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1. Introduction 
 

Owing to extremely low damping, typically on the order 

of a fraction of one percent, cables in cable-stayed bridges 

are prone to vibrations with excessive amplitudes induced 

by support (deck and tower) motion and weather conditions 

(Yamaguchi and Fujino 1998). In particular, rain-wind- 

induced cable vibrations have been observed in a number of 

cable-stayed bridges around the world (Pacheco and Fujino 

1993, Matsumoto et al. 1995, Hikami and Shiraishi 1998, 

Poston 1998, Verwiebe 1998, Persoon and Noorlander 

1999, Tanaka 2003, Ni et al. 2007). The amplitude of cable 

vibrations during rain-wind excitation was reported to be up 

to 5 to 10 times the diameter of the cable. This kind of  

                                           

Corresponding author, Professor 

E-mail: zhanghongmei@zju.edu.cn 
a
 Professor

 

E-mail: ceyfduan@zju.edu.cn 
b 
Chair Professor

 

 E-mail: ceyqni@polyu.edu.hk 
c
 Chair Professor

 

E-mail: bfs@illinois.edu 
d 
Chair Professor

 

 E-mail: cejmko@polyu.edu.hk 
e 
Ph.D. Student

 

 E-mail: 11612056@zju.edu.cn
 

 

 

vibrations may cause reduced life of the cables and result in 

damage to the anchorages between the cables and deck, and 

therefore is a main concern in the design of cable-stayed 

bridges. 

Transversely attached viscous/viscoelastic dampers have 

been implemented in numerous cable-stayed bridges to 

mitigate this kind of cable vibrations (Watson and Stafford 

1988, Miyata 1991, Matsumoto et al. 1992, Takano et al. 

1997, Virlogeux 1998, Persoon and Noorlander 1999, Main 

and Jones 2001, Xu et al. 2007, Zhou et al. 2014, 2018, 

Duan et al. 2018). Existing investigations (Sulekh 1990, 

Pacheco et al. 1993, Krenk 2000, Main and Jones 2002, 

Wang et al. 2005) indicate that the maximum system 

damping which an optimal viscous damper can achieve is 

limited and approximately proportional to the distance, 

relative to the length of the cable, between the damper and 

the cable anchorage. The size (or damping coefficient) of 

the optimal viscous damper depends on the vibration mode 

and on the distance between the damper and the cable 

anchorage relative to the cable length. Although the 

mechanism of rain-wind excitation is still a conundrum, it is 

widely accepted that the rain-wind-induced cable vibration 

can be mitigated if the cable damping is - sufficiently high 

to make the Scruton number greater than 10 (Tanaka 2003, 

Irwin 1997, Yamada 1997). This is the so-called Irwin‟s 

criterion. Dampers are usually attached to stay cables 

unobtrusively near the anchorage at the deck and thus 

detract minimally from the aesthetics of the bridge. For 
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long-span cable-stayed bridges with main span reaching 

1000 m (e.g., the Stonecutters Bridge with a main span of 

1018 m and the longest stays of 536 m and the Sutong 

Bridge with a main span of 1088 m and the longest stays of 

577 m), the maximum attainable modal damping ratios 

when installing (optimal) viscous dampers at rational 

locations (e.g., 1% of the cable length) are likely to be 

insufficient for mitigating rain-wind-induced vibration 

according to the Irwin‟s criterion. Johnson et al. (1999) was 

the first to propose magneto-rheological (MR) dampers for 

semi-active cable vibration control. Subsequently, 

investigators have investigated MR dampers to realize more 

effective cable vibration mitigation (Ni et al. 2002, Johnson 

et al. 2003, 2007, Duan 2004, Duan, et al. 2005, Li et al. 

2007, Or et al. 2008, Wu and Cai 2010, Kim et al. 2010, 

Zhao and Zhu 2011, Guan et al. 2012, Huang et al. 2012, 

2015, Weber et al. 2014, Chen et al. 2016). Their studies 

show that semi-active MR dampers with the aid of an 

appropriate real-time closed-loop control strategy are 

capable of offering much better damping performance than 

optimal passive dampers for cable vibration control. 

Apart from being effective in closed-loop control, MR 

dampers are found superior to viscous dampers for cable 

vibration mitigation even when they are used as adjustable 

passive dampers in open-loop control mode (Chen et al. 

2004, Duan 2004, Duan et al. 2006, Weber et al. 2009, 

Zhou and Sun 2013, Wang et al. 2018, Zhou et al. 2018, 

Wang et al. 2019). Owing to different geometric 

configurations of cables on cable-stayed bridges, viscous 

dampers of the same size can only afford optimal damping 

to one or a few cables, while the vibration in other cables 

attached with the same dampers may still fail to be 

suppressed due to insufficient damping. However, MR 

dampers of the same size can provide optimal damping to 

each of the cables by tuning the damper voltage/current 

input to appropriate values. Rain-wind-induced cable 

vibration is typically dominated by a single low-frequency 

mode; however, it is currently unclear how to determine a 

priori the dominant mode for a given cable for which 

optimal damping should be sought. As a result, the design 

of passive (viscous) dampers is usually conducted by 

considering several possible modes and determining the 

damper size to achieve appropriate (but not necessarily 

optimal) damping performance for all the concerned modes, 

which is unalterable after the dampers are installed, even 

when the dominant mode is identified correctly. In contrast, 

although the MR dampers are designed in the same way as 

the passive dampers, the damping characteristic for the 

dominant mode can be adjusted; thus the damping 

performance for each individual cable can be optimized. 

These salient advantages have resulted in the applications of 

MR dampers to several cable-stayed bridges (Ko et al. 

2003, Ou 2003, Jung et al. 2004, Duan et al. 2006). When 

being targeted to enhance the cable damping to suppress 

rain-wind-induced vibration, implementing MR dampers in 

open-loop control mode is more practical and economical 

than in closed-loop control mode. 

This study attempts to present a general formula for 

adaptive open-loop cable vibration control using MR 

dampers, thus to facilitate the practical engineering 

applications. The essential issue is to determine the modal 

damping ratio of the cable-damper system taking into 

account the coupled effect of all involved damper and cable 

parameters. Previous studies provide valuable references for 

this study. For viscous dampers, Kovacs (1982) was first to 

semi-emperically identify the optimal damping coefficient 

of the damper. Pacheco et al. (1993) presented a universal 

estimation curve relating modal damping and damper 

coefficient through numerical study. Using a different 

approach, the complex mode analysis, Krenk (2000) 

obtained an analytical form of the universal design curve by 

Pacheco et al. (1993). The influence of cable sag was 

further studied (Krenk and Nielson, 2002). A general form 

was formulated by Krenk and Hogsberg (2005) to analyze 

the damping performances of linear viscous damper, 

fractional viscous damper, and nonlinear viscous damper; 

the influence of cable sag, support stiffness, and inertial 

mass of the damper was individually discussed. Main and 

Jones (2002a) also used the complex modes to analyze the 

effect of a linear viscous damper located arbitrarily along 

the cable, and then obtained the effect of a nonlinear 

viscous damper by an averaging procedure (Main and Jones 

2002b). Fujino et al. (2008) analytically studied the effect 

of sag and flexural rigidity of the cable, and support 

stiffness of a viscous damper or high damping rubber 

damper, a design formula was provided. Weber et al. (2010) 

investigated Coulomb friction damper using simulation of 

free-decay vibration, and energy spillover to higher modes 

was discussed. Huang and Jones (2011) studied the effect of 

linear elastic spring support on cable vibration mitigation 

using a viscous damper or friction threshold. Considering 

the characteristics of stay cables and the engineering 

application practice, the coupled effect of cable sag, and 

inertial mass, support stiffness, damping coefficient, and 

frictional force should be investigated. The previous studies 

have studied effect of individual or part of the mentioned 

parameters. While, extension of these previous studies to 

the current case is not obvious or straightforward, because 

the effect of these parameters is coupled. Different from the 

work done by other investigators on cable vibration control 

adopting passive dampers (Main and Jones 2002, Krenk 

2005), the present study is to derive a general formula 

taking into account the combined effect of the above-

mentioned parameters and provide an approach for the 

design of MR dampers to achieve optimal open-loop 

vibration control of taut cables. Such outcomes are of 

significance to engineering practice. 

