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1. Introduction 
 

Cables and hangers are vulnerable to wind or wind/rain 

excitations (Hikami and Shiraishi, 1988; Gjelstrup, et al., 

2007; Xu, et al., 2008) as they are slender structures with 

low damping and frequency characteristics . Large 

amplitude cable vibration was occasionally reported and 

sometimes adjacent cables would collide with each other. 

Recognizing the severe danger posed by hanger/cable 

vibrations, researchers have investigated three different 

ways to solve this problem: aerodynamic counter-measures 

(Gu and Du 2005, Zhan  et al .  2008), installing 

passive/semi-active dampers (Fujino et al. 1993, Krenk 

2000, Main and Jones 2001, Sun et al. 2004, Chen et al.  
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2004, Duan et al. 2005, 2006 2019a, b, Wang et al. 2005, 

Christenson et al. 2006, Zhou, et al., 2006 and 2014b; Or, et 

al., 2008; Zhou and Sun 2008, 2013, Lu et al. 2017) and 

connecting adjacent cables by cross-ties (Yamaguchi and 

Nagahawatta 1995, Caracoglia and Jones 2005).  

The above methods have been applied in engineering 

practices (Chen et al. 2004), and full-scale test had tested 

the damping effects of dampers (Zhou et al. 2014b, 2018c). 

Recent investigations were focused on further improvement 

of damping efficiency (Xiang et al. 2016, Zhou and Li 

2016, Zhou et al. 2018a, c). Another topic was connecting 

cables with cross-ties (Sun et al. 2007, Ahmad et al. 2016, 

Zhou et al. 2018b), especially hybrid application of both 

cross-ties and dampers (Bosch and Park, 2005; Sun, et al., 

2005; Zhou, et al., 2014a, 2015). Crossties and dampers 

were hybrid applied in some bridges as both frequency and 

modal damping could be added. Caracoglia and Jones 

(2007) reported the cable-network-damper system applied 

in the Fred Hartman Bridges; Caracoglia and Zuo (2009) 

further studied this system for possible mitigation 

applications. However, the dynamics and the system 

parameter optimization of the hybrid mitigation system still 

needs further investigation; and little experimental studies 

on hybrid mitigation of modal cables were available for the 

best of author’s collection.  

Recently, Zhou et al. (2015) proposed a hybrid 

mitigation system of two cables with a cross-ties and near 

support dampers. In this following paper, the analytical  
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Abstract.  Vibration mitigation of cables or hangers is one of the crucial problems for cable supported bridges. Previous 
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a connection cross-tie and an attached damper. The characteristic equation of system was derived based on transfer matrix 
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Keywords:   cable; cross-link; damper; damping; frequency 

 

mailto:SZPYR@outlook.com
mailto:lmsun@tongji.edu.cn
mailto:xingf@szu.edu.cn


 

H.J. Zhou, X. Yang, Y.R. Peng, R. Zhou, L.M. Sun and F. Xing 

 

 

model of two identical cables (twin-cables) connected with 

a cross-link and an attached damper was developed. This 

kind of system was widely applied in hangers of suspension 

or arch bridges; and it is a special kind of the hybrid 

mitigation system. The frequency equation of the system 

was derived. An experimental test was further carried out 

with two small scale cables with a connecting cross-link 

and calibrated dampers; comparison of test damping and 

frequency of the system to analytical solutions was made. 

 

 

2. Characteristic equation 
 

Fig.1 shows two identical cables (twin-cables) are 

interconnected by a vertical cross-link and a damper, 

without loss of generality, the damper is located near to the 

left anchorage of the first (upper) cable. The influence of 

cables’ weight on tension force is neglected as it is small 

compared to cable tension force. The geometric and 

physical characteristic of the cable are indicated as: length 

L , tension force T , mass per unit length m . The 

damping coefficient of the damper is c . The axial stiffness 

of the cross-link is k . The length of the Pj 
segment of the 

thj  cable is , jj pl  (
1 1,2,3p  and 2 1,2p  ) and its axial 

coordinate is 
jp,jx . 

