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1. Introduction 
 

The dynamic stability analysis and control of randomly 

and periodically parameter-excited systems is a significant 

research subject in engineering. For example, the large-

amplitude oscillation of cables in a cable-stayed bridge 

under support motion excitations such as deck disturbance 

is a parametrically excited vibration. The parametrically 

excited vibration of cables has the dynamic characteristics 

different from the conventional linear vibration, and the 

cable vibration stability is a main problem (Rega et al. 

1984, Iyengar and Rao 1988, Takahashi 1991, Perkins 1992, 

Costa et al. 1996, Gonzalez et al. 2008, Luongo and Zulli 

2012, Gattulli et al.  2002, Xia and Fujino 2006, 
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Warminski et al. 2016). The unstable cable vibration results 

in a large-amplitude oscillation which can damage the 

cable-bridge structure. Thus the cable vibration stability 

needs to be analyzed and controlled. In fact, the cable 

support motion excitations such as deck disturbance include 

random component and deterministic component due to the 

dominant mode vibration and wide-band vibration of the 

deck. The random and deterministic combined support 

motions yield a stochastically and periodically parameter-

excited cable stability problem. For the periodic parameter 

excitation, the parameter-excited systems can be expressed 

as the Hill equations or Mathieu equations with periodic 

time-varying parameters. The dynamic stability of the 

single Mathieu equation representing a single-degree-of-

freedom parameter-excited system has been studied well by 

using the Floquet theorem (Nayfeh and Mook 1979). 

Several approximate numerical approaches and analysis 

methods for the dynamic stability of the coupled Mathieu 

equations representing a multi-degree-of-freedom 

parameter-excited system have been proposed (Hsu and 

Cheng 1974, Sinha and Wu 1991, Friedmann 1990, Ying et 

al. 2009, Stupnicka 1978, Lee 1976). In particular, the 
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Abstract.  The stochastic stability control of the parameter-excited vibration of an inclined stay cable with multiple modes 

coupling under random and periodic combined support disturbances is studied by using the direct eigenvalue analysis approach 

based on the response moment stability, Floquet theorem, Fourier series and matrix eigenvalue analysis. The differential 

equation with time-varying parameters for the transverse vibration of the inclined cable with control under random and 

deterministic support disturbances is derived and converted into the randomly and deterministically parameter-excited multi-

degree-of-freedom vibration equations. As the stochastic stability of the parameter-excited vibration is mainly determined by the 

characteristics of perturbation moment, the differential equation with only deterministic parameters for the perturbation second 

moment is derived based on the Itô stochastic differential rule. The stochastically and deterministically parameter-excited 

vibration stability is then determined by the deterministic parameter-varying response moment stability. Based on the Floquet 

theorem, expanding the periodic parameters of the perturbation moment equation and the periodic component of the 

characteristic perturbation moment expression into the Fourier series yields the eigenvalue equation which determines the 

perturbation moment behavior. Thus the stochastic stability of the parameter-excited cable vibration under the random and 

periodic combined support disturbances is determined directly by the matrix eigenvalues. The direct eigenvalue analysis 

approach is applicable to the stochastic stability of the control cable with multiple modes coupling under various periodic and/or 

random support disturbances. Numerical results illustrate that the multiple cable modes need to be considered for the stochastic 

stability of the parameter-excited cable vibration under the random and periodic support disturbances, and the increase of the 

control damping rather than control stiffness can greatly enhance the stochastic stability of the parameter-excited cable vibration 

including the frequency width increase of the periodic disturbance and the critical value increase of the random disturbance 

amplitude. 
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direct eigenvalue analysis approach has been developed 

based on the Floquet theorem and harmonic balance 

method, which converts the periodically parameter-excited 

stability problem into an eigenvalue problem and 

determines the stability directly by eigenvalues (Takahashi 

1981, Ying et al. 2006). This approach has been applied to 

inclined stay cables with and without control as periodically 

parameter-excited multi-degree-of-freedom systems to 

obtain unstable regions (Ying et al. 2006, 2007). 

