symmetric vibrations of a sagged cable attached with 

an ideal viscous damper at the location 02.0
l

x
d  with 

ideal support. The diagrams of the normalized system 

damping ratio 

l

x
d


 versus the normalized damper 

coefficient   are here plotted to illustrate the influence of 

the sag-extensibility parameter 2 . The values of 2 = 0.1, 

1, 5, 40, 80 for the first mode and 2 = 0.1, 40, 80, 160,  
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320 for the third mode are selected such that the first value 

represents the taut cable, the second and third values are 

smaller than the frequency avoidance value (Krenk and 

Nielsen 2001, Duan 2004) of 22)1( n , the fourth is close 

to the frequency avoidance value, and the fifth is larger than 

the frequency avoidance value. It is seen that the asymptotic 

solution agrees well with the numerical solution for all the 
2  values. It is observed that the system maximum 

attainable damping ratio decreases with the increase of 2  

at onset and becomes almost zero when 2  approaches to 

the frequency avoidance value. After 2  is beyond the 

frequency avoidance value, the maximum damping ratio 

increases with increasing 2 , but never exceeds the value 

0.52 corresponding to 2 = 0 (taut cables). It is also seen 

that the optimal damper coefficient which achieves the 

maximum damping ratio always decreases with the increase 

of 2 , regardless of whether 2  is smaller or larger than 

the frequency avoidance value. 

 

 

 

Fig. 4 illustrates the sag-affecting coefficients for the 

system damping ratio and the damper coefficient versus the 

sag-extensibility parameter 2 . It is observed that when 
2  is equal to 1, the maximum damping ratio for the first 

mode is decreased by about 10% in comparison with that 

when 2 = 0, and the value of the corresponding damper 

coefficient is reduced by about 5%. When 2  is up to 10, 

the decrease will be about 65% and 25%, respectively. 

Therefore, for the first mode vibration, the effect of cable 

sag can be ignored in engineering application when 12  , 

but is significant and not ignorable when 12  . However, 

the effect of cable sag on the third mode is negligible (less 

than 1%) when 2  is not larger than 10. For the higher 

modes, the effect of cable sag becomes more trivial in the 

range of 0< 2 <10. 

Fig. 5 where the curves of the maximum damping ratio 

and the optimal damper coefficient versus the sag-  

  

(a) 1st mode (b) 3rd mode 

Fig. 3 Numerical and asymptotic solutions for nearly symmetric vibrations of a damped cable under different sag (xd/l = 

0.02): (a) 1st mode and (b) 3rd mode 

  

(a) 
2,

1


W

 (b) 
2,

1


W

 

Fig. 4 Sag-affecting coefficients 2,
W  for system damping ratio and 2,

W  for damper coefficient versus sag-

extensibility parameter : (a) 
2,

1


W

 and (b): 
2,

1


W
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extensibility parameter 2  are plotted for the first four 

modes. When all the four modes are concerned, the 

maximum system damping ratio is controlled by the first 

mode in the range of 0< 2 <10 because the first mode has 

the lowest attainable damping ratio. 

The sag-extensibility parameter 2  for stay cables in 

actual cable-stayed bridges is usually within the range of 0<
2 <10. Only the damping performance of the first mode is 

significantly affected by the sag in this range. To facilitate 

engineering application, it is preferable to provide analytical 

expressions of the sag-affecting coefficients 2,
W  and 

2,
W in terms of 2 . Such analytical expressions can be 

obtained by introducing an approximate solution of l
n

0  

into Eqs. (33) and (34) as 












10  ,11

10  ,1)035.01(11.01
2

2222

, 2




 n

n
W  (47) 
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 n
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(48) 

 

 

 

Fig. 6 provides a comparison between the numerical 

solution of Eq. (33) and the analytical solution obtained by 

Eq. (47). It is seen that the relative error of the empirical 

formula Eq. (47) for 2,
W  is less than 2%. 

Similarly, Fig. 7 shows the comparison between the 

numerical solution of Eq. (34) and the analytical solution 

obtained by Eq. (48). The relative error of the empirical 

formula Eq. (48) for 2,
W  is less than 1% in the range of 

0< 2 <10. Both of the empirical formulae are accurate 

enough for engineering application. After so doing, the 

damper design for sagged cables has become quite 

convenient with the use of the general formulas or the 

„generalized universal curve‟ together with Eqs. (47) and 

(48). 

Fig. 8 illustrates the diagrams of the normalized system 

damping ratio  lx
d

//  versus the normalized damper 

coefficient   and the generalized system damping ratio 

 lx
d

//  versus the generalized damper coefficient *  

for the first vibration mode of sagged cables with 102  . 

The asymptotic solution obtained using the general 

formulae Eqs. (36) and (38) agrees well with the numerical 

solution from Eq. (23). It is observed that the plot of the 

normalized system damping ratio versus the normalized  

  
(a) maximum normalized damping ratio (b) optimal normalized damper coefficient 

Fig. 5 Effect of sag-extensibility parameter 2  on system damping performance 

  
(a) numerical and analytical results (b) relative error 

Fig. 6 Validation of empirical formula for sag-affecting coefficient of damping ratio 2,
W  ( 102  ) 
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damper coefficient relies on the sag-extensibility parameter 
2 , and therefore is not a universal curve for sagged cables. 

