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1. Introduction 
 

Stay cables are crucial tension members when 

supporting the girders of cable-stayed bridges. However, 

stay cables are vulnerable to environmental excitation 

because of their  slenderness and lo w damping 

characteristics (Virlogeux 1998, Kumarasena et al. 2007). A 

great deal of research literature is available describing wind, 

wind-rain and supporter-excited stay-cable vibration based 

upon field monitoring, analytical exploration and wind-

tunnel simulations (Kumarasena et al. 2007, Zhou and Xu 

2007, Xu et al. 2008). To suppress such kinds of harmful 

vibrations, different engineering solutions have been 

adopted, including cable surface modification (Kumarasena 

et al. 2007), the installation of near-support passive or semi-

active dampers (Krenk 2000, Sun et al. 2004, Chen et al.  
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2004, Li et al. 2004, Bosch and Park 2005, Wang et al. 

2005, Duan et al. 2005, 2006, 2019a, b, Christenson et al. 

2006, Zhou et al. 2006, 2014b, Kumarasena et al. 2007, 

Zhou and Xu 2007, Fujino and Hoang 2008, Or et al. 2008, 

Zhou and Sun 2008 and 2013, Lu et al. 2017, Zhou et al. 

2018a), the use of secondary cables (also known as cross-

ties) (Kumarasena et al. 2007), and hybrid application of 

both cross-ties and dampers (Sun et al. 2005, Zhou et al. 

2015, 2018b).  

Connected cable system with cross-ties will increase the 

natural vibration frequencies of the system, which in turn 

increases the threshold critical wind speeds for triggering 

aerodynamic instabilities. Ehsan and Scanlan (1990) used 

component-mode synthesis and finite element approaches in 

the solution of a three-dimensional cable problem. 

Yamaguchi and Nagahawatta (1995) tested a two-cable 

network and used an energy method to evaluate the 

damping contribution of cross-ties. Virlogeux (1998) 

analyzed the field experience of the application of cross-ties 

in the Bridge of Normandie. Caracoglia and Jones (2005a) 

studied the linear dynamics of a two-cable network and 

further extended the analytical method to a prototype bridge 

cable network for the Fred Hartman Bridge. Sun et al. 

(2007) tested a three-cable networks model and evaluated 

the damping contribution from cross-ties. Giaccu and 

Caracoglia (2012) also studied the nonlinear effects of 

cross-ties, and a parametric study of a three-cable system 

with nonlinear restoring-force spring under stochastic free  
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vibration was carried out. Ahmad and Cheng (2016) studied 

in detail the effects of cross-link stiffness on the dynamics 

of cable network, considering multiple lines of cross-links 

with the emphasis on local mode formation of cable 

networks.  

However, most of the above analytical research was 

based on cable networks without cross-links further 

extended to ground. In engineering practice, cross-ties are 

sometimes extended to a deck to further increase system in-

plane stiffness (Virlogeux 1998, Kumarasena et al. 2007, 

Bosch and Park 2005). There are only limited studies 

available discussing the dynamics of cable networks with 

cross-links extended to ground, most of which correspond 

to field experiences of cable network design and analysis 

(Virlogeux 1998, Kumarasena et al. 2007, Bosch and Park 

2005) or model cable tests (Sun et al. 2007, Zhou et al. 

2017). It is commonly agreed that extending the cross-link 

to ground would certainly further increase the in-plane 

stiffness of a cable network. However, the impact on mode 

behavior was not detailly studied. Caracoglia and Jones 

(2005a) discussed the dynamics of a two-cable network, 

and a special case for the cross-link located at the mid-span 

of the two cables and extended to ground was discussed. An 

obvious difference of dynamic behaviors was observed 

between the two-cable network with connection to the 

ground and that without connection to the ground when the 

stiffness of the ground connector was high, especially for 

lower modes of vibration.  

Although the extension of cross-ties to ground seems 

very simple geometrically, it considerably increases the 

complexity of network behavior and make its analysis very 

challenging. In this paper, inspired by practical problems 

and based on previous studies (Caracoglia and Jones 2005a, 

Ahmad and Cheng 2013), a system of two cables system 

with cross-link extended to ground is proposed. The 

proposed system involves connecting two nearby cables by 

one upper cross-link, and a lower cross-link extended from 

the upper cross-link to the ground. Although this  

 

 

configuration only adds one cross-link fixed to the ground 

compared to that of the two-cable system with one inter-

connected cross-link, its structural behavior is complex and 

still not fully understood. An analytical model of this 

system is developed, and mode evolution with respect to the 

system configuration and spring stiffness are evaluated to 

explore the dynamics of the proposed system; which could 

provide insight and idea of how to implement cross-ties in 

mitigating the excessive cable vibration. 

 

 

2. General problem formulation 
 

Fig. 1 shows the proposed system. The two parallel 

cables are interconnected by an upper transverse spring, 

where the spring represents the axial stiffness of a cross-

link. The second spring under the lower cable is further 

connected to ground and represents the axial stiffness of a 

cross-link fixed to the bridge deck/tower. The imperfect 

orthogonal orientation of the real application of cross-ties 

can be accounted for by projection of the restoring force 

and displacement component in the orthogonal direction. 