However, small random parameter excitations can result 

in a remarkable influence on the dynamic stability of 

parameter-excited systems. Thus the random parameter 

excitation is necessary to be considered for the stochastic 

and periodic combined parameter-excited vibration of 

cables (Bolotin 1984, Ibrahim 1985, Dimentberg 1988, 

Manohar and Ibrahim 1999, Zhou et al. 2010, Giaccu et al. 

2015). The stability of inclined stay cables under random 

and deterministic combined support motion excitations is a 

stochastically parameter-excited stability problem. The 

infinite hierarchy equations for the response moment of 

single-degree-of-freedom linear systems with Gaussian 

stationary parameter excitations have been presented, and 

the mean-square stability of the randomly parameter-excited 

systems was studied based on the hierarchy closure 

procedure (Bobryk et al. 2005, Bolotin 1984). The 

stochastic averaging method and the Lyapunov exponent 

combined with the perturbation method have been applied 

to the stability analysis of randomly parameter-excited 

systems which have harmonic and white noise excitations 

(Roberts and Spanos 1986, Lin and Cai 1994, Ariaratnam et 

al. 1991, Kozin and Zhang 1991, Namachchivaya 1991, Xie 

2006). These methods are presently difficult to be applied to 

the stochastic stability analysis of high-degree-of-freedom 

parameter-excited systems. Recently, a direct eigenvalue 

analysis approach to the stability of randomly and 

periodically parameter-excited systems with multi-degree-

of-freedom has been developed by the combination of the 

stochastic response moment stability and deterministic 

eigenvalue analysis approach (Ying and Ni 2017). 

Most researches on the cable vibration control are 

concentrated on the response reduction. The passive control 

of cable vibration responses has been studied largely, for 

example, by using supplemental dampers such as viscous 

oil damper, viscoelastic rubber damper and nonlinear 

magneto-rheological damper (Pacheco et al. 1993, Xu et al. 

1998, Krenk 2000, Main and Jones 2001, Wang et al. 2005). 

To reduce further responses, the active and semi-active 

controls (Soong and Spencer 2002, Spencer and 

Nagarajaiah 2003, Casciati et al. 2012, Nagarajaiah and 

Jung 2014, Or et al. 2008) of cable vibration responses have 

been studied based on the optimal control strategy (Fujino 

et al. 1993, Gehle and Masri 1998, Bossens and Preumont 

2001, Dyke et al. 1996, Symans and Constantinou 1999, 

Johson et al. 2003, Duan et al. 2005, 2006, Duan et al. 

2018, Duan et al. 2019). For example, the active boundary 

control modeled a controlled cable as bilinear system and 

then determined the control law according to the Lyapunov 

stability (Susumpow and Fujino 1995, Baicu et al. 1996). 

The semi-active control using magneto-rheological dampers 

determined the control law of cable vibration responses 

based on the clipped linear quadratic control strategy 

(Johson et al. 2003, Diouron et al. 2003, Wang et al. 2015). 

However, these researches on the response reduction 

considered the controlled cables as linear systems or self-

exciting systems. Several researches have considered the 

controlled cable as deterministically parameter-excited 

system and have discussed on the instability control of the 

inclined stay cable with magneto-rheological damper under 

periodic support motion excitations (Ying et al. 2007, Ouni 

et al. 2012). As the stability of inclined stay cables under 

random and deterministic combined support motion 

excitations is a stochastically parameter-excited stability 

problem, the stochastic stability analysis and control of the 

randomly and periodically parameter-excited cable 

vibration need to be studied further. 

In this paper, the stochastic stability control of the 

parameter-excited vibration of the inclined stay cable with 

multiple modes coupling under the random and periodic 

combined support motion excitations is studied by using the 

direct eigenvalue analysis approach based on the response 

moment stability, Floquet theorem, Fourier series and 

matrix eigenvalue analysis. First, the differential equation 

with time-varying parameters for the transverse vibration of 

the inclined cable with control under random and 

deterministic support disturbances is derived. By using the 

Galerkin method, the partial differential equation is 

converted into the ordinary differential equations which 

describe the stochastically and deterministically parameter-

excited multi-degree-of-freedom cable vibration. Second, 

for the stochastic stability, the differential equation for the 

perturbation second moment is derived based on the Itô 

stochastic differential rule, which is a deterministic matrix 

equation with only periodic time-varying parameters. The 

stochastically and deterministically parameter-excited 

vibration stability is converted into the response moment 

stability of the deterministic parameter-varying system. 