The linearized motion equation of each cable segment is 

(Irvine 1981) 
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where  , , ,
j jj p j py x t is the transverse displacement of each 

cable segment, which can be expressed as 

   , , , ,,
j jj p j p j p j py x t Y x e  (2) 

where  , ,j jj p j pY x  is the complex mode shape function. A  

non-dimensional time 01t   is introduced with  

 

01 L T m   being the real fundamental circular 

frequency of the cable, and   is a non-dimensional 

eigenvalue, which can be expressed in terms of real and 

imaginary parts as 

 2
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       (3) 

in which 1i   ,  is the non-dimensional frequency 

of the system,  is the modulus of the system eigenvalue, 

and 2 2      is the damping ratio. 

Substituting Eq. (2) into Eq. (1) yields 
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Considering the continuity of displacement,  , ,j p j pY x  can 

be expressed as 
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where , jj pA  and , jj pB  are complex parameters. 

Displacement boundary conditions at cable ends are 

   1,1 1,1 1,3 1,30, 0, 0y x t y x t     (6a) 

   2,1 2,1 2,2 2,20, 0, 0y x t y x t   

 

(6b) 

Displacement continuity equations at the damper and spring 

locations are 

   1,1 1,1 1,1 1,2 1,2, 0,y x l t y x t    (7a) 





 

Fig. 1 Two identical cables with a connection cross-link and a viscous damper 
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   1,2 1,2 1,2 1,3 1,3 1,3, ,y x l t y x l t  

 

(7b) 

   2,1 2,1 2,1 2,2 2,2 2,2, ,y x l t y x l t  
 

(7c) 

Force equilibrium equations at dampers locations and the 

spring location are 
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(8c) 

Substituting Eqs. (2) and (5) into Eqs. (6)-(8), then Eqs. (7) 

and (8) can be re-written in the matrix form as 

SΦ = 0  (9) 

Where 

1,1 1,2 1,2 1,3 2,1 2,2 2,2 2,3

T

A A B A A A B A   Φ , the 

sub-items of Φ  and S are listed in the Appendix. 

To get non-trivial solution ( Φ 0 ), the determinant of 

the matrix S  must be equal to zero. After simplifying 

trigonometric functions, regarding that 2,1 1,1 1,2l l l  and 

2,2 1,3l l , the equation  det 0S  can be written as 
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(10) 

in which  kL T   is the non-dimensional spring  

stiffness,  c Tm  is the non-dimensional damper  

coefficient, , , 
j jj p j pl L  and    . 

Eq. (10) is the characteristic equation of the two 

identical cables with a connection cross-link and a viscous 

damper. It contains two parts. The first part contains two 

sub-equations, which are the characteristic equations of a 

taut cable attached with a damper (Krenk 2000, Main and 

Jones 2002) and a taut cable; they could be derived when 

there is no connection cross-tie ( 0  ). The second part 

takes into effects of cross-links, it is the characteristic 

equation of the system when the cross-tie is very rigid 

(   ). 

For specific values of  ,   and 
,j pl L , Eq. (10) can 

be numerically solved for  , and Φ  could be obtained 

by substituting  into Eq. (9), then the corresponding 

mode shape can be obtained from Eq. (5). It should be 

noted that Eq. (10) is a transcendental equation and has 

infinite solutions. The “fsolve” function in MATLAB was 

applied to find the solutions in this paper; and the exact 

target solutions were highly depended on the input initial 

values due to multiple mode frequencies. The initial value 

of frequency that near to target frequency (from analytical 

studies) should be selected to get the target mode frequency 

and damping. 

 

 

3. Solution characteristics 
 

3.1 Two branch solutions 
 

Previous studies (Caracoglia and Jones 2005, Ahmad 

and Cheng 2011) found that the characteristic equation of 

twin-cables with a connection cross-link has two sets of 

solutions: in-phase modes and out-of-phase modes; Zhou et 

al. (2015) further confirmed that the characteristic equation 

of twin-cables with a connection cross-link and two 

dampers attached to two cables still followed the above 

rule. For the in-phase modes, mode shapes of the two cables 

are in phase and similar to the mode shapes of a free cable. 

For the out-of-phase modes, mode shapes are out of phase 

and maybe dominated by some cable segments when the 

cross-link was very rigid. For the case of single damper 

attachment, studies showed that as the damper was very 

close to cable end, the solutions still could be classified by 

the two sets of in-phase and out-of-phase (Zhou et al. 