The detail steps of the projection were addressed by 

Caracoglia and Jones (2005b) and not further addressed in 

this paper. 

The length of the j
th 

cable is Lj (j=1,2), with L1=L2+2Δl. Tj is 

the tension force, mj is the mass per unit length, the length 

of the p
th

 segment of the j
th 

cable is denoted as lj,p (p=1,2); 

its axial coordinate is xj,p. The motion equation of each 

cable segment is (Irvine 1981) 

   2 2

, , , ,

2 2

,

, ,j p j p j p j p

j j

j p

y x t y x t
m T

t x

 


 
 (1) 

where yj, p(xj, p, t) is the transverse displacement and can be 

expressed as yj,p(xj,p,t)=Yj,p(xj,p)e
iβτ

, Yj,p(xj,p) is the complex 

mode shape function; τ=ω1t is the non-dimensional time, 

 

Fig. 1 Two-cable network inter-supported by cross-link fixed to ground 
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where ω1=π/L1 1 1T m  is the fundamental circular 

frequency of the upper cable, β=ω/ω1 is the non-

dimensional frequency of the system, and ω is the modulus 

of the non-dimensional eigenvalue. 

Considering continuity of displacement, Yj,p(xj,p) can be 

expressed as 

 
 
 ,

sin

sin

j j p j

j p j p j

j j p j

f x L
Y x A

f l L

 

 


,

, ,
 (2) 

where fj=ω1/ωj is the j
th 

cable frequency ratio (Caracoglia 

and Jones 2005a, Ahmad and Cheng 2013), ωj=π/Lj j jT m , 

and Aj are parameters related to the j
th

 cable vibration 

amplitude. 

Eq. (2) is solved to obtain the unknown amplitudes by 

means of a set of displacement boundary conditions at the 

cable ends, displacement continuity equations and force 

equilibrium equations at the spring locations. Finally, the 

homogeneous system equations can be re-written in matrix 

form as SΦ=0, where S is a matrix consisting a set of 

transcendental parameters, and the vector Φ includes the 

unknowns Aj. To get a non-trivial solution (Φ≠0), the 

determinant of the matrix S must be zero. 

After simplifying the hyperbolic functions, the equation 

det(S)=0 can be re-written as 

1
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

 

(3) 

in which λj=L1/Lj is the length ratio of the j
th

 cable, 

1 1j j jT m T m  is the mass-tension ratio of the j
th

 cable 

(Caracoglia and Jones 2005a, Ahmad and Cheng 2013), 

γj=kjL1/(πT1) is the j
th

 non-dimensional cross-link stiffness, 

εj=lj1/Lj is the position ratio of the cross-link for the j
th

 cable, 

and 
j jf   .  

For specific values of the system variables, Eq. (3) can 

be numerically solved for β; then three of the four 

coefficients in Φ can be expressed in terms of the other 

coefficient, and the mode shape can be obtained from Eq. 

(2). 

 

 

3. Limiting solutions 
 

From the above Eq. (3), it can be found that the 

solutions of the system are dependent on the variables γj, vj, 

fj, λj and εj. Although the total number of variables is 

actually six considering that f1=v1=λ1=1, the solutions to Eq. 

(3) are rather complex, as Eq. (3) is a highly nonlinear 

transcendental equation. It is impossible to find solutions 

analytically in closed form for the general case. However, 

prior to the implementation of the numerical solutions, the 

special limiting solutions could be categorized with closed 

form solutions. These special limiting solutions correspond 

to the boundary of each solution branch for a changing 

system variable, as discussed in the following.  

 

3.1 Mass-tension ratio v2 tends to zero 
 
When the mass-tension ratio v2 tends to zero, Eq. (3) is 

    1 1 1 1 1

2

sin sin sin 1

sin 0

j         

  
 (4) 

Eq. (4) includes two sets of roots 

   1 1 1 1 1sin sin sin 1 0j            (5a) 

2sin 0 
 

(5b) 

Eqs. (5(a)) and (5(b)) show that when the mass-tension ratio 

v2 tends to zero, the upper cable is inter-supported by a 

cross-link extended to ground, and the corresponding non-

dimensional spring stiffness is γ1. The lower cable vibrates 

independently and is not influenced by the cross-link.  

 

3.2 Mass-tension ratio v2 tends to infinity 

 

When the mass-tension ratio v2 tends to infinity, Eq. (3) 

can be re-written as 
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Eq. (6) includes three sets of roots 
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Eqs. (7(a))-(7(c)) show that when v2 tends to infinity, the 

upper cable is inter-supported by a cross-link extended to 

ground, the corresponding non-dimensional spring stiffness 

equals to that of the two cross-links γ1 and γ2 in series. The 

lower cable is divided into two segments that vibrate 

independently. 
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3.3 Non-dimensional spring stiffness tends to zero 

 

It is obvious that γ2=0 represents the case when there is 

no cross-link fixed to the ground, and then Eq. (3) can be 

re-written as 
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 (8) 

This case has been studied in detail by Ahmad and Cheng 

(2013).  