Third, based on the Floquet theorem, the periodic 

parameters of the perturbation moment equation and the 

periodic component of the characteristic perturbation 

moment expression are expanded into the Fourier series, 

and then the eigenvalue equation is obtained which 

determines the perturbation moment behavior. The 

stochastic stability of the parameter-excited controlled cable 

vibration under the random and periodic combined support 

disturbances is converted into the eigenvalue problem 

which is determined directly by the matrix eigenvalues. 

Finally, numerical results on the unstable regions of the 

controlled cable vibration under the random and periodic 

support disturbances with various excitation and control 

parameters are given to illustrate the stochastic stability of 

the multiple modes coupling vibration, the effects of the 

random and periodic support disturbances on the stochastic 

stability, and the control effectiveness of the stochastic 

stability by increasing the cable damping and stiffness. 

 

 

2. Randomly and periodically parameter-excited 
vibration equations of a controlled cable 

 

Engineering structures such as taut cables are induced 
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frequently the parameter-excited vibration by support 

disturbances, and their dynamic stability control is a 

significant problem. Consider an inclined stay cable with 

control under support disturbances as shown in Fig. 1. The 

differential equations of motion in plane of the cable can be 

expressed as (Irvine 1981, Ying et al. 2007) 
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(2) 

where u and v are respectively the horizontal and vertical 

cable displacements, m is the mass per unit length, c11, c12, 

c21 and c22 are damping coefficients, Ts is the static tension, 

E is the elastic modulus, A is the cross-sectional area,  is 

the nonlinear longitudinal strain, s, x and y are respectively 

the curvilinear, horizontal and vertical coordinates, fcx and 

fcy are respectively the horizontal and vertical control force 

components. The cable boundary conditions are 
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(4) 

where uA is the horizontal displacement of end A, vB is the 

vertical displacement of end B, subscripts d and r denote 

respectively deterministic and random components, L is the 

cable length, and t is the time variable. The cable vibration 

is caused by the support disturbances uA and vB. By using 

displacement transformations, eliminating the longitudinal 

cable displacement and neglecting small high-order 

displacement terms, the vibration equation for the 

transverse cable displacement vs can be derived from Eqs. 

(1) and (2) (Ying et al. 2006, 2007). The equation for the 

dimensionless transverse cable displacement w and the 

corresponding cable boundary conditions are given by 
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Fig. 1 An inclined sagged stay cable with control under 

support disturbances in plane 

0w ,  for 0z ;  0w ,  for 1z  (6) 

where w=vs/L, z=s/L, c is the damping coefficient, fv is the 

excitation dependent on support disturbances uA and vB, fc is 

the cable-transverse control force, and parameters 
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in which Tx is the horizontal static tension,  is the angle 

between axis y and AB, k2d and k2r are respectively the 

deterministic and random time-varying parameters due to 

the support disturbances. Eq. (5) is a partial differential 

equation with time-varying parameters, which describes the 

parameter-excited transverse vibration of the inclined cable 

under random and deterministic support disturbances. 

In general, the control force produced by a controller 

such as active mass damper or semi-active magneto-

rheological damper based on the optimal feedback strategy 

includes damping force and elastic force (Fujino et al. 1993, 

Krenk 2000, Ying et al. 2007). Under the energy equality, 

the control force can be expressed equivalently as 

)(δ)( ceqeqc zzwkwcf    (8) 

where ceq and keq are respectively the equivalent damping 

and stiffness coefficients,  is the Dirac delta function, and 

zc is the position coordinate of the control force. 