 On the basis of previous studies, this paper presents a 

general design formula for analyzing the damping 

performance of taut cables incorporating MR dampers in 

open-loop control mode. A three-element model (a 

mechanical analog of a dash-port, a spring, and a frictional 

element in parallel), originally proposed by Powell (1994) 

and validated using experimental data of a typical 

commercial damper (Duan 2004), is adopted to characterize 

the MR damper in this study. Following the method by 

Krenk (2004, 2005), the paper first formulate the E.O.M. of 

cable-MR damper system. Both analytical and numerical 

solutions are obtained to evaluate the equivalent modal 

damping ratio of the cable-damper system in open-loop  
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control mode considering the effects of damper stiffness, 

damper mass, and stiffness of damper support. With the 

derived analytical formula, the influence of the damper 

stiffness, damper mass, and stiffness of damper support on 

vibration control effectiveness is studied in detail. 

 

 

2. Formulation 
 
2.1 Equation of motion  

 

As shown in Fig. 1, the cable-damper system consists of 

a taut cable and an MR damper connected to an elastic 

support with linear stiffness ks. The length of the cable is l, 

the static tension force 
0T , and the mass per unit length m. 

The MR damper is located at
dx from the left end of the 

cable. For convenience, a complementary length  

dd xlx  and a complementary coordinate xlx ' are 

introduced as illustrated in Fig. 1. 

Free oscillation of the cable assuming constant cable 

force is described by the partial differential equation (Krenk 

2005) 
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where ),( txy is the transverse displacement; )( dxx  is the 

Dirac delta function, 
d

x specifies the location of the damper; 

and Fd  is the damper force exerted to the cable. 

The boundary conditions specifying the fixed ends can be 

expressed as 

0),(,0),0(  tlyty  (2) 

A discontinuity in the inclination of the cable is observed at 

the damper location, which provides a transverse force 

matching the damper force. The equilibrium equation at the 

damper location can be obtained from Eq. (1) as 
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Although a variety of mathematical models have been 

proposed to characterize MR dampers (Spencer et al. 1997, 

Butz and von Stryk 2002, Jung et al. 2004), the three-element 

model proposed by Powell (1994) is adopted in the present 

study, because of its simplicity in expression and satisfactory 

accuracy in representing the characteristics of MR dampers 

(Duan 2004). The mechanical analogue of this model, as  

 

 

 

Fig. 1 Taut cable-damper system 

shown in Fig. 1, consists of three elements in parallel: a 

viscous dashpot with viscous coefficient ce, a spring with 

stiffness coefficient ke, and a frictional element with frictional 

coefficient FI in parallel. The parameters ke, ce, and FI depend 

on the vibration frequency, displacement amplitude, and 

voltage/current input to the MR damper. Denoting the 

movement of the damper piston (the upper part) and its cover 

(the lower part) as yd, and ys, the following expressions are 

obtained (Powell 1994) 

)()()( sdIsdesdedd yysignFyycyykyMF    (4a) 
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(4b) 

where M is the concentrated mass of the piston plus the 

connection components between the cable and the damper. By 

denoting the relative movement between the damper piston 

and its cover as , then 

sd
yy   (5) 

Assuming yd is a specified imposed displacement, we 

obtain 
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When the damper is connected to the cable, ),()( txyty dd  .
 

 

2.2 Complex modal analysis 
 

Eq. (1) can be solved via complex modal analysis. By 

assuming harmonic response, the free vibration can be 

expressed as 
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(7a-c) 

where )(~ xy is the complex mode shape; ω is the 

corresponding complex circular frequency; 
~ is the 

complex modulus of the relative displacement   between 

the damper piston (the upper part) and the cover (the lower 

part); 
dF

~ is the complex modulus of damper force Fd. By 

combining Eqs. (7(a)) and (1), the complex mode shape 

should satisfy the differential equation 
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where β is the complex wavenumber defined as 

0/Tm   (9) 

With regard to the homogeneous Eq. (8), for each of the 

two intervals between the damper and the cable ends, the 

complex mode shape can be easily solved as 
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by considering the boundary conditions given in Eq. (2) and 

the continuity of the shape function at the damper location x 

= xd, where dy~ is the displacement amplitude at the damper 

location to be determined. For brevity and without loss of 

generality, the amplitude dy~ is chosen to be purely real. 

Using the equivalent energy method (Weber and Boston 

2010, Huang and Jones 2011), an equivalent damping 

coefficient for frictional force can be obtained 


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where, cI is the equivalent viscous coefficient of frictional 

force;   is the velocity amplitude of damper motion;   

is the displacement amplitude of damper motion, W is the 

energy dissipated within one cycle by dampers. 

Substituting Eq. (7(b)) and (7(c)) into Eq. (6) and 

replacing )sgn(FI   by Ic  leads to 
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Substituting Eqs. (7), (10) into Eq. (3) yields the 

equation for the complex eigenfrequency, which is 

expressed as 
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Eq. (13) can be re-arranged as 
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Eqs. (13) and (14) provide solution for the wavenumber, 

from which the modal frequency and damping ratio can be 

obtained. In particular, Eq. (14) is suitable for solution 

either in asymptotic form or by numerical iteration, as 

discussed later. As a matter of fact, by substituting the 

relationship between 
dF

~ and 
d

y~ for a specific damper into 

Eq. (14), the wavenumber for any taut cable-damper system 

can be calculated. Hence, this equation provides a basis for 

evaluating the effectiveness of a damper and for designing a 

damper to achieve the desired control performance. 

Combining Eqs. (14) and (12), we obtain the solution for 

the wavenumber for the cable-damper system as 
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where 


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icickA   (16) 

The wavenumber is denoted as
n

 (n = 1, 2, 3…) and the 

corresponding eigenfrequencies as
n

 , whose relationship is 

defined in Eq. (9). The eigenfrequencies can be represented 

as 
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of which the real part represents the frequency attenuation 

due to damping and the imaginary part implies the modal 

damping ratio
n , while the modulus describes the 

magnitude of the angular frequency. The modal damping 

ratio can be obtained by 
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The relative error of the approximation in Eq. (18) is 

less than 0.5% for %10
n
 and less than 0.13% for %5n , 

so it is accurate enough for actual cable-damper systems 

whose damping ratios are usually less than 5% of critical. In 

the following, we explore numerical and asymptotic 

solutions for the wavenumber and eigenfrequency of the 

cable-damper system. 