When γ1 equals zero there is no cross-link between the 

upper and lower cable, and the upper cable is free and the 

lower cable is inter-supported by a spring, which is a 

special case discussed by the co-authors when studying a 

taut cable with a spring and a damper (Zhou et al. 2014a). 

 

3.4 Non-dimensional spring stiffness tend to infinity 
 
Three cases should be considered in the following. 

 

3.4.1 Both γ1 and γ2 tend to infinity 
The first case is that both γ1 and γ2 tend to infinity. In 

this case Eq. (3) can be re-written as 
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It can be found that the system frequency solutions are 

composed of 4 sets 

 1 1sin 0   (10a) 
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Eqs. (10(a))-(10(d)) show that when both γ1 and γ2 tend to 

infinity, cross-links act as rigid support; the system was 

divided into four cable segments that vibrate independently, 

each set of equations corresponding to the frequency of one 

of the cables segments. 

 

3.4.2 γ2 tends to infinity  
For the case when γ2 tends to infinity, Eq. (3) becomes 
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(11) 

Eq. (6) is composed of 3 sets of solutions 
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Eqs. (12(a))-(12(c)) show that when γ2 tends to infinity, the 

lower cross-link acts as rigid support, the upper cable is 

inter-supported by the upper cross-link extended to ground, 

and the lower cable is divided into two segments. 

 

3.4.3 γ1 tends to infinity 
For the case when γ1 tend to infinity and γ2 is finite, Eq. 

(3) can be simplified as 
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(13) 

Eq. (13) is still complex and cannot be further simplified. 

However, study shows that for a special case of a twin cable 

system, which refers to the two identical cables, Eq. (13) 

can be re-written as 
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Eq. (14) could be further re-written as 

 1 1sin 0   (15a) 
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Eqs. (15(a))-(15(c)) show that when γ1 tends to infinity, the 

characteristic equation of a twin-cable system contains three 

sub-equations, the first two sub-equations correspond to  
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vibration of the two cable segments, the other corresponds 

to the cable supported by a spring, so that the stiffness was 

actually only half of the lower spring’s, as the lower spring 

now actually connects two cables in the system. 

The above studies show that, taking into the simplification 

of cable parameters, the solutions of the system 

characteristic equation still can be further simplified. In the 

following, a collection of some relevant examples is 

constructed, for the purpose of better identifying the 

system’s physical behaviours and revealing its intrinsic 

characteristics. According to the above discussion, the 

properties of limiting solutions are summarized in Table 1. 

 

 

4. Applications to cable systems with special 
configurations 

 

4.1 Two identical cables 
 
For the twin cable system, Eq. (3) could be re-written as 
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
 (16) 

It can be found that Eq. (16) is much more complex than 

that for an interconnected twin cable system without cross-

link to ground (Ahmad and Cheng 2013); the added term 

with γ2 shows the effects of the cross-link extended to the 

ground. The following discusses the special case of a cross-

link located at the quarter span, for comparison with the 

results of Ahmad and Cheng (2013).  

Fig. 2 shows the first 4 mode shapes and frequencies of 

system with 4 different sets of non-dimensional stiffness of 

the cross-link: γ1=γ2=0.1, γ1→∞ and γ2=0.1, γ1=0.1 and 

γ2→∞, γ1=γ2=10. The set of cross-link stiffness was selected 

to show the effects of the cross-link and to compare with 

the analytical results, as Eqs. (12) and (15) shows the 

analytical closed form solutions.  

 

 

 

Comparing the frequencies in Fig. 2(a)-2(c) showed that it 

was effective to increase the even mode of vibration 

frequency by increasing γ1 or γ2 individually; however, it 

also showed that it was inefficient to increase the odd mode 

of vibration frequency by increasing γ1 or γ2 separately for 

the twin cable system. The corresponding mode shape in 

Fig. 2 shows that the even and odd modes of vibration 

corresponds to the in-phase and out-of-phase modes of 

vibration for a finite γ2.  

Comparison of the roots of γ1=γ2=0.1 to that of γ1=γ2=10 

showed that it was efficient to increase both the even and 

odd modes of vibration frequencies by increasing the non-

dimension stiffness of the upper and lower cross-link 

together. 

For finite cross-link stiffness, Fig. 2 shows that 

increasing cross-link stiffness would enhance the constraint 

between the two end points of the cross-link. Comparison of 

Fig. 2(b) to Fig. 2(c) clearly shows the different effects of 

the two cross-links, as the upper cross-link restrains the two 

points P1,2 of the upper cable and P2,2 of the lower cable, 

however, the lower cross-link only restrains the point P2,2 of 

the lower cable.  

Fig. 2 also clearly shows the emergence of the local 

mode of vibration for the infinite cross-link stiffness cases. 

