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1. Introduction 
 

Cables are major load carrying members of a cable 

supported bridge, which are vulnerable to material 

degradation and structural damage due to severe 

environmental and operational loads during their long life 

span. The structural health monitoring (SHM) system for a 

cable supported bridge generally includes sensors on the 

cables as well as on the bridge deck to ensure the structural 

integrity, public safety, and smooth traffic operation. The 

cable monitoring has focused on the cable tension, which is 

an effective indicator for the integrity of the cable and the 

bridge. Vibration methods have been commonly used, 

where the tension force can be estimated based on the 

natural frequencies of the cable obtained from the 

acceleration response (Cho et al. 2010a, b, Jang et al. 2010, 

Kim et al. 2013, Chen et al. 2016, Ding et al. 2016). 

However, those methods frequently suffer from large 

estimation errors. Recently, elasto-magnetic sensors (Yim et 

al. 2013, Cho et al. 2013) and elasto-magneto-electric 

sensors (Duan et al. 2011, 2012, 2016, Zhang et al. 2014, 

2018) were developed and successfully applied to the cable 

tension measurements with relatively high accuracy.  

However, those methods require special sensor systems 

with high cost. A guided wave method using magneto-

strictive sensors was recently presented and proven to be 

effective for damage localization in cables (Zhang et al.  
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2018), but its performance was not satisfactory for 

identification of damage severities. 

In this study, a method for identification of multiple 

damages in bridge hangers is presented, which can be easily 

integrated into a conventional global monitoring system of 

the bridge structure. Acceleration responses at the cable 

anchorage points along the deck are used, so that no special 

sensor systems are needed. A convolutional neural network 

(CNN) technique is employed for automated operation 

using raw measurement data without complex and time-

consuming procedures for extracting of engineering features 

related to the damage, such as the modal properties (Yun 

and Bahng 2000, Sekhar 2004, Jin et al. 2014). Fourier 

amplitude spectra (FAS) of the acceleration responses were 

used as an input to the CNN, because the modal properties 

are much more apparent in the FAS data than in the time-

history data. 

The CNN is a kind of machine learning (ML) methods, 

which have been actively developed for pattern recognition 

and feature extraction in recent decades (Hubel and Wiesel 

1968, LeCun et al. 1989, 2015, Erhan et al. 2009, Scherer et 

al. 2010). Early researches on the application of ML in 

SHM focused on the ML algorithms like neural network 

(NN), sparse coding, and autoencoder. Many works on the 

ML algorithms for the SHM demonstrated their impressive 

ability of feature extraction for the damage identification. 

Yun and Bahng (2000) and Lee et al. (2005) presented NN-

based approaches to damage identification for beam and 

frame structures using the modal properties. Min et al. 

(2012) used the NN for damage identification at bolted 

joints using mechanical impedance signals. Guo et al. 

(2014) employed a sparse coding to enhance the  
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classification performance of NN for condition assessment 

of a bridge structure using acceleration data. Pathirage et al. 

(2018) presented an autoencoder based framework for 

structural damage identification using the modal data. 

Arangio and Bontempi (2015) introduced Bayesian neural 

networks for damage identification of a cable-stayed bridge 

from acceleration responses. With the enhancement of the 

computer technologies in hardware and software, deep 

learning (DL) algorithms become hot subjects in ML. Deep 

learning is a class of ML algorithms which typically consist 

of multiple layers of nonlinear processing units for feature 

extraction and transformation (Deng and Yu 2014). The 

CNN is the most famous DL algorithm for the outstanding 

performance in the computer vision. It generally includes 

convolution, pooling, and fully-connected layers. 

Abdeljaber et al. (2017) applied the CNN to damage 

identification in a steel frame. Cha et al. (2017) presented a 

CNN-based algorithm for crack detection on a surface of 

concrete structure. Kim et al. (2018) also proposed a CNN-

based methodology for identifying concrete cracks from 

crack-like noisy patterns. Lin et al. (2017) proposed a CNN 

to estimate the damage locations and severities in a beam 

structure using acceleration time-history responses. 