 

2.3 Numerical solution 
 

Eq. (15) can be iteratively solved by substituting the 

current estimate j
n (j = 0, 1, 2, …) into the right-hand side 

of Eq. (15) and obtaining a new estimate 1j
n from the left-

hand side of Eq. (15). The iterative scheme is expressed as 
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where j is the iteration number, and 
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Deploying the above dimensionless parameters, Eq. (19) 

becomes 
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where 
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The initial guesses for iterative solution of the 

wavenumber and circular frequency can be taken as those 

of the undamped taut cable, which are expressed as 

... ,3 ,2 ,1 ,0  n
l

n
n


  (24) 

and 

... ,3 ,2 ,1 ,00  n
m

T

l

n
n


  (25) 

Once the values of 
n

  or 
n

 are obtained, the damping 

ratio of the cable-damper system can be determined by Eq. 

(18). 

 

2.4 Numerical solution 
 

Perturbation methods are applied to obtain an 

asymptotic solution. For the undamped taut cable, the 

wavenumbers and circular frequencies have been obtained 

in Eqs. (24) and (25). Supposing the wavenumber solution 

n  of the damped taut cable be a small perturbation from 
0

n , we have 

lllnlnll
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  0)tan()tan(  (26) 

Substituting Eqs. (24) to (26) into Eq. (15) leads to the 

following asymptotic formula 











































































l

x

l

x
CS

uu
in

l

x
BCS

u

u

l

x

u
inBS

nl d

d

s

M

s

Ic

d

s

k

d

s

M

Ic









1
1

)(1

1)(

1

2  

(27) 
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(28a-c) 

When the damper location is close to one cable end, i.e., 

1
l

xd , combining Eqs. (18) and (27) yields 

22

2

)1(
1

)(1

)(






































l

x
CS

uu
n

l

x
BCS

u

u

l

x
Sn

l

x
d

s

M

s

Ic
d

s

k

d
Ic

d

n







 

(29) 

where B, C and S are defined in Eq. (28). In the case of 

1
l

md , there exist the following approximations 

l

x
n

l

x
nx dd

dn   )sin()sin( 0

 
(30a,b) 

1)cos()cos( 0 
l

x
nx d

dn   

i.e., 

1S  , 1C   (31a,b) 

By using different approximations, we can obtain four 

asymptotic solutions 

( , )I

n n S C  , (1, )II

n n C   (32a,b) 

( ,1)III

n n S  , (1,1)IV

n n 

 
(32c,d) 

I

n  keeps the form of Eq. (29); II

n  is obtained by 

replacing S as 1 in Eq. (29); 
III

n  is obtained by replacing C 

as 1 in Eq. (29); and VI

n  is obtained by replacing both S 

and C as 1 in Eq. (29). The accuracy of the four asymptotic 

solutions will be studied in the next section. 

 

 

3. Validation of the solution 
 

The numerical solution will first be validated by 

comparing it with the results obtained by other researchers 

with respect to a special case of an ideal viscous damper 

with ideal support. Then the accuracy of the asymptotic 

solution is verified by comparing it with the numerical 

solution.  

 

3.1 Numerical solution 
 

Pacheco et al. (1993) proposed a „universal curve‟ for 

design of viscous dampers for passive cable vibration 

control by neglecting the damper mass, damper stiffness, 

and support stiffness )0
1

( 
kMI

s

u
u

 . The 

„universal curve‟ can be used graphically in choosing proper 

size and location of the damper for required amount of 

additional damping in a specific mode, and estimating the 

additional damping at different modes for a given damper 

coefficient and location. However, to accurately calculate 

this „universal curve‟, it is necessary to include several 

hundred terms of sinusoidal shape functions, identical to the 

mode shapes of the free cable. To expedite the calculation 

convergence, Johnson et al. (1999) proposed to use one 

static deflection function plus sine series as the shape 

functions. They showed that, when the static deflection 

function was used as the first shape function, only a few 

sine terms were required for the convergence of damping 

calculation. We first compare the present numerical solution 

with the results obtained by Pacheco et al. (1993) and 

Johnson et al. (1999) for the ideal viscous damper case. 

By judiciously grouping various parameters (modal 

damping ratio, mode number, damper coefficient, damper 

location, cable length, mass per unit length and fundamental 

frequency of the cable), the normalized damping ratio of the 

cable and the normalized damper coefficient are defined as 

(Pacheco et al. 1993) 

lx
d


 

 
(33) 
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Fig. 2 Comparison of numerical solution with „universal 

curve‟ (xd/l = 0.05, 1st mode) 

 

 

Fig. 3 Evolution of relative error with iteration number 

(xd/l = 0.02, 1.0 ) 

 

 

l

x
n

l

x
n

Tm

c

l

x
n

ml

c
d

c

dede 



1

0

1



 
(34) 

Fig. 2 illustrates the „universal curve‟ of the normalized 

damping ratio versus the normalized damper coefficient for 

the first mode when 05.0
l

x
d , obtained by the present 

numerical solution procedure, the Pacheco‟s method 

(Pacheco et al. 1993), and the Johnson‟s method (Johnson 

et al. 1999) when using a static deflection shape plus 50 

sine terms. Good agreement is observed between the results 

obtained by different methods. The curves for the 

normalized damping ratio versus the normalized damper 

coefficient for higher modes are also obtained and a similar 

observation is made (Duan 2004). To understand the 

iterative convergence of the proposed numerical solution 

procedure, Fig. 3 plots the evolution of the relative error 

with iteration number for the first five modes when 

=0.02dx l  and =0.1 . The relative error is defined as 

1000

1000









j

e  (35) 

 
Fig. 4 Comparison of asymptotic solutions with 

numerical solution (xd/l = 0.02, 2nd mode) 

 

 

is the damping ratio obtained after 1000 iterations. It is 

seen from Fig. 3 that the relative error approaches to around 

10
-3

 after the second iteration. Therefore, the proposed 

numerical procedure is computationally efficient in 

obtaining accurate solutions. 

 

3.2 Asymptotic solution 
 
Fig. 4 shows the normalized damping ratio versus the 

normalized damper coefficient for the second mode when 

02.0
l

xd , obtained by the asymptotic and numerical 

solution procedures.  

The relative errors for all the four asymptotic solutions 

are found less than 2.3%. In this case the simplest 

asymptotic solution IV can be used for damper design, i.e., 
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(36) 

where B is defined in Eq. (28). It should be noted that Eq. 

(36) is applicable only to the case of 1
l

nx
d . When 

l

nx
d  

is large, the expression of ),( CS must be utilized for 

accurate evaluation; Duan has determined the values of S 

and C for different ranges of 
l

nx
d by means of a nonlinear 

curve-fitting technique (Duan 2004). 

 

 

4. Analysis of damping performance 
 

With the asymptotic solution, we can explicitly analyze 

the effects of damper viscous and frictional coefficients, 

damper stiffness, damper mass and stiffness of damper 

support on the cable vibration control effectiveness. First, 

Eq. (29) is rewritten as 
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(38) 

From Eq. (37), it is seen that the system modal damping 

ratio is decreased with the increase of the damper stiffness 

uk, as G is independent of uk. It is known from Eq. (38) that 

when su , G CS . 

Similarly, Eq. (29) can be rewritten as 

22

2

1
)()1(1

)(





















































l

x
CS

u
Hn

l

x
CS

u

u
Hu

l

x
Sn

l

x
d

M

s

Ic
d

M

s

k
k

d
Ic

d

n






 

(39) 

where 
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It is seen from Eq. (39) that the damper mass M  

counteracts the effect of the damper stiffness uk, and 

therefore is beneficial for system damping enhancement. 