However, the plots of the generalized system damping ratio 

versus the generalized damper coefficient for different 2  

are merging to form a universal curve. It should be noted 

that the universal curve plotted in Fig 8(b) is also applicable 

to other vibration modes as long as 15.0
l

nx
d  (Duan 

2004). Therefore, this universal curve makes the damper 

design for sagged cables as easily as for taut cables. 

 

 

5. Case study 
 

The longest cable (536 m) on the cable-stayed 

Stonecutters Bridge in Hong Kong is studied to demonstrate 

the influence of the sag for the damper design, and to clarify 

the necessity of the adjustability of damper coefficients for 

achieving maximum damping ratio for different vibration 

modes. The main parameters of this cable are shown in 

Table 1, where l is the cable length, is the inclination angle, 

EA the elastic stiffness, T0 the cable tension force along the 

cable chord, m the mass per unit length, and D the diameter 

of the cable.  

Among many kinds of cable vibrations, the rain-wind-

induced vibration has the largest amplitude and is the most 

dangerous. Although the mechanism of rain-wind excitation 

is still a conundrum, the rain-wind-induced cable vibration 

can be mitigated if the cable damping is as high as making 

the Scruton number greater than 10 (Irwin 1997, Yamada 

1997, Tanaka 2003). This is the so-called Irwin‟s criterion 

10
2


D

m
S

air

e



 (49) 

where 
e

S  is the Scruton number, D is the cable diameter, 

m is the cable mass per unit of length;   is damping ratio, 

and 
air

  is the mass density of the air, 1.225 
3/ mkg . 

According to this relationship, the minimum damping ratio 

to prevent rain-wind-induced vibration should 0.44% for 

this cable. 

 

 

Table 1 Parameters of the longest cable on Stonecutters 

Bridge 

Parameter 
l 

(m) 
 (o) 

EA  

(106N) 

T0 

 (kN) 

m  

(kg/m) 

D  

(m) 

Value 536 19 2080 6167 110.6 0.2 

 

 

The sag f and sag-extensibility parameter 2  for this 

cable can be obtained from Eqs. (3) and (8) as 

97.2     97.5 2  andmf  (50) 

It is obvious that the sag is very large, even though it is 

only about 1% of the cable length; and that the sag-

extensibility 2  is also not negligible because it is larger 

than 1. By substituting the value of 2  into Eqs. (47) and 

(48), the following modification factors due to the sag are 

obtained as 










11

1352.1
2, n

n
W


 and 










11

1094.1
2, n

n
W


 (51a,b) 

Considering the aesthetics of the bridge and the 

convenience of installation, it is practical to choose the 

damper location as 01.0/ lx
d

 (i.e., 36.5
d

x  m away 

from the cable end, or 1.74 m in height from the level of the 

deck). Then, supposing that the damper is an MR damper 

without damper stiffness and mass and installed with an 

ideal support (i.e., 0
1


s

Mk
u

u  ), the maximum 

damping ratio and the optimal damper coefficient for the 

first vibration mode from Eqs. (42) and (43) are obtained as 
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(52a,b) 

 

  
(a) numerical and analytical results (b) relative error 

Fig. 7 Validation of empirical formula for sag-affecting coefficient of damping ratio 2,
W  ( 102  ) 
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Meanwhile, a total equivalent damper coefficient is 

obtained as 

mTccc
IeIe 0
)(    (53) 

Therefore, corresponding to the nondimensional optimal 

damper coefficient 
optIc

)(   , one obtains the 

dimensional optimal damper coefficient 
optIeopt

ccc )(  .  

The dimensional optimal damper coefficient for the 

first mode is obtained as 

mNsmTc
optIcopt

/1076.0)( 6

0
   (54) 

Similarly, we can obtain the results for other modes, as 

shown in Table 2, as well as corresponding results by 

ignoring the effect of sag. It is seen that due to the effect of 

the sag, the maximum damping ratio decreases by about 

30%, from 0.50% to 0.37%; and the optimal damper 

coefficient decreases by about 10%. When installed with the 

„optimal damper‟ according to the result of the taut cable, 

the achievable damping ratio can be obtained from Eq. (35) 

as 
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Comparing 
1
  and 

opt
  in Eq. (52), it is found that 

the overestimation of the optimal damper coefficient will 

not induce a large decrease in the maximum damping ratio. 

However, the overestimation of the maximum damping 

ratio is noticeable. The minimum damping ratio for the 

control of rain-wind-induced vibration is 0.44% according 

to Eq. (49). Therefore, installing an ideal passive damper at 

this location cannot offer enough damping of the first mode. 

But without considering the effect of the sag-extensibility, 

the damping ratio is very much overestimated, which would 

lead to a failure in suppressing the rain-wind-induced cable 

vibration. 