A numerical simulation study was carried out for 

multiple damage identification in hangers using a CNN with 

ambient wind vibration data. Bridge responses were 

generated using the simulated wind forces on the bridge 

under the daily wind condition, and used as the training and 

testing samples for the CNN. The vector form intrinsic 

finite-element (VFIFE) method (Ting et al. 2004, Duan et 

al. 2014, 2018, 2019, Yuan et al. 2018) was used to speed 

up the response calculations in generating numerous 

samples for different wind speeds and damage states. The 

CNN analyses were carried out using TensorFlow machine 

learning frame work (Abadi et al. 2015). The performance 

of the current CNN using FAS data was evaluated in 

comparison with the other methods, such as a CNN using 

time-history data and a traditional NN using FAS for 

various damage states. Robustness of the present CNN were 

investigated under various observational noise levels and 

wind speeds. 

 

 

 

 

2. Theory of convolutional neural networks 
 

Convolutional neural networks (CNNs) are biologically-

inspired variants of neural networks (NNs) for pattern 

recognition (Liang et al. 2018). It was inspired by the 

animal visual cortex which is sensitive to small sub-regions 

of the visual field. To cover the whole visual field, the sub-

regions are tiled and the cells in the cortex operate as local 

filters (Hubel and Wiesel 1968). Inspired by the visual 

nervous system, Fukushima (1980) proposed an improved 

neural network model, which is considered the foundation 

of the present CNN. With the rapid improvement of 

computer performance in recent decades, various kinds of 

deep CNN have been proposed with multiple hidden layers 

for many different pattern recognition problems. 

The CNN architecture used in this study is shown in 

Fig. 1, and is designed for identification of multiple 

damages in a tied-arch bridge. The present CNN consists of 

two convolution layers, a pooling layer, and two fully-

connected layers. The training procedure has basically two 

steps: the forward propagation (FP) for calculating the loss 

and the back propagation (BP) for computing the gradients 

and updating the parameters in the network. 

 

2.1 Architecture of the CNN 
 

2.1.1 Convolution layers 
In the CNN, the convolution layer is for operations that 

compute the convolutions of the input and a kernel. A 

convolution layer consists of input (the feature maps in the 

previous layer), convolution kernels, bias, an activation 

function, and output (the feature map extracted by the 

kernel). 2-D kernels are used in this study because the input 

for the example analyses is a 9*1024 matrix representing 

the frequency responses (Fourier amplitude spectra: FAS) at 

9 locations on the bridge deck (as shown in Section 3, 

later). 

The convolution operation in the CNN is defined as 

( , ) ( , )K( , )
m n

S i j I i m j n m n  
 

(1) 

 

 

Fig. 1 An example of the CNN architecture 
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Fig. 2 Activation functions 

 

 

where I is the input matrix and K is the kernel. A same 

kernel is applied along the length and width of an input to 

construct a feature map, whereas different kernels are used 

for different feature maps. Biases are added to the results of 

the convolution operation before the activation function, 

and zero padding is applied to preserve the information at 

the edges of the input matrix. The reasons for using the 

same kernel is twofold. On the one hand, in a matrix data 

like an image, values in a local group are often highly 

correlated, forming distinctive local motifs that are easily 

detected. On the other hand, some local image statistics are 

invariant to locations, which leads to the idea of using same 

filter (kernel) throughout an input matrix to detect the 

invariant feature (LeCun et al. 2015). The parameters 

(weights and biases) of kernels are updated through BP 

operations in the CNN. 

 

2.1.2 Pooling layer 
The pooling layer in the CNN down-samples the output 

of a convolution layer (Erhan et al. 2009, Hubel and Wiesel 

1968, Scherer et al. 2010). The function of this layer is to 

semantically merge similar features so that small shifts can 

be withstood, noises can be reduced, the dimension of the 

representation can be reduced (Krizhevsky et al. 2012), and 

thereby effectively prevent overfitting. The most commonly 

used pooling in the CNN is the max pooling, which picks 

the maximum value in the region it covers. Max pooling is 

used in this paper and the size of the pooling region is taken 

as 1*4. 

 

2.1.3 Fully-connected layers 
The last few layers in the CNN are usually taken as 

fully-connected layers. Like the conventional NN, the 

receptive field for those layers covers every neuron in the 

next layer. First, the 3-dimensional features after the 

convolution and pooling operations are arranged into a 

vector. Then a fully-connected NN with a hidden layer is 

applied to map the features to the label space with the true 

values. Nonlinear activation functions are introduced to the 

neurons in each layer and the parameters, including 

synaptic weights and biases, are updated by the BP 

operation. 