2019), although the mode shape of the twin-cables were not 

exactly the same due to the fact of single damper 

attachment (Zhou et al. 2015). Fig. 2 shows the 1
st
 to 4

th
 

mode shapes together with the corresponding λ values when 

1,2 / =0.2l L , =10  and =5 . It clearly shows the 

vibration mode of the system could well be distinguished by 

the in-phase and out-of-phase modes. 

 

3.2 Effects of spring stiffness and location 

 

In engineering applications of the above hybrid system, 

the system damping and frequency is highly interested for 

better mitigation performance; while the parameters need to 

be designed are cross-link stiffness and location, damper 

coefficient and location. As the system frequency is mainly 

determined by cross-link and the system damping 

determined by damper coefficient, the following studied the 

effects of cross-link stiffness and location on system 

frequency, maximum attainable damping and corresponding 

optimum damper coefficient; and three representative 

values for the nondimensional cross-link stiffness: low 

value ( 1  ), intermediate value ( 10  ), and high value (

50  ) were selected for numerical solution. Without loss 

of generality, the damper was taken to be fixed at 2% of the  


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cable length (2% to 4% in engineering applications) while 

the cross-link location moved along the cable axis (

1,2 1,1/ 0 1 /l L l L   ). 

Fig.3 shows the non-dimensional maximum damping 

ratio of the 1
st
 mode (the 1

st
 in-phase mode) and the 2

nd
 

mode (the 1
st
 out-of-phase mode) as the cross-link moves 

from damper location to the right cable ends. The non-

dimensional maximum damping ratio of single cable with 

an attached viscous damper was also shown for easy of 

comparison. The maximum damping ratios of the two 

modes are lower than that of a single cable with an attached 

viscous damper. It also clearly shows that the maximum 

damping changes significantly when cross-link was near to 

damper or at right cable ends as non-dimensional cross-link 

stiffness increases for the first in-phase mode; however, the 

maximum damping is almost the same for the three 

different non-dimensional cross-link stiffness when 1,2 /l L  

is between 0.2-0.8 (Fig. 3(a)), and the maximum damping  

 

 

 

 

ratio of the 1
st
 in-phase mode max 1,1 / 0.25l L / （ ） , which 

is about half of that of a single cable attached with a viscous 

damper ( max 1,1 / 0.5l L / （ ） , Krenk 2000). Fig. 3(b) 

shows that higher maximum damping ratio of the out-of-

phase mode can be achieved when the cross-link is located 

at the right half segment of cable for 10   and 50 cases; 

the maximum damping ratio is very low when cross-link is 

located at the left half segment of cable (almost zero when 

1,2 /l L  is between 0.1-0.4). The reason is due to the fact of 

local segment cable vibration for high cross-link stiffness, 

the damper would not be effective when the cable segment 

with attached damper does not vibrate. 

Fig. 4 shows the corresponding frequency of the two 

modes, it shows that the vibration frequency increases as   

increases. However, the increment of frequency is 

insignificant for in-phase mode. For out-of-phase mode, the 

frequency is greatly increased as cross-link stiffness  

  
(a) 1

st
 mode (1

st 
in-phase mode): λ=-0.0029 + 1.0009i (b) 2

nd
 mode (1

st 
out-of-phase mode): λ= -0.0000 + 1.2577i 

Fig. 2 Mode shapes of two identical cables with a connection cross-link and a viscous damper ( 1,1 2%l L  , 1,2 0.2l L  ,

10  , 5  ) 

  
(a) First mode (first in-phase) (b) Second mode (first out-of-phase) 

Fig. 3 Maximum damping ratio ( 1,1 2%l L  ) 
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increases; however, the increment of frequency from 

10   to 50   is not so obvious as   increases from 

1 to 10. Together with Fig. 3, it can be concluded that the 

soft cross-link ( 1  ) have advantage of both damping and 

frequency improvement. The system with rigid cross-link 

could have higher frequency and higher damping in some 

cross-link locations, but rigid cross-link could also lead to 

local cable segment vibration without damping effects from 

the viscous damper. 