Substituting Eq. (8) into Eq. (5) yields the parameter-

varying differential equation for the controlled cable 
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By expanding displacement w based on the boundary 

conditions and using the Galerkin method, Eq. (9) can be 

converted into ordinary differential equations with time-

varying parameters. The matrix equation and displacement 

expansion are 
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where n is the modal number, qj is the j-th modal 

displacement, Q=[q1, q2, …, qn]
T
, F=[f1, f2, …, fn]

T
, C is the 

damping coefficient matrix including cable and controller 

parts, and parameter matrices 
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Eq. (10) describes the stochastically parameter-excited 

multi-degree-of-freedom vibration of the controlled inclined 

cable under random and deterministic support disturbances. 

The support disturbances are considered generally as the 

combination of periodic part and random part (Ying and Ni 

2017). Then the stiffness parameter k2d or Kd is the time 

function of period T, and the stiffness parameter k2r or Kr is 

the random process which is assumed as the linear 

combination of independent Gaussian white noises of two 

supports. The dynamic stability and control of the cable 

under random and periodic parameter excitations are an 

important problem to be studied. 
 
 
3. Response moment stability of parameter-excited 
controlled cable vibration 

 

The stability of parameter-excited multi-degree-of-

freedom system (10) is determined by the dynamic behavior 

of perturbation Qp of modal displacement Q. The 

differential equation for the perturbation can be obtained 

from Eq. (10) as 
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Eq. (13) describes the multi-degree-of-freedom perturbation 

behavior with random and periodic parameter excitations. 

For the stability analysis, the equation is rewritten in the 

following state equation 
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in which I is the identity matrix. Based on Eqs. (7), (12) and 

(15), the random parameter matrix can be expressed as 

Ar=Ar1A(t)+Ar2B(t), where Ar1 and Ar2 are constant 

matrices, A and B are respectively the independent 

Gaussian white noises with intensities DA and DB.  

Eq. (14) is a randomly and periodically parameter-

varying matrix differential equation for the perturbation. 

Based on the Itô stochastic differential rule, the equation 

can be converted into a stochastic differential equation and 

the Wong-Zakai correction terms need to be included due to 

the parametric white noise excitations (Bolotin 1984, 

Ibrahim 1985, Dimentberg 1988). By the expectation 

operation, the differential equation for the mean 

perturbation is obtained as 
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where E[] is the expectation operator, and As=Ad+(DA
2

1rA

+DB
2

2rA )/2 is the parameter matrix with period T. Eq. (16) 

is a deterministic differential equation with periodic 

parameters, and then the stability of the mean system is the 

same as the corresponding deterministic system under only 

periodically parametric excitations. The stability analysis of 

deterministic systems with periodic parameters has been 

given in references (Takahashi 1981, Ying et al. 2006). 

However, the stability of the randomly parameter-excited 

system is mainly determined by the characteristics of the 

perturbation moment. Based on the Itô stochastic 

differential rule, the differential equation for the product of 

perturbations is derived from Eq. (14) with the Wong-Zakai 

correction terms as 
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where WA and WB are the independent unit Wiener 

processes. The expectation operation of Eq. (17) yields 

T

22
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T
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where the symmetric matrix Y=E[XX
T
] is the second 

moment of perturbation X. Eq. (18) is a deterministic 

differential matrix equation with periodic parameters, which 

determines the perturbation second moment. 

For the stochastic stability analysis or the characteristics 

of the perturbation second moment, the direct eigenvalue 

analysis approach can be applied (Ying et al. 2006, Ying 

and Ni 2017). Rearrange matrix Y into vector V and Eq. 

(18) is rewritten as 

VBV )(td  (19) 

where V consists of independent elements in Y, and Bd is 

the parameter matrix with period T which is composed of 

elements in As, Ar1 and Ar2. The stochastic stability of 

system (14) is determined by the characteristics of the 

second moment Y or V, and V is determined by 

deterministic Eq. (19) with periodic parameters. Based on 

the Floquet theorem, the fundamental solution of Eq. (19) 

can be expressed as the product of periodic and exponential 

components (Ying et al. 2006, Nayfeh and Mook 1979). 