 

2.2 Activation functions, loss function, and Mini-batch 
 
2.2.1 Activation functions 
Activation functions are employed to the neurons in 

each layer to introduce nonlinear mapping. However, if the 

gradients of the activation functions in each layer are 

between 0 and 1, the gradients computed by the BP in the 

first few layers become extremely small. This phenomenon 

is called „Vanishing Gradient‟, which may cause difficulty 

in training a deep NN with many layers as in the CNN. The 

most frequently used activation functions to solve this 

problem are Relu and Leaky Relu, whose slopes are always 

1 for positive input and zero or a small positive value (α) 

for negative input as in Fig. 2. In this paper, Leaky Relu is 

chosen as the activation function for all the hidden layers, 

whereas Sigmoid is used for the last output layer. The value 

of α is a hyperparameter to be pre-determined by a 

parametric study. 

 

2.2.2 Loss function 
A loss function is used to evaluate the prediction error in 

the last output layer as 

2

1

1 1 1
( )

n

i ij ij

i i j

L L f y
N N n 

 
   

 
  

 

(2) 

where Li is the loss for the ith sample, which is taken as a 

mean square error (MSE). N is the number of training 

samples in a batch. yij is the jth output representing the jth 

element-level damage index in the ith training sample in a 

batch, fij is the true value in the label, and n is the number of 

the elements for damage identification. The loss function is 

used in the training and validating processes. 

 

2.2.3 Back propagation, mini-batch, and parameters 
Back propagation is a way to compute the gradients in 

the CNN operations for updating the parameters. In this 

study, the mini-batch gradient descent algorithm (Dekel et 

al. 2012) is used, where the loss is computed for each mini-

batch instead of all the training samples, so that the 

computational efficiencies can be improved drastically. 

Batch normalization (Ioffe and Szegedy 2015) and drop-out 

(Srivastava et al. 2014) are used to prevent overfitting in  

this study, as described in Appendix I. Parameters to be 

updated include weights and bias in the convolutional and 

fully-connected layers, and two parameters (γ, β) in the 

batch normalization. The initial values of the weights are  

 

 

 

Fig. 3 A tied-arch bridge model 
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Table 1 Material properties and geometric parameter 

Component Arch rib 
Main 

girder 
Hanger 

Material C50 C40 1860 strand 

Elastic modulus (Pa) 3.45*1010 3.25*1010 1.95*1011 

Poisson's ratio 0.2 0.2 0.3 

Mass density (kg/m3) 2549 2549 8005 

Sectional area (m2) 1.2 6 0.00567 

Section moment of 

inertia (m4) 
0.2488 0.625 - 

Section Height (m): H 1.4 1 - 

Section Width (m): B  1.2 8 - 

 

chosen using the He initial (He et al. 2015). 

Hyperparameters to be pre-determined as fixed values 

include the number of layers, the sizes of the convolution 

and pooling kernels, the number of neurons in each fully-

connected layer, mini-batch size, learning rate, and 

retaining probability for drop-out. 

 

 

3. Numerical example 
 
3.1 Modeling of the arch bridge 
 
A tied-arch bridge with 9 vertical hangers is considered 

in this numerical simulation study. The main span is 70m 

and the rise of arch is 15 m. A 2-D structural model was 

built using the vector form intrinsic finite-element (VFIFE) 

method as in Fig. 3, which was developed and verified in 

various example analyses for dynamic interaction problems 

(Duan et al. 2018), progressive collapse (Duan et al. 2014), 

and crack propagation (Duan et al. 2017). The material 

properties and geometric parameters are listed in Table 1. In 

this VFIFE model, the arch and girder elements behave as 

beams, whereas the hangers behave as cables with tensions 

due to the static load and the dynamic response. The bridge 

model consists of 30 beam elements and 9 cable elements. 

 

3.2 Simulation of wind forces 
 

To simulate the realistic bridge vibration, typical daily 

wind forces are considered in this study. Vertical 

acceleration responses of the bridge are computed for the 

lift force. The lift wind forces are calculated along the 

bridge as (Simiu and Scanlan 1996) 

21 (x, t) (x, t)
( , ) 2 ( ) ( ( ) C )

2
L L L L D L

u H w
F x t U B C C

U B U
    

 
    

 

 
(3) 

where U  denotes the mean horizontal wind speed; (x, t)u

and  (x, t)w  denotes the simulated fluctuating wind 

velocity components in the lateral and vertical directions; H 

denotes the height and B denotes the width of the girder (or 

arch); 
L denotes aerodynamic admittances; 

LC , 
DC , and 

( )LC   denote the static wind coefficients. In this study, 

L , 
LC , 

DC , and ( )LC   are taken as 1.0, -0.320, 0.943 

and 0.129 (Wang 2018). The procedure for the wind 

velocity simulation is summarized in Appendix II. 