Fig. 5 further shows the corresponding non-dimensional 

optimum damper constant of the two modes. The optimum 

damper constant changes significantly when cross-link is 

near to damper location; however, it only changes slightly 

or moderately when cross-link locates at other places. It  

 

 

 

 

 

 

could be concluded that the non-dimensional optimum 

damper constant is sensitive to the cable vibration mode 

number and cross-link location, but not very sensitive to the 

cross-link stiffness. 

The previous studies of the coauthors (Zhou et al. 2015) 

showed that the system damping ratio and frequency 

changes regularly as the spring stiffness and locations 

changes, as such, no further discussion about higher mode 

vibration was given in this paper. The above studies showed 

that the damping and frequency could be both added by 

connecting two cables and attaching a viscous damper. In 

the following, experimental test was carried out to verify 

the above numerical results and further discuss the 

advantage of the proposed system. 

  
(a) First (first in-phase) mode (b) Second (first out-of-phase) mode 

Fig. 4 Corresponding mode frequency 

  
(a) First mode (b) Second mode 

Fig. 5 Corresponding optimum damper constant ( 1,1 2%l L  ) 

Table 1 Properties of the twin model cables 

Length 

L (m) 

Diameter 

(mm) 

Unit Mass 

m (kg/m) 

Inclination 

Angle θ (°) 

Initial tension 

T(N) 

Elastic Modulus 

E (GPa) 

Axial Rigidity 

EA (kN) 

3.2 1.5 0.9585 22.1 600 170 300.415 
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4. Small-scale twin-cables test 
 

4.1 Experimental setup 
 

The small-scale cable system was made up of two 

inclined identical cables (twin-cables), which were 

connected by a mental wire and the lower cable was 

attached with a viscous damper near to higher cable end 

(Fig. 6). The twin model cables were made up of two steel 

wires with added copper masses. The properties of the two 

model cables were summarized in Table 1. 

Figs. 6 and 7 shows the instruments used in the test. A 

vibration exciter (Fig. 7 (a)) was installed close to the lower 

end of the lower cable to excite the system. Four laser 

sensors (Fig. 7(b)) were used to record the vertical 

displacement of the quarter and middle point of the two 

cables, respectively. The cross-link locations changed from 

0.1L to 0.8L with interval of 0.1L, due to the fact of very 

stiff cross-ties applied in cable vibration mitigation  

 

 

 

 

practices, a large non-dimensional spring stiffness about 65 

was used in the test. 

The viscous damper was located on the lower cable by 

the location of 4.5%L from the cable’s upper end (Fig. 

8(a)). The linear viscous damper is designed and calibrated 

by referring to Huang (2011). It was made of a cylinder 

container with filled silicone oil; and an aluminum plate 

(Fig. 8(b)) moved in the silicone oil to generate damping 

force with an aluminum bar linked to the cable end. 

Different weights were applied on the head of the aluminum 

bar to let the plate drop in silicone oil (Fig. 8(c)). The 

displacement of the aluminum plate was measured by laser 

sensor. Then velocity could be derived by differential of the 

displacement data, and the linear damping coefficients 

could be derived from the F-v relation by the least square 

method (Fig. 8(d)). Seven different damping coefficients 

were derived by combining 5 different diameter aluminum 

plates with 2 different viscosity of silicon oils during the 

test (Table 2). 

 

Fig. 6 Experimental setup of small-scale twin-cable system with a viscous damper 

  
(a) Vibration exciter (b) Laser displacement sensor 

Fig. 7 Test instruments 
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4.2 Experimental procedure and data processing 
 

Free vibration of single cable, twin-cables with a cross-

link but without viscous damper, and twin-cables with a 

cross-link and a viscous damper were tested. The eigen-

frequency was derived by FFT analysis of the free vibration 

test data. Then the cable system was excited by the 

vibration exciter tuned at the system’s eigen-frequency, 

after the cables reached to a steady vibration amplitude for 

about 20 seconds, the nylon wire connecting the cable and  

 

 

 

 

the exciter was cut and the cable system vibrated in free 

decay. The recorded free decay displacement time-histories 

from laser sensors (Fig. 9(a)) were FFT analyzed (Fig. 9(b)) 

and then filtered by using the band pass filter in MATLAB. 