The difference was attributed to the above: the local modes 

corresponding to γ1→∞ are the out-of-phase modes of 

vibration, and P1,2 and P2,2 acted as the immobile points of 

cable segment; however, the local modes corresponding to 

γ2→∞ are the single mode of vibration of the upper cable or 

segment of the lower cable, as P2,2 were acting as the 

immobile points. 

To assess the distinction between the global and local 

modes, Ahmad and Cheng (2016) give a definition for the 

degree of mode localization by vibration amplitude of cable 

segments; however, the potential energy of each cable 

segment gives a more reasonable way of distinguishing 

between the global mode and local mode. The following 

gives the variables used to assess the degree of mode 

localization by energy distribution of each cable segment.  

Table 1 Properties of the limiting solutions 

Limiting cases Eqns. No. Solution properties 

v2→0 
(5a) 

(5b) 

1. The upper cable is inter-supported by a cross-link extended to ground; 

2. The lower cable vibrates independently. 

v2→∞ 

(7a) 

(7b) 

(7c) 

1. The upper cable is inter-supported by a cross-link extended to ground;  

2. The lower cable is divided into two segments that vibrate independently.  

γ2→0 (8) This case has been studied in detail by Ahmad and Cheng (2013). 

γ1→∞, 

γ2→∞ 

(10a) 

(10b) 

(10c) 

(10d) 

1. The cross-links acts as rigid support; 

2. The system is divided into four cable segments. 

γ2→∞ 

(12a) 

(12b) 

(12c) 

1. The lower cross-link acts as rigid support; 

2. The upper cable was inter-supported by a cross-link extended to ground; 

3. The lower cable is divided into two segments.  

γ1→∞ for 

twin cable  

system 

(15a) 

(15b) 

(15c) 

1. The first two equations corresponds to vibration of the two cable segments;  

2. The other corresponds to a cable supported by a spring. 
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The mode energy distribution vector was firstly defined as 

 11 12 21 22E E E EE  (17) 

where Ej1 and Ej2 are the non-dimensional potential 

vibration mode energies of the cable segments Pj,1 to Pj,2 

and Pj,2 to Pj,3. These can be derived by calculating the 

potential vibration mode energy from the known mode 

shape (Eq. (2)), as shown in the Appendix. 

The mode energy distribution vector could clearly show the 

vibration mode energy distribution of each segment; 

however, it cannot give a simple and direct way to identify 

the “global” and “local” mode. It is certain that if the energy 

is well-distributed in the four cable segments, the vibration 

mode is “global”, however, when the energy is concentrated 

on only one cable segment, the vibration mode is extremely 

“local”. Recognizing the above phenomenon, it is natural to 

adopt the non-dimensional coefficient of variation of the 

four non-dimensional potential vibration mode energies of 

the cable segments as the index by which to measure the 

degree of mode localization 

22 2
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1 1

1

1

4 1

3 4
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N N
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  
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



 (18) 

 

 

where N is the total number of cable segments, N=4 in this 

paper. It should be noted that for single cable segment 

vibration, only one element of the vector E equal to one and 

the other element is zero, and this happens for Θ=1.0; when 

each cable segment has the same vibration energy, then 

Ejp=1/4 and Θ=0. There is also a special case for two cable 

segments vibration with the same energy with other cable 

elements do not vibrate, and then Θ=1/ 3 ≈0.577. 

It could be concluded that the vibration mode would be 

more “local” as Θ increases. The value of Θ are also listed 

in Fig. 2, a clear identification of local mode when Θ is 

greater than 0.5 for the listed mode shapes. 

Fig. 3 further shows the non-dimensional frequency of 

the first 4 modes as the cross-link moves from the left 

anchorage to the middle, only half of cable system is shown 

due to the fact of symmetry. The non-dimensional cross-link 

stiffness was selected as γ1=γ2, and four different levels: 0.1, 

1, 10 and 100 were selected for analysis. Figs. 3(a) and 3(b) 

shows the increment of non-dimensional frequency as the 

cross-link moves from the left end to the middle of the 

cable, a larger stiffness of the cross-link leads to a larger 

increment of frequency. Figs. 3(c) and 3(d) show the same 

tendency as the cross-link stiffness increases, but there is a 

kink. The location of this kink is skewed to the right as the 

non-dimensional cross-link stiffness increases, and reaches 

about ε1=ε2=1/3 when γ=100, which corresponds to the 

emergence of a local mode. 

 

Fig. 2 Mode shapes of the first four mode of twin cable system 
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Fig. 4 shows the evolution of the 3
rd

 mode shape for the 

non-dimensional cross-link stiffness equal to 0.1, 1, 10 and 

100; the cross-link location was selected as ε1=ε2=0.25 and 

ε1=ε2=0.35 to illustrate the difference in frequency shown 

above. The emergence of a local mode of cable vibration 

could be obviously observed as γ increases for the two 

cross-link locations. However, there was also an obvious 

difference between the two different local modes: the right 

segment of cable vibration arises for ε1=ε2=0.25 while the 

left segment arises for ε1=ε2=0.35. The observations could 

well explain the kink as stated above; the frequency was 

determined by Eq. (10(a)) for the left cable segment 

vibration, while Eq. (10(b)) for the right cable segment. Fig. 