Daily wind speeds between 5 and 10 m/s were mainly 

considered in this study. For training sets, three cases of 

mean wind speed U are considered: 5, 8 and 10 m/s. For 

each mean wind speed, 50 different sets of wind forces 

were computed at 18 nodes on the bridge (anchorage points 

of 9 cables on the deck and arch) considering the spatial 

correlation of the wind velocity fluctuations. 

Fig. 4 shows example time-histories of the simulated 

vertical wind velocity at different nodes on the bridge deck. 

The time-histories of Node 2 and 3 (which are 7 m apart) 

look similar, and they are quite different from the one at 

Node 10 (which is 56 m from Node 2), due to the spatial 

correlation of wind velocities. For testing, 150 sets of wind 

forces were newly generated for 3 wind speeds considered 

in the training sets, and another 150 sets were simulated for 

3 other wind speeds of 3, 7 and 15 m/s. 

 

3.3 Simulation of bridge response 
 
3.3.1 Time-history of acceleration responses 
The vertical acceleration responses of the bridge shown 

in Fig. 3 were computed using the VFIFE method. The time 

step for the VFIFE was taken as s4105 , to ensure the 

stability in the response computation, whereas the responses 

to be used as training samples were down-sampled to 100 

Hz. The modal properties of this VFIFE analysis were  

obtained from the computed responses using the frequency 

domain decomposition (FDD), because the global stiffness 

matrix was not constructed in this method. The modal 

properties were found to be almost identical to those of a 

FE analysis using Midas (2017) as in Table 2 and Fig. 5. 

The time duration for each response is 20.48 seconds with 

2048 data points. Acceleration response data at Nodes 2-10 

on the main girder were used for CNN-based damage 

identification. 

 

3.3.2 Fourier amplitude spectra of the responses 
As the change in the modal properties reveals the 

degradation in the structure more clearly, time-history 

responses were converted into the frequency domain. With 

a time-history data of 20.48 s, the frequency resolution of 

the fast Fourier transform (FFT) results was 0.049 Hz. 

 

 

Fig. 4 Examples of vertical wind velocities at 3 nodes on 

the deck ( =7 /U m s ) 
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Fig. 5 Mode shapes of the-arch bridge 

 

 

Table 2 Natural frequencies (cycle/sec) and MAC values 

Mode 

numbers 

Frequencies 

by VFIFE 

Frequencies 

by Midas 

Relative 

Errors 
MAC 

1 1.465  1.469  0.27% 

 

1.000 

2 2.542 2.531  0.43% 1.000 

3 4.237  4.223  0.33% 1.000 

4 5.912  5.893  0.32% 1.000 

5 9.259 9.186  0.79% 0.963 

6 9.308 9.295  0.14% 0.919 

Notes: MAC indicates the modal assurance criteria 

 

 

To reduce the leakage of the spectrum and eliminate the 

effect of random noises, the moving Hanning windows w(t) 

shown in Eq. (6), were applied with a window (T) of 5.12 s  

and a time shift of 1.28 s before the FFT (Chen and Mei 

2010), and the results of the FAS were averaged. 
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(4) 

The FAS at 9 nodes were used for the input matrix to 

the CNN, whose size was 9*1024. Min-max normalization 

(Eq. (7)) was carried out on each matrix to keep the FAS 

amplitudes at the same level, which benefitted the CNN 

training, as 

,

,,

( ) min{ ( )}
ˆ

max{ ( )} min{ ( )}

m n m n
m n

mn

m n m n
m nm n

F F
f

F F

 

 





 

(5) 

where ( )m nF   are the FAS for the response at the mth node 

and 
n ; ˆ

mnf  is the normalized value of ( )m nF  ; and 

,
max{ ( )}m n

m n
F   and 

,
min{ ( )}m n

m n
F   are the maximum and 

minimum values across two indices of m and n. The flow 

chart of the sample generation is shown in Fig. 6. 