The mean damping ratio (Fig. 10) are obtained by using 

logarithmic decrement method from the filtered 

displacement time-histories. The test actually run twice for 

each case, and it was found that the two-test cases repeated 

well during the test. 

 

Table 2 Combination of seven damper coefficients 

No. 
Aluminum diameter 

(cm) 

Silicon oil viscosity 

 (mm2/s) 

Damping coefficient c  

(N·s/m) 

Non-dimensional damper 

 constant   

1 5 5000 13.16 0.54 

2 6 5000 26.23 1.09 

3 7 5000 49.61 2.07 

4 8 5000 109.59 4.57 

5 8 10000 310.86 12.96 

6 9 5000 525.37 21.91 

7 9 10000 1208.19 50.38 

  
(a) Attached to lower cable end (b) 5 aluminum plates of different diameter 

 
 

 (d) Calibrated force-velocity relation 

Fig. 8 Viscous damper 
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4.3 Test results 
 
4.3.1 Single cable 
Table 3 shows the 1

st
 modal frequency and damping 

ratio of upper and lower model cables. It can be found that 

frequencies of the two tested cables were very close and the 

damping ratios were extremely low. The theoretical 

frequencies of the in-plane cable vibration were derived 

base on the following (Warnitchai 1990) 

2
1 2

4 4

2
1 (1 ( 1) )

2

n

n

n T
f

L m n





 
    

 
 (11) 

where n is the vibration mode number, and the parameter 
2

2 cos
e

mgL LEA

T L T
 

 
  
 

 (Irvine 1981), in which 

2

1 cos 8e

mgL
L L

T


  
   

   

 

 

 

 

 
 
 
Table 3 1

st
 mode frequency and damping ratio of two tested 

cables 

Cables 
Frequency(Hz) Damping ratio 

(%) theoretical test 

Upper cable 4.079 4.001 0.047 

Lower cable 4.079 4.011 0.064 

 
 

4.3.2 Twin-cables with a cross-link 
Table 4 shows the 1

st
 in-phase and out-of-phase mode 

frequency and damping ratio of the twin-cables with a 

cross-link but without oil damper. The cross-link was 

located from 0.1L to 0.5L with an interval of 0.1L; only half 

of cable length was tested due to symmetry. It clearly shows 

that the 1
st
 in-phase mode frequency was slightly lower than 

that of single cable. The reason was the cross-link had no 

stiffness contribution for in-phase vibration. The added 

masses of clamping device and mental wire would decrease 

the vibration frequency (Zhou et al. 2018a), especially 

when mass was located at middle of the cable for 1
st
 in-

phase mode. However, the 1
st
 out-of-phase mode frequency  

  
(a) Displacement time history (b) Power spectrum of displacement time history 

Fig. 9 First mode displacement time history and its power spectrum at mid-span of lower cable (cross-link located at 

0.2L  and =0.54 ) 

 

Fig. 10 First mode (first in-phase mode) damping ratio: mean 1=0.4933%  (cross-link located at 0.2L  and =0.54 ) 
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was obviously larger than that of single cable for the out-of-

phase vibration would stretch/compression the cross-link so 

it would contribute stiffness to the system. The damping 

ratios of the 1
st
 in-phase and out-of-phase mode were also 

higher than that of single cable; however, it was still very 

low compared to the minimum damping ratio requirement 

for cable vibration mitigation (0.5%). 
 

4.3.3 Twin-cables with a cross-link and a viscous 
damper 

The viscous damper was attached to the lower cable at 

0.045L from the right cable end. The cross-link location is 

moved alone upper cable axis at 0.1 L - 0.9 L from the right 

end of upper cable by an interval of 0.1 L. The effects of 

cross-link stiffness and damping coefficient on the in-phase 

and out-of-phase mode frequencies and damping ratios 

were discussed in the following. 