4 also shows that Θ also changes differently for these two 

cross-link locations, it increases monotonically as the cross-

link stiffness increases when ε1=ε2=0.25; however, it further 

decreases and then increases again when ε1=ε2=0.35. The 

mode shape in Fig. 4 also clearly shows the vibration 

energy flow from the right segment to the left segment of 

the two cables as the cross-link stiffness increases. An 

interesting point is that the above observation showed that 

the system vibration would not be certainly more “local” as 

the cross-link stiffness increases. On the contrary, there is a 

limit cross-link stiffness such that the system vibration 

mode is mostly “global” when ε1=ε2=0.35. 

Further investigation shows that the above phenomenon 

was determined by cross-link locations and cable vibration  

 

 

 

mode number. When 
2 1

,
2

i i

n n


 
 
 

, Θ will increases 

monotonically as the cross-link stiffness increases and 

approaches a certain value, where n is the single cable 

vibration mode number and n=1,2,3,...; i=0,1,2,... and i ≤ 

n/2. The vibration mode changes gradually from “global” to 

“local” as the non-dimensional cross-link stiffness 

increases. Fig. 5 shows the increase of Θ as the non-

dimensional cross-link stiffness increases for the third mode 

(2
nd

 mode for a single cable) vibration when ε1=ε2=0.15 and 

ε1=ε2=0.25. When
2 1 1

,
2

i i

n n


  
 
 

, Θ decreases at first 

and then increases as the cross-link stiffness increases. Fig. 

5 also shows the case for the third mode (2
nd

 mode for a 

single cable) vibration when ε1=ε2=0.35 and ε1=ε2=0.45. 

There was a limit to the non-dimensional cross-link 

stiffness corresponding to the smallest Θ. 
Further study shows that the above phenomena are related 

to opposite vibration energy flow as the non-dimensional 

cross-link stiffness increases: when 
2 1

,
2

i i

n n


 
 
 

, 

vibration energy flows from the left segments to the right 

segments; however, when 
2 1 1

,
2

i i

n n


  
 
 

, vibration 

energy flows from the right segments to the left segments. 
 

  
(a)1

st
 mode (b) 2

nd
 mode 

  
(c) 3

rd
 mode (d)4

th
 mode 

Fig. 3 Non-dimensional frequency vs. position ratio (ε1,ε2) (γ1=γ2, twin cables) 
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As the left segments are shorter than right segments, the 

vibration energy of the left segments is smaller than that of 

the right segments when the non-dimensional cross-link 

stiffness is small. Vibration would be more “local” when 

energy flows from left to right; however, the vibration 

would become more “global” when energy flows from right 

to left, and there is the limit to the non-dimensional cross-

link stiffness corresponding to the most well-distributed 

vibration energy. Further studies show this limit cross-link 

stiffness value depends on the location and mode number 

and can only be calculated by numerical iteration. When 

ε1=ε2=(i+1)/n, the cross-link has no effects on the system, 

since it lies on the node of the vibration mode shape. 

The above studies clearly show that the twin cable system 

frequency would increase as the two cross-link stiffness 

increase. When the upper and lower cross-link stiffness 

were the same, there is a kink for non-dimensional 

frequency curves as the cross-link moves from the left end 

of the cable to the middle. The location of this kink is 

approaching i/(n+1) as the non-dimensional cross-link 

stiffness increases for the n
th

 mode of cable vibration ((2n)
th

 

or (2n+1)
th
 mode of a twin cable system vibration), and the 

upper limit of the non-dimensional frequency is n+1; these 

limits are determined by the limiting solution of Eq. (10).  

 

 

 

 

 

When two cross-link stiffness were both small, the mode 

behaviour was “global” as four segments and cable all 

vibrated obviously, and a distinction between the in-phase 

and the following out-of-phase mode of vibration could be 

found for each of the two sets of twin cable vibrations. 

When the upper cross-link stiffness was large and tend to 

infinity while the lower cross-link stiffness was finite, the 

local mode of vibration arose for the out-of-phase mode of 

vibration. When the lower cross-link stiffness was large and 

tended to infinity with the upper cross-link stiffness being 

finite, the individual vibrations of the upper cable or the two 

segments of lower cable arose. 
 

4.2 Two unequal length cables 
 

The above text gives the mode behaviours of a twin 

cable network, but the cable parameters might be different 

in engineering practice. In what follows, further 

investigation on two unequal length cables was made. The 

length ratio λ2=1.25, frequency ratio f2=0.8 and the mass-

tension ratio was unitary according to reference (Ahmad 

and Cheng 2013). Figs. 6 and 7 show the first 4 mode 

shapes and the corresponding β and Θ when the non-

dimensional cross-link stiffness was selected as γ1=γ2 for 

four different levels: 0.1, 1, 10 and 100, and the cross-link  

 

Fig. 4 Evolution of the 3
rd

 mode shape (twin cables, ε1=ε2=0.25 and ε1=ε2=0.35) 

 

Fig. 5 Evolution of Θ as cross-link stiffness increases for 3
rd

 (2
nd

 in-phase) mode vibration of twin cable system 
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location was selected as ε1=0.25 (ε2=0.1875) and 0.35 

(ε2=0.3125), respectively. 