Expanding the periodic component and periodic parameters 

into the Fourier series yields 
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where  is a characteristic constant, =2/T is the 

parametric varying frequency, Dsj and Dcj are constant 

matrices, Csk and Cck are coefficient vectors. Substituting 

Eqs. (20) and (21) into Eq. (19) and balancing each 

harmonic term yield a series of algebraic equations. The 

equations are assembled into the following matrix equation 

0)( ZD cd
 (22) 

where TT

1

T

1

T

0 ],,,[ scc CCCZ   is a coefficient vector to 

be solved, matrix DID  cd
 depends on parameter , 

D  is composed of Dsj and Dcj, and I  is the identity 

matrix. For a non-trivial solution to Eq. (22), the 

determinant of matrix Dcd is equal to zero, that is, 

0 DI . Thus the  is an eigenvalue of matrix D . 

According to the above analysis, if the real part of one 

eigenvalue of D  has a positive value, then the moment 

vector V or matrix Y tends to infinity for t, perturbation 

X or Qp becomes boundless, and thus the modal 

displacement Q or stochastic system response is unstable; 

otherwise the stochastic system response is stable. 

Therefore, the stochastic stability of the parameter-excited 

vibration of the cable under random and periodic parameter 

excitations is determined directly by the eigenvalues of 

constant matrix D  in Eq. (22). The matrix eigenvalues 

can be obtained by using conventional numerical 

algorithms. The stochastic stability control of the cable 

under random and periodic parameter excitations can be 

analyzed by comparing the stabilities (or unstable regions) 

of the controlled and uncontrolled cables. 

As an example, consider an inclined stay cable in a 

cable-support bridge, which random and deterministic 

support disturbances are produced by the deck of end B and 

the tower of end A. In general, the support disturbance of 

end B is larger than the support disturbance of end A. Based 

on the test data, the dominant periodic vibration frequency 

of end A is twice that of end B (Ying et al. 2006), and the 

random disturbances of two ends are modeled as 

independent Gaussian white noises A and B. Then the 

dimensionless support disturbances can be expressed as 
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where 1, 2, 1 and 2 are the amplitudes of disturbance 

components,  is the phase difference, and  is the periodic 

disturbance frequency. For other cases, the above analysis 

method is still applicable and similar results can be 

obtained. Substituting Eq. (23) into Eq. (7) yields the 

deterministic and random time-varying parameters 
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By using parameters in Eq. (24), the parameter matrices in 

Eqs. (12) and (15) can be obtained finally. The stochastic 

stability of the inclined stay cable is determined by the 

characteristics of its perturbation second moment in Eq. 

(19). The characteristics of the second moment are 

determined by the eigenvalues of the constant matrix in Eq. 

(22). Thus the stochastic stability of parameter-excited 

vibration of the cable under random and periodic support 

disturbances is determined directly by the matrix 

eigenvalues, and then the stochastic stability control can be 

evaluated by comparing the controlled and uncontrolled 

cables. 

 

 

4. Numerical results on stability of parameter-
excited controlled cable vibration 

 
Consider the inclined stay cable with control as given 

above which has parameter values L=129.2 m, 

A=71.9710
4

 m
2
, =0.984 rad, m=58.9 kg/m, E=2.010

5
 

MPa, Tx=3300sin kN and =0.002 (modal damping ratio) 

(Ying et al. 2006). The random and periodic support 

disturbances have basic dimensionless parameter values 

1=1.510
3

, 2=0.0510
3

, 1=2=0, =0 and DA=DB=1. 

The control force has the equivalent damping ceq and 

stiffness keq, and the dimensionless position coordinate 

zc=0.92. The first five natural frequencies of the 

uncontrolled cable are 0.93, 1.83, 2.75, 3.66 and 4.58 Hz. 

Numerical results on the stochastic stability of the 

parameter-excited controlled cable vibration under the 

random and periodic support disturbances are given in Figs. 

2-17. 
For the uncontrolled cable with only the first mode 

considered, Fig. 2 shows the unstable region on the plane 

(, 1) of periodic support-disturbance frequency and 

amplitude (2=0.0510
3

), which consists of unstable points 

and is verified through numerical simulation. It is seen that 

the maximal unstable region is around the twice first 

frequency and the other unstable region around the 

fractional twice first natural frequency is very small. There 

is not the unstable region for the disturbance frequency 

larger than the third natural frequency under certain random 

support disturbance amplitude such as 2<0.0510
3

. 