 

3.3.3 Simulation of different damage 
Damage in a hanger is represented by a decrease in the 

cross-sectional area. Accordingly, the elemental-level 

damage index is defined as the ratio of the decrease in the 

cross-section. In the simulation, element-level damage 

indices for 9 hangers were taken to be in the range of 0.0 to 

0.5, while the maximum number of damaged hangers was 

limited to 3. 

 

3.4 CNN architecture 
 
The CNN models used in this study were built with 

TensorFlow, which is an open-source software library 

developed by Google (Abadi et al. 2015). A numerical  

simulation study was conducted using a high-performance 

cluster at the Institute of Transportation Engineering, 

Zhejiang University. The cluster contained five servers, 

including one management node with 128-Gb of memory 

and four computing nodes with 24-Gb of memory. The 

performance of each node was boosted by hyper-threading. 

We used Python 2.7 and TensorFlow 1.8.0 in this study. 

Multiple damages that occurred in different hangers of the 

tied-arch bridge model were identified. 

 The vertical acceleration responses (FAS) at 9 nodes 

were arranged as an input matrix to the CNN for each 

damage case. To train the CNN, the labels in each damage 

case were assigned with the damage values in the last 

output layer. Each label is a vector with size 9 representing 

the damage indices (0 – 0.5). The loss function at the last 

output layer is the mean square error (MSE: Eq. (4)), which 

is most widely used in regression problems. 

For training, damage indices were taken as one of 0, 0.1, 

0.2, 0.3, 0.4, and 0.5. Assuming damages occurred at a 

maximum of 3 hangers, 11450 damage cases are generated 

including all possible combinations of element damage 

indices. 10000 randomly selected cases were used for 

training, and the rest were used for validation. Training was 

carried out for a mini-batch consisting of 128 sample cases 

selected randomly from the 10000 cases at each iteration. 

Table 3 shows the parameters for the training process. The 

size of each convolution kernel was chosen as 3*7, 

considering the dimension of the input matrix of 9*1024. 

Similarly, the size of the kernel for the pooling layer was 

taken as 1*4. 

 

 

4. Numerical results and discussions 
 

4.1 Training and testing results 
 
The loss was calculated in terms of MSE (Eq. (4)) for 

1450 sets of validation samples during training, and BP was 

conducted once in each iteration with a mini-batch. The loss 

for validation was found to be as small as 1.86×10-4 after 

training as shown in Fig. 7. It took about 510 min. for 

training with 10000 iterations by the computer cluster at 

Zhejiang University described in Section 3.4. 
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Fig. 7 Loss vs. iteration for CNNs and NN 
 
 

Testing was primarily carried out for two wind force 

data sets with different mean wind speeds. Testing Set 1 

included the newly generated wind forces but at the same 

mean wind speeds U  used in the training set. Testing Set  

 

 

 

 

 

2 included wind forces at different wind speeds: 3, 7 and 15 

m/s. The damage indices for the testing samples were taken 

differently from those for training examples as 0, 0.05, 0.15, 

0.25, 0.35, and 0.45. For comparative evaluation of the 

current CNN, the damage conditions were classified into 3 

damage states: minor, moderate, and severe. The maximum 

damage index of hangers for minor damage were in the 

range 0-0.1. The maximum damage index in the moderate 

and severe damage states were taken as 0.1-0.3 and 0.3-0.5 

respectively. For instance, if the label for one sample is  

[0.1,0,0,0,0,0.3,0,0,0.2], the damage state for this sample is  

moderate damage as the maximum damage index is 0.3, 

which is in the range 0.1-0.3. Each testing set consisted 

17500 sample cases, including 2500 for the minor damage 
state and 7500 each for the other two damage states. 

Example results of the predicted damage indices are shown 

for various damage states in Fig. 8, which indicates 

excellent damage identification performance of the 

presented CNN. 
 

Iteration

Lo
ss

Table 3 CNN parameters for training process 

Layers Input size 
Activation  

functions 
Output size 

Kernel  

size: 
Remarks 

Convolution 

Layer 1 

[9,1024,1]* 

[9,2048,1]** 
Leaky relu 

(𝛼=0.005) 

[9,1024,32]* 

[9,2048,32]** 32*[3,7] 
Padding: same 

Strides:[1,1,1,1] 

Convolution 

Layer 2 

[9,1024,32] * 

[9,2048,32] ** 

Leaky relu 

(𝛼=0.005) 

[9,1024,64] * 

[9,2048,64] ** 
64*[3,7] 