Fig. 6(a) shows that for the cross-link stiffness 

γ1=γ2=0.1, the connection between the two different cables 

was weak, the two unequal cables vibrated almost 

independently, and the index of mode localization was 

greater than 1 3 0.577∕  when the two segments of one 

cable were about 1:3 in length. Also, the vibration 

frequency appeared to be well-sequenced and slightly 

greater than that of a free cable. In Fig. 6(b) there appears a 

coupling of the two unequal cable vibrations at γ1=γ2=1; the 

mode shape and the corresponding frequency were still 

well-sequenced and moderately larger than that of a free 

cable. Different from twin cable system, the value of Θ 

decreases significantly for the 3
rd

 mode, which shows more 

“global” mode behaviour. Actually, Θ increases for the 1
st
, 

2
nd

 and 4
th

 modes as the non-dimensional cross-link 

stiffness increases. Fig. 6(c) corresponds to two unequal 

cable vibration when γ1=γ2=10. It shows the 1
st
 to 4

th
 modes 

of vibration become dominated by the right segment of the 

upper and lower cable segments vibration. The value of Θ is 

increased significantly compared to that when γ1=γ2=1. Fig. 

6(d) shows full emergence of localized cable segment 

vibration as γ1=γ2=100, all mode shapes show only one 

segment cable vibration. 

Fig. 7(a) shows that for the cross-link stiffness γ1=γ2=0.1, 

the two unequal cables still vibrated almost independently,  

 

 

but Θ was near to 0.577 as the length ratio of the two cable  

segments were close to 1 as compared to that seen in Fig. 

6(a). Fig. 7(b) shows the coupling of two unequal cable 

vibrations when γ1=γ2=1; the mode shape and the 

corresponding frequency were still well-sequenced and 

moderately larger than that of a free cable. Different from 

that of twin cable systems, the value of Θ decreases 

significantly for the 1
st
 mode, which shows a more “global” 

mode behaviour as the non-dimensional cross-link stiffness 

increases. The 2
nd

, 3
rd

 and 4
th

 modes showed the same 

changing pattern for Θ as the non-dimensional cross-link 

stiffness increases. Fig. 7(c) corresponds to two unequal 

cable vibrations at γ1=γ2=10. The value of Θ is increased 

comparing to that of γ1=γ2=1 except for the 3
rd

 mode, where 

it slightly decreases from 0.5520 to 0.5212. Fig. 7(d) shows 

the full emergence of localized cable segment vibration as 

γ1=γ2=100.  

Figs. 6 and 7 show that the vibration of two unequal 

cables would be more “local” than that of a twin cable 

system, because Θ of the system of two different cables is 

significantly larger than that for a twin cable system. It 

could also be confirmed that a larger cross-link stiffness is 

required to connect two different cables and vibrate 

together, as Figs. 6(a) and 7(a) show nearly a single cable 

vibration for the case of γ1=γ2=0.1, as compared to global 

mode vibration of the twin cable system (Fig. 2(a)). It can 

be concluded that the vibration would not be certainly more 

“local” as cross-link stiffness increases; on the contrary, it  

 

Fig. 6 Mode shapes of the first four mode of two unequal cables (λ2=1.25, f2=0.8, v2=1, ε1=0.25, ε2=0.1875) 
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could be more “global” for some specific cross-

linklocations, mode numbers and cross-link stiffness values. 

It could also be concluded that there is a significant 

difference of vibration mode as the parameters of the 

system change. Comparing Fig. 2(a) to Fig. 6(a) also shows 

an increment of frequency for two unequal cables as 

compared to twin cables. Parametric studies were carried 

out to address this point in the following. 

 

 

5. Parametric studies 
 
In this section, the parameters affecting the 1

st
 mode in-

plane non-dimensional frequency of a cable network with 

flexible cross-links will be discussed. These system 

parameters are the length ratio λ2, the position ratio ε1, the 

frequency ratio f2, the mass-tension ratio v2, and the cross-

link stiffness ratio γ2/γ1. When length ratio, position ratio, 

frequency ratio and mass-tension ratio were studied, four 

different cross-link stiffness were selected, γ1=γ2=0.1, 1.0, 

10 and 100, representing four different types of cross-links, 

as stated above. While the cross-link stiffness ratio was 

studied, the upper cross-link stiffness was γ1=0.1, 1.0, 10 

and 100. The other parameters were taken to be the same as 

those from Cheng and Ahmad (2013) so as to make the 

appropriate comparisons and study the effects of the lower 

cross-link fixed to ground. 