When 
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(41) 

the negative effect of the damper stiffness uk will be 

neutralized by the positive effect of the damper mass M

within the applicable range of Eq. (29) in case of 
s

u . 

If the cable vibration frequency is obviously altered by the 

concentrated damper mass, the damping enhancement 

should be numerically computed using Eq. (19) or (22). 

To investigate the effect of support stiffness us, Eq. (29) 

is rewritten again as 
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(43) 

It is clear that the maximum attainable damping ratio will 

decrease as 
su

1
increases. When 0

1


su
, it becomes the 

case of ideal support; when 
su

1
, corresponding to the 

removal of the damper, there will be no damping added to 

the cable. 

For the damper viscous and frictional coefficients ec  

and IF , or the dimensionless parameters c  and I , 

there is an optimal value to achieve the maximum attainable 

damping ratio. By letting 

0
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we obtain the optimal damper coefficient 
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and the maximum attainable damping ratio 
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(48) 

where G, defined in Eq. (38), is independent of uk; H, 

defined in Eq. (40), is independent of 
M ; and N, defined 

in Eq. (43), is independent of us. It is clear from Eq. (45) 

that the value of the optimal damper coefficient increases 

with increasing damper stiffness uk, decreases with 

increasing damper mass 
M , and also decreases with 

softening of the damper support (increasing 

su

1 ). It is seen 

from Eqs. (46) to (48) that the damper stiffness 
ku

decreases the maximum attainable damping ratio; the 

damper mass M  counteracts the effect of the damper 

stiffness; and softening of the damper support (increase of

su

1 ) also decreases the maximum attainable damping ratio. 

A more detailed analysis on individual and combined 

effects of the damper stiffness, damper mass, and stiffness 

of damper support is given below. 

 

4.1 Damper stiffness 
 
For brevity and without loss of generality, we consider 

the effect of the damper stiffness in the case that there is no 

concentrated mass but ideal support, i.e., su  and 

0
M

 . In this case, Eq. (37) becomes 
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(49) 

The modal damping ratio in the case of no damper 

stiffness is obtained as 
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By defining an equivalent reduced damper distance 
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Eq. (49) can be re-expressed as 
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(52) 

By comparing Eqs. (52) and (50), it is revealed that the 

effect of the damper stiffness on the system damping 

performance is equivalent to replacing the damper distance 

dx by a reduced distance 
*

dx , thus decreasing the attainable 

damping ratio of the cable- damper system. 

Next the maximum attainable damping ratio and the 

optimal damper coefficient are explored. When su  

and 0M , Eqs. (45) and (46) reduce to 
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From Eq. (53), we obtain 
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By generalizing Eq. (34) to 
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We obtain, from Eq. (55), the optimal damper 

coefficient as 
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It is seen from Eqs. (55) and (57) that the optimal 

damper coefficient is increased by a factor 
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(59) 

It is clear from Eq. (59) that, similar to the reduced 

damper distance 
*

dx , the maximum attainable damping 

ratio is reduced by a factor 

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Fig. 5 shows the effect of damper stiffness on the 

normalized damping ratio 
)/( lxd  versus the normalized 

damper coefficient   for the second mode when 

02.0/ lx
d

, 
su

1
 and 0M . Plotted in Fig. 5(a) are the 

results obtained by the numerical procedure for the damper 

stiffness uk = 0, 10, 20, …, 100, respectively, with an arrow 

indicating the trend of increasing damper stiffness. The line 

with dots links the peak points of the curves, indicating the 

change in the maximum damping ratio and the optimal 

damper coefficient. It evidences that the damper stiffness 

reduces the maximum attainable damping ratio and 

increases the optimal damper coefficient. Fig. 5(b) gives a 

comparison of the asymptotic and numerical solutions for uk 

= 0, 30, 60, and 100. The asymptotic solution shows a 

negligible difference from the numerical solution. 

Fig. 6 shows the effect of damper stiffness on the 

maximum damping ratio and the optimal damper 

coefficient. It is observed that the maximum damping ratio 

decreases quadratically with increasing ukxd/l, while the 

normalized optimal damper coefficient increases linearly 

with the increase of ukxd/l. The larger ukxd/l is, the smaller 

the maximum damping ratio, and the larger the optimal 

damper coefficient. When ukxd/l is equal to 0.2, i.e., uk = 10 

for xd/l = 0.02, the maximum attainable damping ratio is 

reduced by 20% of the original, from 0.51 to 0.43; and the 

normalized optimal damper coefficient is increased by 20%, 

from 0.10 to 0.12. When ukxd/l is equal to 0.6, the maximum 

attainable damping ratio is reduced by 40%, and the 

normalized optimal damper coefficient is increased by 60%. 

In this case, ignoring the effect of damper stiffness will lead 

to a significant discrepancy. Recalling the definition of uk in 

Eq. (21), it is known that the effect of damper stiffness will 

be enhanced for flexible cables with long length and small 

tension. As the abscissa in Fig. 6 is ukxd/l, the effect of 

damper stiffness tends to be more significant when xd/l is 

larger. The asymptotic results agree well with the numerical 

ones, validating the applicability of Eqs. (55) and (56) for 

evaluating the optimal damper coefficients and Eq. (59) for 

evaluating the maximum attainable damping ratio. 

 

4.2 Damper mass 
 

When the damper is ideally supported ( 0
1


su

), Eq. 

(39) becomes 
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If uk = 0, the above equation reduces to 
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By comparing Eqs. (61) and (49), )( M
 plays the same 

role with uk, or that the damper mass 
M  

acts opposite to 

the damper stiffness uk. It is seen from Eq. (60) that when 

Mku   the unfavorable effect of the damper stiffness uk can 

be neutralized by the damper mass
M . Similar to the 

equivalent reduced damper distance *

dx , an equivalent 

enlarged damper distance *

dx  can be defined as 
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which satisfies 

 

 

 
(a) Numerical solution 

 
(b) Comparison of numerical and asymptotic 

solutions 

Fig. 5 Effect of damper stiffness on „universal curve‟ (xd/l 

= 0.02, 2nd mode) 

 

 
(a) Maximum attainable damping ratio 

 
(b) Optimal damper coefficient 

Fig.  6  Effect of damper stiffness on damping 

performance (xd/l = 0.02, 2nd mode) 
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From Eq. (62), it is evident that the damper mass will 

play a more significant role for higher modes than lower 

modes. By comparing Eqs. (63) and (61), it is known that 

the effect of the damper mass is equivalent to an increase in 

the damper distance from xd to *

dx  . 

The optimal damper coefficient and the maximum 

attainable damping ratio in the case of 
su

1
 and uk = 0 can 

be obtained from Eqs. (45) and (47) as 
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(a) Numerical solution 

 
(b) Comparison of numerical and asymptotic solutions 

Fig. 7 Effect of damper mass on „universal curve‟ (xd/l = 

0.02, 2nd mode) 

 

 

By combining Eqs. (64) and (56), we obtain the 

normalized optimal damper coefficient as 
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From Eqs. (64) and (66), it is evident that the optimal 

damper coefficient is decreased due to the damper mass by 

a factor 





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x
CS d

M1 , while the maximum damping ratio is 

increased due to the damper mass by a factor 
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Fig. 7 shows the effect of damper mass on the 

normalized damping ratio )/( lxd versus the normalized 

damper coefficient for the second mode when 02.0
l

xd , 

0
1


su  

and uk = 0. Plotted in Fig. 7(a) are the results 

obtained by the numerical procedure for the damper mass 

M  = 0, 2, 4,…, 20, respectively, with an arrow indicating 

the trend of increasing damper mass. The line with dots 

links the peak points of the curves, indicating the change in 

the maximum damping ratio and the optimal damper  

 
(a) Maximum attainable damping ratio 

 
(b) Optimal damper coefficient 

Fig. 8 Effect of damper mass on damping performance 

(xd/l = 0.02, 2nd mode) 

 

 

coefficient. It evidences that the damper mass increases the 

maximum attainable damping ratio and decreases the 

optimal damper coefficient. Fig. 7(b) shows a comparison 

of the asymptotic and numerical solutions for 
M = 0, 10, 

and 20. The asymptotic solution agrees favorably with the 

numerical solution. 