Padding: same 

Strides:[1,1,1,1] 

Pooling 

Layer 1 

[9,1024,64] * 

[9,2048,64] ** 

Leaky relu 

(𝛼=0.005) 

[9,256,64] * 

[9,512,64] ** 
[1,4] 

Max pooling 

Padding: same 

Full-connected 

Layer 1 

[9*256*64] * 

[9*512*64] ** 

Leaky relu 

(𝛼=0.005) 
[1024] - - 

Full-connected 

Layer 2 
[1024] Sigmoid [9] - 

Retaining probability: 

0.5 

Notes: * for input matrix with FAS response; ** for input matrix with time-history response; and mini-batch size = 128, learning 

rate = 1*10-5, optimizer = Adam, and max iterations = 10000 

 

Fig. 6 Procedure for generating samples 

Simulated wind forces Structural model by VFIFE

FAS of acceleration responsesInput matrix FAS to CNN

(9*1024)

Time-history acceleration responses

(9*2048)

FFT

Min-max 

Normalization

Moving windows

...
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The average prediction error results are summarized for 

various damage states and testing sets in Table 4. They are 

the average, maximum, and coefficient of variation of the  

 

 

 

 

 

error for a large number of testing samples considered in 

each damage state. The prediction errors for the ith testing 

sample are defined in terms of the root mean square (RMS)  

Table 4 Average relative errors in the predictions for 3 classes of damage states 

Damage States 

Relative Errors 

Testing Set 1 

(U = 5, 8, or 10 m/s） 

Testing Set 2 

(U = 3, 7, or 15 m/s) 

Testing Set 3 

(U = 25 or 45 m/s) 

without 

noise 

With 

10% 

noise 

With 

20% 

noise 

without 

noise 

With 

10% 

noise 

With 

20% 

noise 

without 

noise 

With 

10% 

noise 

With 

20% 

noise 

Minor 

Damage 

Ave 0.014 0.013 0.030 0.015 0.013 0.031 0.012 0.010 0.024 

Max 0.047 0.052 0.087 0.049 0.055 0.093 0.037 0.030 0.078 

SD 0.006  0.006  0.013  0.006  0.006  0.014  0.005  0.005  0.012  

Moderate 

Damage 

Ave 0.015 0.016 0.053 0.015 0.016 0.055 0.015 0.016 0.049 

Max 0.044 0.051 0.151 0.047 0.050 0.148 0.038 0.040 0.117 

SD 0.005  0.005  0.017  0.005  0.005  0.018  0.005  0.005  0.016  

Severe 

Damage 

Ave 0.013 0.014 0.037 0.014 0.015 0.039 0.014 0.015 0.033 

Max 0.056 0.068 0.141 0.056 0.069 0.142 0.048 0.049 0.106 

SD 0.005  0.006  0.016  0.005  0.006  0.018  0.005  0.006  0.014  

Average errors 0.014 0.015 0.043 0.014 0.015 0.045 0.014 0.015 0.039 

Average SD 0.005  0.006  0.018  0.005  0.006  0.020  0.005  0.006  0.018  

Notes: Ave and Max indicate the average and maximum errors; SD indicates the standard deviation; noise levels are the same in 

the training and testing cases; and training are using the FAS data at U =5, 8, and 10 m/s 

 
 

(a) Intact Condition (b) Minor Damage 

  
(c) Moderate Damage (d) Severe Damage 

Fig. 8 Examples of predicted damage indices for various damage states (without observation noise) 
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of the relative values as 
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(6) 

where yij is the predicted damage index for the jth hanger 

for the ith sample, and fij is the corresponding label (true) 

value. In Eq. (8),        is taken as the relative error of 

the safety index (1-yij) rather than the damage index (yij),  

because fij is zero for the cases without damages. The 

accuracy of the predicted damage indices is consistently 

excellent for various damage states. The results for Testing 

Sets 1 and 2 in Table 4 show that the average relative 

prediction errors are less than 0.02, the coefficient 

variations are less than 0.43, and the maximum error is less 

than 0.06, if the observation noises are not considered. The 

above results indicate excellent performance of the current 

CNN with FAS data for multiple damage identification. 