 

 

5.1 Length ratio  
 
Fig. 8 shows the change of the 1

st
 mode non-

dimensional frequency as the length ratio λ2 varies from 1 to 

2, when the upper cross-link is located at the quarter span of 

the upper cable, the frequency ratio f2=0.667 and the mass-

tension ratio v2=1. Non-dimensional frequency increases as 

length ratio increases, this trend being the same as the 

system of two cables with one cross-tie studied by Cheng 

and Ahmad (2013). However, there is one very small 

difference. Fig. 8 shows that the increments of non-

dimensional frequency are 0.1%, 2.2%, 2.8% and 0.5% 

when the non-dimensional cross-link stiffness are 0.1, 1.0, 

10 and 100, respectively, this as the length ratio increases 

from 1 to 2. However, the increment increases 

monotonically as reported in (Ahmad and Cheng 2013). It 

could also concluded that the length ratio only had a tiny 

effect on the 1
st
 mode non-dimensional frequency. Further 

study shows that the effects of length ratio decrease as the 

cross-link position moves from 1/4 span to 1/2 span, and 

when a cross-link was installed at 1/2 span, the 1
st
 mode 

non-dimensional frequency was independent of the length 

ratio. This phenomenon was the same as that observed in 

Cheng and Ahmad’s (2013) studies. 

 

 

 

 

Fig. 7 Mode shapes of the first four mode of two unequal cables (λ2=1.25, f2=0.8, v2=1, ε1=0.35, ε2=0.3125) 
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5.2 Position ratio  
 
Fig. 9(a) shows the change of the 1

st
 mode non-

dimensional frequency as the position ratio varies from 0.25 

to 0.5, when frequency ratio f2=0.667, mass-tension ratio 

v2=1 and length ratio λ2=1. It clearly shows an increasing 

trend for non-dimensional frequency as the position ratio 

increases. The increment of non-dimensional frequency 

increases monotonically as the cross-link stiffness 

increases. Fig. 9 shows that the increment of non-

dimensional frequency is 1.4%, 7.7%, 30.3% and 47.4% 

when the non-dimensional cross-link stiffness is 0.1, 1.0, 10 

and 100, respectively, as the position ratio increases from 

0.25 to 0.5. It could also be concluded that when the cross-

link stiffness is large, the position ratio had substantial 

effects on the non-dimensional frequency. There is some 

difference as compared to Cheng and Ahmad’s (2013) 

studies, as can be seen in Fig. 9(b); the effect on the 

position ratio changes is negligible as the length ratio 

increases from 1 to 1.8; but in Cheng and Ahmad’s (2013) 

studies, it changes significantly when the cross-link 

stiffness is large. 

 

5.3 Frequency ratio 
 
Fig. 10 shows the change of the 1

st
 mode non-

dimensional frequency as the frequency ratio varies from 0 

to 1, when cross-links are located at 1/3 span, the mass- 

 

 

 

tension ratio v2=1 and length ratio λ2=1.2. It clearly shows a 

decreasing trend for the non-dimensional frequency as the 

frequency ratio increases; this trend was the same as 

observed by Cheng and Ahmad (2013). However, Fig. 10 

shows the decrement does not increase monotonically when 

the cross-link stiffness increases; while Cheng and Ahmad 

(2013) reported that non-dimensional frequency decreased 

gradually and the decrement of non-dimensional frequency 

increases monotonically as the cross-link stiffness 

increases. The non-dimensional frequency decrease 0.014, 

0.094, 0.104 and 0.072 when the non-dimensional cross-

link stiffness are 0.1, 1.0, 10 and 100 as frequency ratio 

increases from 0 to 1. When cross-link stiffness is large 

(γ1=γ2=10, 100), the curves could be divided into two 

stages, the first stage is relative flat when the frequency 

ratio increase from 0 to 0.9, while the second stage is a 

rapid descending branch when the frequency ratio increase 

from 0.9 to 1. Further study shows the effects of frequency 

ratio decreases as cross-link position moves from 1/3 span 

to 1/2 span, and when cross-link was installed at 1/2 span, 

the effects of frequency ratio was insignificant.  

 
5.4 Mass-tension ratio 
 

Fig. 11 shows the change of 1
st
 mode non-dimensional 

frequency as mass-tension ratio varies from 0 to 2 when 

cross-links are located at 1/4 span, length ratio λ2=1.2 and 

frequency ratio f2=0.833. 

 

Fig. 8 Non-dimensional frequency vs. length ratio (λ2)(ε1=0.25, f2=0.667, v2=1, λ2=1~2) 

  
(a) λ2=1 (b) λ2=1.8 

Fig. 9 Non-dimensional frequency vs. position ratio (ε1) (f2=0.667,v2=1,ε1=0.25~0.5) 
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Fig. 10 Non-dimensional frequency vs. frequency ratio 

(f2)(ε1=1/3, v2=1, λ2=1.2, f2=0~1) 
 
 

 

Fig. 11 Non-dimensional frequency vs. mass-tension 

ratio (v2)(ε1=0.25, λ2=1.2, f2=0.833, v2=0~2) 
 
 

The variation of non-dimensional frequency as mass-

tension ratio increases was quite different from the system 

of two cables with one inter-link (Ahmad and Cheng 2013) 

in which the decrement of non-dimensional frequency 

increases monotonously as cross-link stiffness increases. 