Fig. 8 shows the effect of damper mass on the maximum 

damping ratio and the optimal damper coefficient. It is 

observed that the maximum damping ratio increases 

parabolically with increasing lxdM / , while the normalized 

optimal damper coefficient decreases nearly linearly with 

the increase of lxdM / . The larger lxdM /
 

is, the larger 

the maximum damping ratio, and the smaller the optimal 

damper coefficient. When lxdM / is equal to 0.2, i.e., 
M

for 02.0/ lxd
, the maximum damping ratio is increased 

by more than 20% of the original, from 0.51 to 0.64; and 

the normalized optimal damper coefficient is decreased by 

20%, from 0.10 to 0.08. When lxdM /  is equal to 0.4, i.e.,

M = 20 for 02.0/ lxd
, the maximum damping ratio is 

increased by 60%, and the normalized optimal damper 

coefficient is decreased by 40%. In this case, ignoring the 

effect of damper mass will lead to overestimation of the 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9


m

x
d
/l

M
a
x
im

u
m

 a
tt

a
in

a
b
le

 n
o
rm

a
liz

e
d
 d

a
m

p
in

g
 r

a
ti
o

Numerical

Asymptotic

530



 

Design formulas for vibration control of taut cables using passive MR dampers 

optimal damper coefficient. Recalling the definition of 
M

in Eq. (21) and noting that the abscissa shown in Fig. 8 is 

lxdM / , it is known that the effect of damper mass will 

become more significant for higher modes and when lxd / is 

larger. Good agreement between the asymptotic results and 

the numerical ones validates Eqs. (64) to (66). 

 

4.3 Stiffness of damper support 
 

As aforementioned, softening of the damper support 

(increase of 0
1


s
u

) will decrease the maximum attainable 

damping ratio. However, two issues still remain to be 

addressed: (i) for a given cable-damper system, how large 

us should be to avoid an obvious reduction in control 

effectiveness, and (ii) how much the damping of the cable- 

damper system will be affected by a given support stiffness.   

For brevity and without losing generality, the case of uk 

= 0 and 0M  is discussed here. In this case Eq. (42) can 

be written as 
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When 0
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
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, we have 
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By comparing Eqs. (67) and (68), the difference 

between the two equations is found to be only that CS is 

replaced by 
CS
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and the optimal damper coefficient in the case of uk = 0 and 
0M  can be obtained from Eqs. (45) and (48) as 
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and the normalized optimal damper coefficient is 
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Softening of the support stiffness (increase of ) not 

only decreases the optimal damper coefficient, but also 

decreases the maximum attainable damping ratio.  

Comparing Eqs. (67) and (68) and examining Eq. (69), 

in order not to obviously reduce the damping performance, 

us should satisfy 

  1.0
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x
u d

s

or 
l

x
u

d
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10
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(72) 

because  in most situations. Recalling the definition 

of us in Eq. (21), the criterion given in Eq. (72) can be 

expressed as 

1.00 
ds xk

T

 or d

s
x

T
k 010

  (73) 

Fig. 9 shows the effect of support stiffness on the 

normalized damping ratio )/( lxd  versus the normalized 

damper coefficient  for the second mode when 02.0
l

xd , 

0M  and uk = 0. Plotted in Fig. 9(a) are the results 

obtained by the numerical procedure for the support 

stiffness 

s
u

1 = 0, 0.001, 0.002, …, 0.012, respectively, with 

an arrow indicating the trend of increasing . The line 

with dots links the peak points of the curves, indicating the 

change in the maximum damping ratio and the optimal 

damper coefficient. Softening of the support stiffness 

decreases not only the optimal damper coefficient, but also 

the maximum damping ratio. Fig. 9(b) gives a comparison 

of the asymptotic and numerical solutions for = 0, 0.004, 

0.008, and 0.012. Good coincidence between them is 

observed. 

Fig. 10 shows the effect of support stiffness on the 

maximum damping ratio and the optimal damper coefficient. 

It is observed that both the maximum damping ratio and the 

normalized optimal damper coefficient decrease 

parabolically with the increase of )/(1 lxu
ds

. The larger 

)/(1 lxu
ds

 is, the smaller the maximum damping ratio and 

the optimal damper coefficient. When 1.0)/(1 lxu
ds

, i.e. 

0002.0
1


s
u

 for xd/l = 0.02, the maximum damping ratio is 

decreased by 10% of the original, from 0.51 to 0.46; and the 

normalized optimal damper coefficient is also decreased by 

10%, from 0.10 to 0.09. Therefore, to avoid an obvious 

deterioration of the system damping performance, the 

damper support should be designed to satisfy 

1.0)/(1 lxu ds . 

su

1

1CS
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1
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1
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(a) Numerical solution 

 
(b) Comparison of numerical and asymptotic 

solutions 

Fig. 9 Effect of damper stiffness on „universal curve‟ (xd/l 

= 0.02, 2nd mode) 

 

 

When )l/xu( ds1  is up to 0.6, i.e., 00120
1

.
us

  for 

xd/l = 0.02, both the maximum damping ratio and the 

normalized optimal damper coefficient are decreased by 

40%. In this case, ignoring the effect of support stiffness 

will lead to severe overestimation of both the maximum 

attainable damping ratio and the optimal damper 

coefficient. Good agreement between the asymptotic and 

numerical solutions validates Eqs. (69) to (71). 

 

4.4 Combined effect 
 
The effects of damper stiffness, damper mass, and 

support stiffness should be jointly investigated when 

Mk ,u  , and su are not zero. Eq. (37) can be expressed as 
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In the above, s,M,kU  is a factor accounting for the 

coupled effect of the damper stiffness ku  , damper mass 

M , and support stiffness su  ; M,kU  is a factor 

accounting for the coupled effect of ku and M ; and 

s,MV  is a factor accounting for the coupled effect of M  

and su . Eq. (74) is a general formula for designing MR 

dampers to achieve optimal open-loop vibration control of 

taut cables. 