However, the first several modes of the stay cable cannot be 

neglected based on the factual observation. For the 

uncontrolled cable with (e.g., first six modes) multiple 

modes considered, Fig. 3 shows the unstable region on the 

same plane (, 1), which is verified through numerical 
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simulation (2=0.0510
3

). It is obtained by comparing 

Figs. 2 and 3 that the multiple mode coupling enlarges 

remarkably the unstable region and makes the unstable 

region around the combination of natural frequencies 

produced. There is the unstable region for the disturbance 

frequency larger than the third natural frequency under 

certain random support disturbance amplitude. Figs. 4 and 5 

show the unstable regions on the plane (, 2) of periodic 

support-disturbance frequency and random support-

disturbance amplitude for the uncontrolled cable with the 

first mode and multiple modes considered, respectively 

(1=1.510
3

). It is obtained again by comparing Figs. 4 

and 5 that the multiple mode coupling enlarges remarkably 

the unstable region. In particular, Fig. 5 illustrates that there 

is a lower bound (e.g., 2=0.0610
3

) of the unstable region 

of the uncontrolled cable with multiple modes for wide 

periodic support-disturbance frequency, that is the critical 

value of random disturbance amplitude (2) of the 

completely stochastic instability. Thus the stochastic 

stability of the parameter-excited cable vibration under the 

random and periodic support disturbances depends mainly 

on the random disturbance amplitude larger than the critical 

value, and also depends mainly on the periodic disturbance 

frequency and amplitude when the random disturbance 

amplitude is smaller than the critical value. The stay cable 

with the first mode considered overestimates the stochastic 

stability, and then the multiple modes need to be considered 

for the cable stability analysis. 

The active and semi-active feedback controls can 

produce artificial damping and then provide largely 

supplemental damping for the controlled cable. For the 

equivalent damping coefficient rising to eq=0.01, Fig. 6 

shows the unstable region on the plane (, 1) of periodic 

support-disturbance frequency and amplitude for the 

controlled cable with multiple modes under the random and 

periodic support disturbances (2=0.0510
3

). For the 

equivalent damping coefficient eq=0.05, Fig. 7 shows the 

unstable region on the same plane (, 1) for the controlled 

cable with multiple modes under the random and periodic 

support disturbances (2=0.0510
3

). It is obtained by 

comparing Figs. 3, 6 and 7 that the unstable region 

including lower bound and frequency width is reduced 

largely by the increase of the equivalent control damping as 

shown in Fig. 8. Figs. 9 and 10 show the unstable regions 

on the plane (, 2) of periodic support-disturbance 

frequency and random support-disturbance amplitude for 

the controlled cable under the random and periodic support 

disturbances with the equivalent damping coefficient 

eq=0.01 and eq=0.05, respectively (1=1.510
3

). It is 

obtained again by comparing Figs. 5, 9 and 10 that the 

unstable region is reduced largely by the increase of the 

equivalent control damping. The lower bound of the 

unstable region for wide periodic disturbance frequency in 

Fig. 5 or the critical value of random disturbance amplitude 

(2) of the completely stochastic instability is heightened by 

the increase of the equivalent control damping. Thus the 

feedback control as damping force can greatly enhance the 

stochastic stability of the parameter-excited cable vibration 

under the random and periodic support disturbances. 