The four curves are divided into two groups, with these 

corresponding to cross-link stiffness γ1=γ2 =0.1 and 1 show 

the decreasing trend, while the γ1=γ2 =10 and 100 show the 

increasing trend. Studies reveals the non-dimensional 

frequency and mode shape of the system are nearly 

independent from the mass-tension ratio when cross-link 

stiffness γ1=γ2 are around 5.7. The decreasing trend or 

increasing trend is obvious as mass-tension ratio increases 

from 0 to 0.5 and there is a relative flat as mass-tension 

ratio increases from 0.5 to 2. Further study shows the 

effects of mass-tension ratio change little as cross-link 

position moves from 1/4 span to 1/2 span of the upper 

cable. 
 
5.5 Cross-link stiffness ratio  
 
Fig. 12 shows the change of 1

st
 mode non-dimensional 

frequency as cross-link stiffness ratio varies from 0.01 to 

100 when cross-links are located at 1/4 span, length ratio 

λ2=1.5, frequency ratio f2=0.667 and mass-tension ratio v2=1. 

It clearly shows an increasing trend for non-dimensional 

frequency as cross-link stiffness ratio increases. As the non-

dimensional upper cross-link stiffness increases, the  

 

Fig. 12 Non-dimensional frequency vs. cross-link 

stiffness ratio (γ2/γ1)(ε1=0.25, λ2=1.5, f2=0.667, v2=1, 

γ2/γ1=0.01~10) 
 

 

increment of the non-dimensional frequency increases 

monotonically.  

Fig. 12 shows that when the upper cross-link stiffness is 

small (γ1= 0.1, 1), the effect of the cross-link stiffness ratio 

on non-dimensional frequency is not obvious. For an 

increased upper cross-link stiffness (γ1= 10, 100), the effect 

of the cross-link stiffness ratio on the non-dimensional 

frequency is more obvious, especially when the cross-link 

stiffness ratio increases from 0.01 to 3. Fig. 12 shows that 

the increment of the non-dimensional frequency is 6.7% 

and 10.3% when the non-dimensional upper cross-link 

stiffness are 10 and 100 and the cross-link stiffness ratio 

increases from 0.01 to 3. Further, the effects of cross-link 

stiffness ratio change little as the cross-link’s position 

moves from 1/4 span to 1/2 span. 

Comparing with the system of two cables with one inter-

link (Ahmad and Cheng 2013), it could be concluded that 

the effects of system parameters on the 1
st
 mode in-plane 

non-dimensional frequency are different, especially for the 

position ratio and mass-tension ratio. Increasing length 

ratio, position ratio and cross-link stiffness ratio, or 

decreasing frequency ratio, could improve the 1
st
 mode in-

plane non-dimensional frequency. The frequency and mode 

shape was nearly independent from the mass-tension ratio 

for a typical cross-link stiffness value; this phenomenon 

was also not observed for a two cables system with one 

cross-link (Ahmad and Cheng 2013). 
 

 
6. Conclusions 
 

This paper investigated vibration characteristics of a 

system of two-cables connected by an inter-supported 

cross-link with a lower cross-link extended to ground. The 

following conclusions could be drawn based on the above 

work: 

(1) For the system of two identical cables, it was effective 

to increase the even mode of the vibration frequency by 

increasing γ1 or γ2 individually. However, it was inefficient 

to increase the odd mode of vibration frequency by 

increasing γ1 or γ2 separately. 

(2) The vibration mode becomes local when the non-

dimensional spring stiffness increases and approaches 
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infinity; however, mode does not always change from 

“global” to “local” monotonically as cross-link stiffness 

increases. For a system of two identical cables, Θ may 

increase monotonically or Θ may decrease at first and then 

increase as the cross-link stiffness increases in certain 

locations. 

(3) The frequency increases monotonically when the two 

equal cross-links stiffness increases for twin cable system. 

It also varies in a predictable manner when the position 

ratio changes. 

(4) The vibration of two unequal cables system is more 

“local” than the vibration of a system of two identical 

cables, and it needs a larger cross-link stiffness to connect 

two different cables and vibrate together. The mode 

evolution becomes much more complex than that of the 

twin cables system for a system of two unequal cables. 

(5) The length ratio only had a tiny effect on the 1
st
 mode 

non-dimensional frequency. For other system parameters: 

position ratio, frequency ratio, mass-tension ratio and cross-

link stiffness ratio, when the cross-link stiffness was small, 

their effects were small. While using the more rigid cross-

link, they played more important roles in affecting the 1
st
 

mode in-plane non-dimensional frequency. It was also 

found that the effects of system parameters on the 1
st
 mode 

in-plane non-dimensional frequency is a bit different from 

the system without a lower cross-link. 
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