Figs. 11 and 12 show the first mode (the first in-phase 

mode) and the second mode (the first out-of-phase mode) 

frequencies when the cross-link was located at 0.4 L and 0.8 

L, respectively. It can be concluded that the in-phase mode 

frequency was very close to the numerical solution. In 

addition, the first mode frequency was also very close to the 

first mode frequency of single cable listed in Table 2 (4.001 

Hz). The second mode frequency was about 1.6 times 

(cross-link located at 0.4L, frequency was about 6.4 Hz) and 

1.25 times (cross-link located at 0.8L, frequency was about 

5.0 Hz) to the single cable (4.001 Hz). In short, the cross-

link didn’t change the in-phase mode frequency, and could 

increase the out-of-phase mode frequency of the system. 

 

 
 

Fig. 13 shows the first mode (first in-phase mode) 

damping ratio when the cross-link location was 0.2 L, 0.4 L, 

0.6 L and 0.8 L from the right end of the upper cable. It 

could be observed that the system damping ratio was 

obviously larger than that of single cable. The damping 

ratio from the test (black squares) showed the same trend 

with the numerical results (black curves) as the system 

damping ratio increased at the beginning and reached to a 

maximum, then decreased as non-dimensional damping 

constant increasing. There was difference between the test 

damping ratio and the analytical damping ratio due to the 

effects of different factors. The test damping included the 

internal damping, and cross-ties would also increase the 

system damping a bit. The above factors may lead to larger 

test damping than analytical damping. However, there was 

also a detrimental factor that the tested damper coefficient 

was actually not the optimum one. There were also some 

factors that were hard to be evaluated, such as the 

measurement errors and the effects of environmental 

situations (indoor wind, environmental excitation, 

temperature variations, etc., although the effects of these 

factors were small in most situations). Anyway, the 

damping mechanism were actually very complex; the 

comparison results between the test damping to analytical 

damping were quite good as they were close in values and 

also showed similar changing pattern. The maximal 

damping ratio and the non-dimensional corresponding 

damping constant of the test result were also close to 

numerical ones. The approximate solutions from Eq. (7(a)) 

of Zhou et al. (2015) were also shown in Fig. 13 for  

Table 4 Frequency and damping ratio of 1
st
 in-phase and out-of-phase modes of twin-cables with a cross-link 

Cross-tie position 
1st in-phase 1st out-of-phase 

Damping ratio (%) Frequency Damping ratio (%) Frequency 

0.1L 0.119 3.987 0.210 4.379 

0.2L 0.066 3.977 0.091 4.845 

0.3L 0.141 3.993 0.214 5.559 

0.4L 0.067 3.977 0.130 6.395 

0.5L 0.203 3.958 0.150 7.680 

  
(a) Cross-link at 0.4 L (b) Cross-link at 0.8 L 

Fig. 11 First mode (first in-phase mode) frequency 
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comparison, and it turned out that the approximate solution 

could well predict the system damping. 
Fig. 14 shows the second mode (the first out-of-phase 

mode) damping ratio when the cross-link was located at 0.6 

L, 0.7 L and 0.8 L. It can be concluded that the test result  

 

 

 

 

also showed the same trend for the test and numerical 

results when cross-link was located at 0.6 L, 0.7 L and 0.8 

L. The maximal damping ratio and the corresponding 

damping constant of test result were also close to numerical 

ones. The approximate solution from Eq. (7(b)) was also  

  
(a) Cross-link at 0.4 L (b) Cross-link at 0.8 L 

Fig. 12 Second mode (first out-of-phase mode) frequency 

  
(a) cross-link located at 0.2 L (b) cross-link located at 0.4 L 

  
(c) cross-link located at 0.6 L (d) cross-link located at 0.8 L 

Fig. 13 First mode (first in-phase mode) damping ratio (damper located at l11=0.045 L) 
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shown in Fig. 14, it clearly showed that Eq. (7(b)) of Zhou 

et al. (2015) could well predict the test damping. When 

cross-link was located at 0.4 L, the theoretical analysis 

showed that the damping ratio should be very small as the 

cable segment with attached damper would not vibrate; and 

the test result showed much smaller damping ratio as 

discussed in the following. 