The active and semi-active feedback controls can also 

provide supplemental stiffness for the controlled cable. For 

the equivalent stiffness coefficient keq=0.1k1 and keq=0.2k1 

[k1 is a stiffness coefficient given in Eq. (7)], Figs. 11 and 

12 show the unstable regions on the plane (, 1) of 

periodic support-disturbance frequency and amplitude for 

the controlled cable with multiple modes under the random 

and periodic support disturbances, respectively 

(2=0.0510
3

). Fig. 13 shows the comparison of the 

unstable regions for the controlled cable with the equivalent 

stiffness coefficient keq=0.1k1 and keq=0.2k1 and the 

uncontrolled cable with keq=0. It is seen that the increase of 

the equivalent control stiffness can heighten slightly the 

lower bound of several unstable sub-regions at lower 

frequency band, but diminish remarkably the critical value 

of random disturbance amplitude (2) of the completely 

stochastic instability. Figs. 14 and 15 show the unstable 

regions on the plane (, 2) of periodic support-disturbance 

frequency and random support-disturbance amplitude for 

the controlled cable under the random and periodic support 

disturbances with the equivalent stiffness coefficient 

keq=0.1k1 and keq=0.2k1, respectively (1=1.510
3

). It is 

obtained by comparing Figs. 5, 14 and 15 that the critical 

value of random disturbance amplitude (2) of the 

completely stochastic instability is reduced nonlinearly (e.g. 

from 2=0.0610
3

 to 2=0.0510
3

) by the increase of the 

equivalent control stiffness. For certain equivalent stiffness, 

the critical value of the completely stochastic instability is 

insensitive to the stiffness change and several unstable sub-

regions at lower frequency band can be reduced. Thus the 

stiffness of the feedback control needs to be designed 

suitably for the stochastic stability of the parameter-excited 

cable vibration under the random and periodic support 

disturbances. 
For the feedback control including both the equivalent 

damping eq=0.01 and equivalent stiffness keq=0.1k1, Fig. 16 

shows the unstable region on the plane (, 1) of periodic 

support-disturbance frequency and amplitude for the 

controlled cable with multiple modes under the random and 

periodic support disturbances (2=0.0510
3

). Fig. 17 

shows the comparison of the unstable regions for the 

controlled cable with the equivalent damping eq=0.01 and 

equivalent stiffness keq=0.1k1, only the equivalent stiffness 

keq=0.1k1 and only the equivalent damping eq=0.01. It is 

seen that the unstable region is reduced and in particular, 

the critical value of the completely stochastic instability is 

heightened by the increase of the equivalent control 

damping rather than the equivalent control stiffness. The 

combination of the equivalent control damping and stiffness 

can reduce further unstable sub-regions at certain frequency 

band. Thus the feedback control by supplemental damping 

can greatly increase the stochastic stability of the 

parameter-excited cable vibration under the random and 

periodic support disturbances. The supplemental stiffness of 

the feedback control needs to be designed suitably for 

increasing further the stochastic stability of the parameter-

excited cable vibration. 
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Fig. 2 Unstable region on the plane (, 1) of the 

uncontrolled cable with single mode under random and 

periodic disturbances (2=0.0510
3

) 

 
 

 

Fig. 3 Unstable region on the plane (, 1) of the 

uncontrolled cable with multiple modes under random 

and periodic disturbances (2=0.0510
3

) 

 
 

 

Fig. 4 Unstable region on the plane (, 2) of the 

uncontrolled cable with single mode under random and 

periodic disturbances (1=1.510
3

) 

 

 

 

Fig. 5 Unstable region on the plane (, 2) of the 

uncontrolled cable with multiple modes under random 

and periodic disturbances (1=1.510
3

) 

 
 

 

Fig. 6 Unstable region on the plane (, 1) of the 

controlled cable with multiple modes under random and 

periodic disturbances (2=0.0510
3

, eq=0.01) 

 
 

 

Fig. 7 Unstable region on the plane (, 1) of the 

controlled cable with multiple modes under random and 

periodic disturbances (2=0.0510
3

, eq=0.05) 
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Fig. 8 Unstable region on the plane (, 1) of the 

controlled cable compared with the uncontrolled cable 

(2=0.0510
3

) (solid line: eq=0.05; dashed line: 

eq=0.01; dotted line: =0.002) 

 
 

 

Fig. 9 Unstable region on the plane (, 2) of the 

controlled cable with multiple modes under random and 

periodic disturbances (1=1.510
3

, eq=0.01) 

 
 

 

Fig. 10 Unstable region on the plane (, 2) of the 

controlled cable with multiple modes under random and 

periodic disturbances (1=1.510
3

, eq=0.05) 

 

 

Fig. 11 Unstable region on the plane (, 1) of the 

controlled cable with multiple modes under random and 

periodic disturbances (2=0.0510
3

, keq=0.1k1) 