As for other modes, the maximum attainable damping 

ratio (0.50%) is larger than the requirement (0.44%). But, as 

discussed earlier, the damper stiffness and support stiffness 

may decrease the actual damping ratio. Assuming that 80% 

of the maximum damping ratio can be achieved, this will be 

hardly enough to meet the requirement. In this situation, the 

damper has to be installed at a higher position.  

The values of the maximum damping ratio and optimal 

damper coefficient are shown in Table 3 for the first three 

modes with the installation heights of 2 m, 2.25 m, and 2.5 

m. It is seen that the optimal damper coefficient decrease 

with the increase of the installation height and the increase 

of the modal number. For this longest cable, the damper 

installation height should be 2.5 m considering the 

unfavorable effects of damper stiffness and support stiffness 

to assure the maximum attainable damping ratio is larger 

than 0.44%, and equivalent damper coefficient range should 

cover but be not limited to 190 ~ 530 kNs/m. To achieve the 

optimal adjustable passive control, the MR damper should  

  
(a) traditional curve (b) universal curve 

Fig. 8 Traditional and universal curves for sagged cables ( 102  , 1st mode) 

Table 2 Optimal adjustable passive control of the longest cable on Stonecutters Bridge (xd/l = 1.0%, xd = 5.36 m, h = 

1.74 m) 

Mode 

Number  

n 

Taut cable  ( 02  ) Sagged cable ( 68.22  ) 

Frequency 

(1/s) 

copt 

(106Ns/m) 

ξopt 

(%) 

Frequency 

(1/s) 

copt 

(106Ns/m) 

ξopt 

(%) 

1 0.22 0.83 0.50 0.24 0.76 0.37 

2 0.44 0.41 0.50 0.44 0.41 0.50 

3 0.66 0.28 0.50 0.66 0.28 0.50 
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be properly tuned to offer the calculated optimal damper 

coefficients for each of the concerned vibration modes.  

The rain-wind-induced cable vibrations are usually 

dominated by one of the first few modes. However, the 

specific dominant mode in need to be controlled is a priori 

unknown for a given cable. As a result, the design of 

dampers is usually conducted by considering several 

possible modes and determining the damper coefficient to 

achieve desired damping ratio for all the concerned modes. 

As shown in Fig. 5, the first mode will have the lowest 

maximum attainable damping due to the effect of sag. So 

the damper size (damper coefficient) is determined equal to 

the optimal damper coefficient corresponding to the first 

mode. With such a damper size, the cable will achieve the 

maximum damping ratio in the first mode. However, the 

damping ratios achieved in the other three modes are not 

their maximum attainable damping ratios. When passive 

dampers are designed in this way, these damping ratios 

cannot be altered even when a dominant mode different 

from the first mode is identified later. When smart MR 

dampers are used, the system damping ratio for the 

dominant mode can be enhanced to its maximum damping 

ratio through adjusting the voltage/current input to alter the 

damper coefficient, even when the dampers have been 

installed on the bridge. This is a salient advantage of MR 

dampers over passive dampers for cable vibration control. 

 

 

6. Conclusions 
 

In this paper, a method for analyzing the damping  

performance of inclined sagged cables incorporating MR 

dampers in the passive control mode is developed. It takes 

into account the cable sag and inclination, damper 

coefficient, stiffness and mass, and stiffness of damper 

support. Based on the asymptotic solution, analytical 

formulae relating the system damping ratio with the damper 

coefficient are obtained, from which the maximum 

attainable damping ratio and the corresponding optimal 

damper coefficient can be easily calculated. Two sag- 

 

 

affecting coefficients have been derived to analytically 

evaluate the effect of cable sag on the system damping 

performance. By defining the generalized system damping 

ratio and the generalized damper coefficient, a „generalized 

universal curve‟ is configured which makes the damper 

design for sagged cables as easily as for taut cables. 

The analysis and parametric studies show that the nearly 

symmetric vibrations may be significantly affected by cable 

sag whereas the nearly antisymmetric vibrations are hardly 

affected by cable sag. The effect of cable sag is to decrease 

the system maximum attainable damping ratio and the 

optimal damper coefficient. However, the effect of cable 

sag on the system damping performance is independent of 

the effects of damper parameters (damper stiffness, damper 

mass, damping coefficient, and stiffness of damper 

support). Therefore, the observations and conclusions 

regarding the effects of the damper parameters obtained for 

taut cables are also valid for sagged cables. For the stay 

cables with the sag-extensibility parameter 2 <10 usually 

used on cable-stayed bridges, only the first mode can be 

affected by the sag for the damping performance. A case 

study has been carried out to demonstrate the influence of 

the sag for the damper design, as well as the necessity of 

adjustability of damper coefficients for achieving maximum 

damping ratio for each of the vibration modes. 

Even through, this study is initiated for MR dampers, 

but it is applicable for general external dampers for cable 

vibration mitigation, such as the electro-rheological 

dampers (Powell 1994), and inertial mass dampers (Lu et 

al. 2017, Wang et al. 2019), and so on. 
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