 

 

 

 

Fig. 15 further compares the maximum damping ratios 

of tested cases to that of the analytical solutions. Due to the 

fact of internal damping and the damper constant 

corresponding to the maximum damping ratio of the 

experiment was not the exact optimized damping constant, 

the experimental data was not exactly the same as the 

numerical ones. However, Fig. 15 still clearly shows that  

  
(a) cross-link located at 0.6 L (b) cross-link located at 0.7 L 

 
(c) cross-link located at 0.8 L 

Fig. 14 Second mode (first out-of-phase mode) damping ratio (damper located at l11=0.045 L) 

  
(a) First mode (first in-phase mode) (b) Second mode (first out-of-phase mode) 

Fig. 15 Comparison of maximum damping ratio 
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the tested maximum damping ratios were very close to that  

of numerical solutions; especially the tested maximum 

damping ratios clearly showed the decreasing trend as the 

cross-link moved from the left to the right cable ends for the 

first in-phase mode. The approximate solutions (Eq. (8(a)) 

of Zhou et al. 2015) was also very close to that of numerical 

solutions. For the second mode vibration, the analytical 

study showed that the maximum damping ratio was very 

small (damper was in-effective) when the cross-link was 

located at 0.1 L to 0.5 L; the test data confirmed this 

phenomenon for the damping was significantly smaller 

compared to that of other cross-link locations (Fig. 15(b)). 

The numerical maximum damping ratio was also very close 

to the tested when the cross-link was located at 0.6L to 0.9 

L. It should be noted that the approximate solution (Eq. 

(8(b)) of Zhou et al. 2015) could only predict the second 

mode maximum damping when cross-link was located at 

the half cable length far from the damper because it was 
assumed that the cable segment with attached damper 

would dominate the vibration of the system. The 

approximate maximum damping ratio was also close to that 

of numerical solution and test; however, the difference 

between the approximate maximum damping ratio and the 

numerical maximum damping ratio was large when the 

cross-link was located at 0.9 L due to the fact that 

2,1 / 0.9l L   and close to 1. 

Fig. 16 shows the comparison of the frequencies, and 

the numerical results are also close to the test frequencies. 

All the above comparison showed that the analytical 

solutions could well predict the system behaviors. 
 
 
5. Conclusions 
 

This paper proposed a hybrid mitigation system of twin-

cables by a connecting cross-tie and attaching a viscous 

damper; this kind of system could be referred to the 

vibration mitigation of hanger vibration by connecting two 

nearby hangers with a cross-tie and attaching one damper 

near to one hanger’s end. The frequency equation of the  

 

 

system was derived. Experimental studies were carried out. 

The tested system frequency and damping were further 

listed and compared to analytical solutions. The results are 

summarized as: 

The system vibration mode still could be categorized by 

two solution branches: the in-phase mode and the out-of-

phase mode as damper was near to cable end and had small 

effects on vibration frequency. The two solution branches 

showed different behaviors as the parameters of cross-link 

and damper changed. 

For in-phase mode, one damper attachment can increase the 

maximum system damping ratio to almost half of the 

maximum damping ratio of a single cable with a damper. 

The cross-link stiffness and location had slight effects on 

the maximum damping ratio; and they have almost no 

effects on system frequency. 

For out-of-phase mode, the maximum modal damping ratio 

is related to the cross-link location and stiffness. The 

maximum damping ratio can be close to zero or reach to the 

maximum damping ratio of a single cable attached with a 

damper when the cross-link moves along the cable axis. The 

cross-link location and stiffness have significant effects on 

system frequencies, especially when the cross-link is 

located at the antinode of single cable’s mode shape. 
The comparison showed that the analytical solution could 

well predict the test results: the tested damping and 

frequency were close to analytical ones. It was confirmed 

that the hybrid system had significantly higher damping for 

in-phase mode and higher frequency for out-of-phase mode 

compared to that of single free cable. 

The above studies showed the damping and frequency 

could both be improved for the proposed hybrid system. It 

should be noted that connecting the two cables could also 

improve the vibration mass compared to that of single free 

cable. Further and on-going full-scale experiment or 

engineering applications will be carried out to improve and 

demonstrate the advantage of the proposed system in the 

near future. 
 
 
 

  
(a) First mode (first in-phase mode) (b) Second mode (first out-of-phase mode) 

Fig. 16 Comparison of frequency corresponding to maximum damping ratio 
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