The maximum attainable damping ratio and the optimal 

damper coefficient can be easily obtained from Eq. (74) as 
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(a) Maximum attainable damping ratio 

 
(b) Optimal damper coefficient 

Fig. 10 Effect of damper stiffness on damping 

performance (xd/l = 0.02, 2nd mode) 
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From Eqs. (78) and (79), the affecting factors 
sMkU ,,
 

and 
MkU ,

 tend to decrease the maximum damping ratio by 

multiplying 
)UU( M,ks,M,k 1

1
 and to increase the 

optimal damper coefficient by multiplying 

)1( ,,, MksMk UU  , while the affecting factor 
sMV ,
 tends 

to decrease both the maximum damping ratio and the 

optimal damper coefficient by multiplying 

sMV ,

1 . By 

defining the following correction coefficients 
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Eqs. (78) and (79) can be simplified as 
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Recalling the definition of the normalized damper 

coefficient in Eq. (56), we have 
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The expressions of opt,n , optIc )(   , and opt  

when 
su

1
, ku , and M  are all zero are given as 
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After so doing, the combined effect of damper stiffness, 

damper mass, and support stiffness can be readily 

investigated by observing the two correction coefficients 

  and  . The variation of   and   with the 

normalized damper stiffness (
l

x
u d

k ), the normalized 

damper mass (
l

x
d

M ), and the normalized support stiffness 

)/(1
l

x
u d

s  is shown in Fig. 11. It is seen that   increases 

with (
l

x
d

M ) but decreases with (
l

x
u d

k ) and )/(1
l

x
u d

s . 

When 0
l

x
u d

k , 0)/(1 
l

x
u d

s , and 4.0)( 
l

x
d

M ,   

equals 1.67 which corresponds to the maximum normalized 

damping ratio 84.0
2

1
 



l

xd

opt
. Hence, to make the 

maximum attainable damping ratio higher, we should 

eliminate the damper stiffness, make the support stiff 

enough, and utilize the benefit of the damper mass. The 

correction coefficient   increases with (
l

x
u d

k ), but 

decreases with )/(1
l

x
u d

s  and (
l

x
d

M ). As an example, 

when 0)/(1 
l

x
u d

s , 0)( 
l

x
d

M , and 0.1)( 
l

x
u d

k ,   

equals 2.0 which corresponds to the optimal normalized 

damper coefficient 2.0
opt

 (twice of that without damper 

stiffness). 

 

 

5. Conclusions 
 

In this paper, an analysis method for open-loop vibration 

control of taut cables using MR dampers has been 

developed. 

 

 
(a)   

 
(b)   

Fig. 11 Correction coefficients versus damper stiffness, 

damper mass, and support stiffness 
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Both numerical and asymptotic solutions are obtained to 

evaluate the system maximum damping ratio and the 

optimal damper coefficient. The individual effects of 

damper stiffness, damper mass and stiffness of damper 

support on the cable damping performance are first 

investigated in detail. Then the combined effect of damper 

stiffness, damper mass and stiffness of the damper support 

is analyzed by defining two correction coefficients that can 

quantitatively predict the influence of the above parameters 

on the maximum damping ratio and the optimal damper 

coefficient. The derived general formula facilitates the 

design of MR dampers to achieve optimal open-loop 

vibration control of taut cables. 

It turns out that the damper stiffness decreases the 

maximum attainable damping ratio and increases the 

optimal damper coefficient; the damper mass counteracts 

the effect of the damper stiffness and may increase the 

maximum attainable damping ratio when the damper mass 

is appropriate; and softening of the support stiffness 

decreases both the maximum attainable damping ratio and 

the optimal damper coefficient. As a result, one should 

endeavor to eliminate damper stiffness, make damper 

support stiff enough, and utilize the benefit of damper mass 

in designing MR dampers for cable vibration control. To 

attain the maximum damping ratio for all cables on a cable-

stayed bridge, voltage/current input to the MR dampers 

should be adjusted with the optimal damper coefficient 

specific for each cable. 

Even through, this study is initiated for MR dampers, 

but it is applicable for general external dampers for cable 

vibration mitigation, such as the electro-rheological 

dampers (Powell 1994), and inertial mass dampers (Lu et 

al. 2017, Wang et al. 2019), and so on. Extension of this 

study to sagged cables is presented in the paper (Duan et al. 

2019). 

 

 

Acknowledgments 
 

This research work was supported by the National 

Natural Science Foundation of China (U1709216, 

51578419, 51522811, 51478429, and 90915008)，the 

National Key R&D Program of China (2017YFC0806100), 

the grant from the Ministry of Science and Technology of 

China (Grant No. 2018YFE0190100) the grant from the 

Research Grants Council of the Hong Kong Special 

Administrative Region, China (Project No. PolyU 

5252/07E), and the grant from The Hong Kong Polytechnic 

University through the Development of Niche Areas 

Programme (Project No. 1-BB95). 

 

 

References 
 
Butz, T. and von Stryk, O. (2002), “Modelling and simulation of 

electro- and magnetorheological fluid dampers”, ZAMM-

Zeitschrift für Angewandte Mathematik und Mechanik, 82(1), 3-

20. https://doi.org/10.1002/1521-4001(200201)82:1<3::AID-

ZAMM3>3.0.CO;2-O. 

Chen, Z.H., Lam, K.H. and Ni, Y.Q. (2016), “Enhanced damping 

for bridge cables using a self-sensing MR damper”, Smart 

Mater. Struct., 25(8), 085019.  

Chen, Z.Q., Wang, X.Y., Ko, J.M., Ni, Y.Q., Spencer, B.F., Jr., 

Yang, G. and Hu, J.H. (2004), “MR damping system for 

mitigating wind-rain induced vibration on Dongting Lake 

Cable-Stayed Bridge”, Wind Struct., 7(5), 293-304. 

http://dx.doi.org/10.12989/was.2004.7.5.293. 

Duan, Y.F. (2004), Vibration Control of Stay Cables Using Semi-

active Magneto-rheological (MR) Dampers, PhD thesis, Hong 

Kong: Department of Civil and Structural Engineering, The 

Hong Kong Polytechnic University, Hong Kong. 

Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2006), “Cable vibration control 

using Magneto-rheological (MR) dampers”, J. Intel. Mat. Syst. 

Str., 17(4), 321-325. 

https://doi.org/10.1142/9789812702197_0121. 

Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2005), “State-derivative 

feedback control of cable vibration using semiactive 

magnetorheological dampers”, Comput.-Aided Civil Infrastruct. 

Eng., 20, 431-449. https://doi.org/10.1111/j.1467-

8667.2005.00396.x. 

Duan, Y.F., Ni, Y.Q., Zhang, H.M., Spencer, B.F., Jr., Ko, J.M. and 

Dong S.H. (2019), “Design formulas for vibration control of 

sagged cables using passive MR dampers”, Smart Struct. Syst., 

Accepted.  

Duan, Y.F., Tao, J.J., Zhang, H.M., Wang, S.M. and Yun C.B. 

(2018), “Real-time hybrid simulation based on vector form 

intrinsic finite element and field programmable gate array”, 

Struct. Control Health Monit., 26(1), e2277; 

https://doi.org/10.1002/stc.2277.  

Guan, X.C., Huang Y., Li, H. and Ou, J.P. (2012), “Adaptive MR 

damper cable control system based on piezoelectric power 

harvesting”, Smart Struct. Syst., 10(1), 33-46. 

https://doi.org/10.12989/sss.2012.10.1.033. 

Hikami, Y. and Shiraishi, N. (1988), “Rain−wind induced 

vibrations of cables in cable stayed bridges”, J. Wind Eng. Ind. 

Aerod., 29, 409-418. 

Huang, H.W., Liu, J.Y. and Sun, L.M. (2015), “Full-scale 

experimental verification on the vibration control of stay cable 

using optimally tuned MR damper”, Smart Struct. Syst., 16(6), 

1003-1021. https://doi.org/10.12989/sss.2015.16.6.1003. 