 
 

 

Fig. 12 Unstable region on the plane (, 1) of the 

controlled cable with multiple modes under random and 

periodic disturbances (2=0.0510
3

, keq=0.2k1) 

 
 

 

Fig. 13 Unstable region on the plane (, 1) of the 

controlled cable compared with the uncontrolled cable 

(2=0.0510
3

) (solid line: keq=0.2k1; dashed line: 

keq=0.1k1; dotted line: keq=0) 
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Fig. 14 Unstable region on the plane (, 2) of the 

controlled cable with multiple modes under random and 

periodic disturbances (1=1.510
3

, keq=0.1k1) 

 
 

 

Fig. 15 Unstable region on the plane (, 2) of the 

controlled cable with multiple modes under random and 

periodic disturbances (1=1.510
3

, keq=0.2k1) 

 
 

 

Fig. 16 Unstable region on the plane (, 1) of the 

controlled cable with multiple modes under random and 

periodic disturbances (2=0.0510
3

, eq=0.01, keq=0.1k1) 

 

 

 

Fig. 17 Unstable region on the plane (, 1) of the 

controlled cable with various control damping and 

stiffness (2=0.0510
3

) (solid line: eq=0.01, keq=0.1k1; 

dashed line: =0.002, keq=0.1k1; dotted line: eq=0.01, 

keq=0) 

 
 
5. Conclusions 

 

The stochastic stability control of the parameter-excited 

vibration of the inclined stay cable with multiple modes 

coupling under the random and periodic combined support 

disturbances has been analyzed by using the direct 

eigenvalue analysis approach based on the response 

moment stability, Floquet theorem, Fourier series and 

matrix eigenvalue analysis. The differential equation with 

time-varying parameters for the transverse vibration of the 

inclined cable with control under random and deterministic 

support disturbances has been derived and converted into 

the ordinary differential equations for the stochastically and 

deterministically parameter-excited multi-degree-of-

freedom vibration. The dynamic stability of the randomly 

parameter-excited system is mainly determined by the 

characteristics of the perturbation moment. The differential 

equation with only deterministic parameters for the 

perturbation second moment has been derived based on the 

Itô stochastic differential rule, and then the stochastically 

and deterministically parameter-excited vibration stability is 

transformed into the deterministic parameter-varying 

response moment stability. Based on the Floquet theorem 

and Fourier series, the eigenvalue equation has been derived 

from the periodically parameter-varying equation for the 

perturbation second moment. Thus the stochastic stability of 

the parameter-excited cable vibration under the random and 

periodic combined support disturbances is determined 

directly by the matrix eigenvalues. The direct eigenvalue 

analysis approach to the stochastic stability of the controlled 

cable with multiple modes coupling under the random and 

periodic combined support disturbances has the following 

main advantages: (a) the stochastically and periodically 

parameter-excited stability of cables with multiple modes 

coupling can be determined directly by the resulting matrix 

eigenvalues; (b) the parameter-excited stability of cables 
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under various periodic and/or random support disturbances 

can be analyzed uniformly. 

Numerical results on unstable regions of the parameter-

excited cable vibration under the random and periodic 

support disturbances have illustrated that: (a) the multiple 

cable modes need to be considered for the stochastic 

stability of the parameter-excited vibration under the 

random and periodic support disturbances; (b) the stochastic 

stability of the parameter-excited cable vibration under the 

random and periodic support disturbances depends mainly 

on the random disturbance amplitude for larger random 

disturbance and depends mainly on the periodic disturbance 

frequency and amplitude for smaller random disturbance; 

(c) the increase of the control damping can largely reduce 

the unstable region of the parameter-excited cable vibration 

under the random and periodic support disturbances and 

greatly enhance the stochastic stability; (d) the increase of 

the control stiffness can nonlinearly diminish the critical 

value of the random disturbance amplitude and reduce the 

completely stochastic instability, but the suitable 

combination of the control damping and stiffness can 

increase further the stochastic stability of the parameter-

excited cable vibration for the periodic support disturbance 

in certain frequency band. 
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