Huang, H.W., Sun, L.M and Jiang X.L. (2012), “Vibration 

mitigation of stay cable using optimally tuned MR damper”, 

Smart Struct. Syst., 9(1), 35-53. 

http://dx.doi.org/10.12989/sss.2012.9.1.035. 

Huang, Z.H. and Jones N.P. (2011), “Damping of taut-cable 

systems: effects of linear elastic spring support”, J. Eng. Mech., 

137(7), 512-518. https://doi.org/10.1061/(ASCE)EM.1943-

7889.0000252. 

Irwin, P.A. (1997), “Wind vibrations of cables on cable-stayed 

bridges”, (Eds., Kempner, L. Jr., and Brown, C.B.), editors. 

Building to Last Structures Congress: Proceedings of the 15th 

Structures Congress, New York: American Society of Civil 

Engineers, 383-387. 

Johnson, E.A., Baker, G.A., Spencer Jr. B.F. and Fujino, Y. (2007), 

“Semiactive damping of stay cables”, J. Eng. Mech. - ASCE, 

133, 1-11. https://doi.org/10.1061/(ASCE)0733-

9399(2007)133:1(1). 

Johnson, E.A., Christenson, R.E. and Spencer, Jr. B.F. (2003), 

“Semiactive damping of cables with sag”, Comput. - Aided 

Civil Infrastruct. Eng., 18(2), 132-146. 

https://doi.org/10.1111/1467-8667.00305. 

Johnson, E.A., Spencer, Jr. B.F. and Fujino, Y. (1999), “Semiactive 

damping of stay cables: a preliminary study”, Proceedings of 

the 17th International Modal Analysis Conference, Society for 

Experimental Mechanics, 417-423. 

Jung, H.J., Spencer, Jr. B.F., Ni, Y.Q. and Lee, I.W. (2004), “State-

of-the-art of semiactive control systems using MR fluid 

dampers in civil engineering applications”, Struct. Eng. Mech., 

534



 

Design formulas for vibration control of taut cables using passive MR dampers 

17, 493-526. http://dx.doi.org/10.12989/sem.2004.17.3_4.493. 

Kim, I.H., Jung, H.J. and Koo J.H. (2010), “Experimental 

evaluation of a self-powered smart damping system in reducing 

vibrations of a full-scale stay cable”, Smart Mater. Struct., 

19(11), 11527.  

Ko, J.M., Ni, Y.Q., Chen, Z.Q. and Spencer, Jr. B.F. (2003), 

“Implementation of MR dampers to Dongting Lake Bridge for 

cable vibration mitigation”, In: Casciati F, editor. Proceedings 

of the 3rd World Conference on Structural Control, Chichester, 

England: John Wiley & Sons, 777-786. 

Kovacs, I. (1982), “Zur Frage der seilschwingungen und der 

seildampfung”, Die Bautechnik, 10, 325-332, (in German). 

Krenk, S. (2004), “Complex modes and frequencies in damped 

structural vibrations”, J. Sound Vib., 270(4-5), 981-996. 

https://doi.org/10.1016/S0022-460X(03)00768-5. 

Krenk, S. (2000), “Vibrations of a taut cable with an external 

damper”, J. Appl. Mech. – ASME, 67(4), 772-776. 

doi:10.1115/1.1322037. 

Krenk, S. and Høgsberg, J.R. (2005), “Damping of cables by a 

transverse force”, J. Eng. Mech. – ASCE, 131, 340-348. 

https://doi.org/10.1061/(ASCE)0733-9399(2005)131:4(340). 

Krenk, S. and Nielsen, S.R.K. (2002), “Vibrations of a shallow 

cable with a viscous damper”, Proceedings of the Royal Society 

of London, Series A, 458, 339-357. 

https://doi.org/10.1098/rspa.2001.0879 

Li, H., Liu, M., Li, J.H., Guan, X.C. and Ou, J.P. (2007), 

“Vibration control of stay cables of the Shandong Binzhou 

Yellow River Highway Bridge using Magnetorheological fluid 

dampers”, J. Bridge Eng., 12(4), 401-409. 

https://doi.org/10.1061/(ASCE)1084-0702(2007)12:4(401). 

Lu, L. and Duan, Y.F., Spencer, B.F. Jr., Lu, X.L. and Zhou, Y. 

(2017), “Inertial mass damper for mitigating cable vibration”, 

Structural Control Health Monit., 24, e1986, doi: 

10.1002/stc.1986. 

Main, J.A. and Jones, N.P. (2001), “Evaluation of viscous dampers 

for stay-cable vibration mitigation”, J. Bridge Eng. - ASCE, 

6(6), 385-397. https://doi.org/10.1061/(ASCE)1084-

0702(2001)6:6(385). 

Main, J.A. and Jones, N.P. (2002a), “Free vibrations of taut cable 

with attached damper. I: linear viscous damper”, J. Eng. Mech. 

- ASCE, 128(10), 1062-1071. 

https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1062). 

Main, J.A. and Jones, N.P. (2002b), “Free vibrations of taut cable 

with attached damper. II: Nonlinear damper”, J. Eng. Mech. - 

ASCE, 128(10), 1072-1081. 

https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1072). 

Matsumoto, M., Saitoh, T., Kitazawa, M., Shirato, H. and 

Nishizaki, T. (1995), “Response characteristics of rain-wind 

induced vibration of stay-cables of cable- stayed bridges”, J. 

Wind Eng. Ind. Aerod., 57(2-3), 323-333. 

https://doi.org/10.1016/0167-6105(95)00010-O. 

Matsumoto, M., Shiraishi, N. and Shirato, H. (1992), “Rain-wind 

induced vibration of cables of cable-stayed bridges”, J. Wind 

Eng. Ind. Aerod., 41-44, 2011−22. https://doi.org/10.1016/0167-

6105(92)90628-N. 

Miyata, T. (1991), “Design considerations for wind effects on 

long-span cable-stayed bridges”, (Eds., Ito, M., Fujino, Y., 

Miyata, T., Narita, N.), Cable-Stayed Bridges: Recent 

Developments and their Future, Amsterdam: Elsevier, 235-256. 

Ni, Y.Q., Chen, Y., Ko, J.M. and Cao, D.Q. (2002), “Neuro-control 

of cable vibration using semi-active magneto-rheological 

dampers”, Eng. Struct., 24(3), 295-307. 

https://doi.org/10.1016/S0141-0296(01)00096-7. 

Ni, Y.Q., Wang, X.Y., Chen, Z.Q. and Ko, J.M. (2007), “Field 

observations of rain-wind-induced cable vibration in cable-

stayed Dongting Lake Bridge”, J. Wind Eng. Ind. Aerod., 95(5), 

303-328. https://doi.org/10.1016/j.jweia.2006.07.001. 

Or, S.W., Duan, Y.F., Ni, Y.Q., Chen, Z.H. and Lam, K.H. (2008), 

“Development of Magnetorheological dampers with embedded 

piezoelectric force sensors for structural vibration control”, J.  

Intel. Mat. Syst. Str., 19 (11), 1327-1338. 

https://doi.org/10.1177/1045389X07085673. 

Ou, J.P. (2003), “Some recent advances of intelligent health 

monitoring systems for civil infrastructures in mainland China”, 

(Eds., Wu, Z.S. and Abe, M.), Structural Health Monitoring and 

Intelligent Infrastructure, Netherlands: Balkema, 131-144. 

Pacheco, B.M. and Fujino, Y. (1993), “Keeping cables calm”, 

ASCE Civil Eng., 63(10), 56-58. 

Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), “Estimation 

curve for modal damping in stay cables with viscous damper”, J. 

Struct. Eng.- ASCE, 119, 1961-1979. 

Persoon, A.J. and Noorlander, K. (1999), “Full-scale 

measurements on the Erasmus Bridge after rain/wind induced 

cable vibrations”, (Eds., Larsen, A., Larose, G.L. and Livesey, 

F.M.), Wind Engineering into the 21st Century. Rotterdam: 

Balkema, 1019-1926. 

Poston, R.W. (1998), “Cable-stay conundrum”, ASCE Civil Eng., 

68(8), 58-61.  

Powell, J.A. (1994), “Modeling the oscillatory response of an 

electrorheological fluid”, Smart Mater. Struct., 3(4), 416-438. 

Spencer, Jr. B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), 

“Phenomenological model for magnetorheological dampers”, J. 

Eng. Mech. - ASCE, 123(3), 230-238. 

https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230). 

Sulekh, A. (1990), Non-Dimensionalized Curves for Modal 

Damping in Stay Cables with Viscous Dampers, Master thesis, 

Japan: Department of Civil Engineering, University of Tokyo. 

Tanaka, H. (2003), “Aerodynamics of cables”, Proceedings of the 

5th International Symposium on Cable Dynamics. Belgium: 

AIM, 11-25. 

Takano, H., Ogasawara, M., Ito, N., Shimosato, T., Takeda, K. and 

Murakami, T. (1997), “Vibrational damper for cables of the 

Tsurumi Tsubasa Bridge”, J. Wind Eng. Ind. Aerod., 69-71, 807-

818. https://doi.org/10.1016/S0167-6105(97)00207-9. 

Verwiebe, C. (1998), “Rain−wind-induced vibrations of cables and 

bars”, (Eds., Larsen, A. and Esdahl, S.), Bridge Aerodynamics: 

Proceedings of the International Symposium on Advances in 

Bridge Aerodynamics. Rotterdam: Balkema, 255-263. 

Virlogeux, M. (1998), “Cable vibrations in cable-stayed bridges”, 

(Eds., Larsen, A. and Esdahl, S.), Bridge aerodynamics: 

Proceedings of the International Symposium on Advances in 

Bridge Aerodynamics. Rotterdam: Balkema, 213-233. 

Wang, Z.H., Chen, Z.H., Gao, H. and Wang, H. (2018), 

“Development of a self-powered magnetorheological damper 

system for cable vibration control”, Appl. Sci. -Basel, 8(1), 118. 

https://doi.org/10.3390/app8010118. 

Wang, Z.H, Xu, Y.W., Gao, H., Chen, Z.Q., Xu, K. and Zhao S.B. 

(2019), “Vibration control of a stay cable with a rotary 

electromagnetic inertial mass damper”, Smart Struct. Syst., 

Accepted.  

Wang, W., Hua, X. and Wang X. (2019), “Mechanical behavior of 

magnetorheological dampers after long-term operation in a 

cable vibration control system”, Struct. Control Health Monit., 

26(1), e2280. https://doi.org/10.1002/stc.2280. 

Wang, X.Y., Ni, Y.Q., Ko, J.M. and Chen, Z.Q. (2005), “Optimal 

design of viscous dampers for multi-mode vibration control of 

bridge cables”, Eng. Struct., 27(5), 792-800. 

https://doi.org/10.1016/j.engstruct.2004.12.013. 

Watson, S.C. and Stafford, D. (1988), “Cables in trouble”, ASCE 

Civil Eng., 58(4), 138-141. 

Weber, F., Bhowmik, S. and Hogsberg, J. (2014), “Extended 

neural network-based scheme for real-time force tracking with 

magnetorheological dampers”, Struct. Control Health Monit., 

21(2), 225-247. https://doi.org/10.1002/stc.1569. 

535

http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=6C9pTpSyoIc7vSEBAov&author_name=Jung,%20Hyung-Jo&dais_id=127725&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=6C9pTpSyoIc7vSEBAov&author_name=Hua,%20Xugang&dais_id=786032&excludeEventConfig=ExcludeIfFromFullRecPage


 

Yuanfeng Duan, Yi-Qing Ni, Hongmei Zhang, Billie F. Jr. Spencer, Jan-Ming Ko and Yi Fang 

Weber, F. and Boston, C. (2010), “Energy based optimization of 

viscous-friction dampers on cables”, Smart Mater. Struct., 19(4), 

045025. 

Weber, F., Distl, H. and Feltrin, G. (2009), “Cycle energy control 

of magnetorheological dampers on cables”, Smart Mater. 

Struct., 18(1), 015005.  

Wu, W.J. and Cai, C.S. (2010), “Cable vibration control with a 

semiactive MR damper-numerical simulation and experimental 

verification”, Struct. Eng. Mech., 34(5), 611-623. 

https://doi.org/10.12989/sem.2010.34.5.611. 

Xu, Y.L. and Zhou, H.J. (2007), “Damping cable vibration for a 

cable-stayed bridge using adjustable fluid dampers”, J. Sound 

Vib., 306(1-2), 349-360. 

https://doi.org/10.1016/j.jsv.2007.05.032 

Yamada, H. (1997), “Control of wind-induced cable vibrations 

from a viewpoint of the wind resistant design of cable-stayed 

bridges”, Proceedings of International Seminar on Cable 

Dynamics. Tokyo: Japan Association for Wind Engineering, 

129-138. 

Yamaguchi, H. and Fujino, Y. (1998), “Stayed cable dynamics and 

its vibration control. In: Larsen A., Esdahl S, editors”, Bridge 

aerodynamics: Proceedings of the International Symposium on 

Advances in Bridge Aerodynamics. Rotterdam: Balkema, 235-

253. 

Zhao, M. and Zhu, W.Q. (2011), “Stochastic optimal semi-active 

control of stay cables by using magneto-rheological damper”, J. 

Vib. Control, 17(13), 1921-1929. 

https://doi.org/10.1177/1077546310371263. 

Zhou, H.J., Huang X.J., Xiang N., He J.W., Sun, L.M. and Xing, F. 

(2018), “Free vibration of a taut cable with a damper and a 

concentrated mass”, Struct. Control Health Monit., 25(11), 1-21. 

https://doi.org/10.1002/stc.2251. 

Zhou, H.J., Xiang, N. and Huang, X. (2018), “Full-scale test of 

dampers for stay cable vibration mitigation and improvement 

measures”, Struct. Monit. Maint., 5(4), 489-506. 

https://doi.org/10.12989/smm.2018.5.4.489. 

Zhou, H.J. and Sun, L.M. (2013), “Damping of stay cable with 

passive-on magnetorheological dampers: a full-scale test”, Int. J. 

Civil Eng., 11(3), 154-159.  

Zhou, H.J., Sun, L.M. and Xing, F. (2014), “Damping of full-scale 

stay cable with viscous damper: experiment and analysis”, Adv.  

Struct. Eng., 17(2), 265-274. https://doi.org/10.1260/1369-

4332.17.2.265. 

 

 

 

 

 

536

http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=6C9pTpSyoIc7vSEBAov&author_name=Cai,%20C.%20S.&dais_id=86875&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=6C9pTpSyoIc7vSEBAov&author_name=Xiang,%20Ning&dais_id=3842420&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=6C9pTpSyoIc7vSEBAov&author_name=Huang,%20Xigui&dais_id=28112538&excludeEventConfig=ExcludeIfFromFullRecPage