 

 

Table 5 Traditional neural network parameters for training 

process 

Layers Size Activation functions 

Input [9216] Sigmoid 

Hidden layer 1 [18432] Sigmoid 

Hidden layer 2 [1024] Sigmoid 

Output [9] - 

Notes: Mini-batch size =128, retaining probability for hidden layer 

2 = 0.75, learning rate =1*10-5, optimizer = Adam, and max 

iteration =10000 

 

 

 

4.2 Comparison with other ML-based methods  
 
Two different neural network methods are considered 

for damage identification for the purpose of comparison. 

One is a CNN with input of time-history responses, and the 

other is a traditional NN with input of FASs. 
 

4.2.1 CNN with time-history input 
Acceleration response time histories were used as the 

input to the CNN. The size of each input was 9*2048, 

which is two times larger than the FAS data. The 

architecture of the CNN model basically remained 

unchanged except for the double size of the first fully- 

connected layer. The converging processes of the loss 

functions with iterations are also shown in Fig. 7. After  

training with 10000 iterations, the loss stays around 0.0082, 

which is almost 50 times larger than the previous value 

(1.86×10
-4

) using FAS, which shows better efficiency of the 

proposed method using the FAS data. Besides, Table 6 

shows the prediction error of CNN with time-history input 

for Testing Set 2. When using time-history input, both the 

average error and standard variance increase compared with 

the performance of CNN with FAS input. When 10% noises 

are introduced, CNN with FAS still have the least 

meanerror and standard deviation. The results may be 

caused by the fact that FAS data show the dynamic modal 

properties more clearly than the time-history data, so the 

changes in the properties related to damages can be 

identified more effectively. 

 

 

 

  
(a) Intact Condition (b) Minor Damage 

  
(c) Moderate Damage (d) Severe Damage 

Fig. 9 Examples of predicted damage indices with 10% observation noise in RMS 

514



 

CNN-based damage identification method of tied-arch bridge using spatial-spectral information 

 
 
4.2.2 Neural network with FAS 
The traditional neural network (NN) is used with the 

input of FAS data for damage identification. The NN 

consists of 2 hidden layers with 18432 and 1024 neurons, 

respectively. The parameters of the NN are shown in Table 

5. The same training, validation and testing sets are used as 

in the CNN. After the same number (10000) of iterations, 

the loss of validation set reached 0.013 (Fig. 7), which is 

about 80 times larger than the result of the CNN. After 

50000 iterations, the loss reached 0.0012, which is still 7 

times larger than the loss by the CNN, indicating the slow 

convergence and inefficient performance of the traditional 

NN for identification of multiple damages compared with 

the CNN. Table 6 also indicates that the average value and  

standard deviation of the prediction error of CNN with FAS 

is much smaller than the other two methods. 

 

4.3 Robustness to observation noises and wind 
speeds 

4.3.1 Observation noise effect to CNN 
White Gaussian noises are introduced to the acceleration 

responses during the numerical simulation. The signal-to-

noise ratios (SNRs) were taken as 20 and 14db, which are 

equivalent to the RMS levels of 10% and 20%, respectively. 

The procedures for generating the training, validation, and 

testing samples are the same as those in the noise-free 

condition. The CNN architecture remains unchanged, and it 

is also trained with 10000 iterations. Example cases of the 

predicted damages shown in Fig. 9 indicate that the damage 

locations and severities have been identified excellently 

under the observation noises of 10% at the RMS level. As 

listed in Table 4, the average relative errors under 10% and 

20% noises are less than 0.02 and 0.05, respectively. They 

are slightly larger than the errors without noises, but still at 

an acceptable level for the purpose of damage identification  

and quantification. The results indicate that noises do hinder 

the CNN learning process, but the identification accuracy 

remains acceptable. 

 

 

4.3.2 Prediction with response data under severer 
wind 

The CNN trained with the daily wind condition was 

tested for response data under severer conditions with mean 

wind speeds of 25 m/s and 45 m/s. The prediction errors are 

also listed as Testing Set 3 in Table 4. The average 

prediction errors for 3500 sample cases were found to be at 

almost the same level as those of Testing Sets 1 and 2 under 

the daily wind speeds. This is owing to the monotonically 

decaying shapes of the wind spectra (Fig. 11) in the daily 

wind as well as in the severer wind in the range over 1 Hz, 

where the structural natural frequencies are located. The 

wind forces are very much wide-banded, similar to white 

noise. Furthermore, min-max normalization is applied to the 

FAS of response. So, the overall amplitudes‟ changes of 

acceleration responses are normalized. The results indicate 

that the CNN trained under the daily wind condition can be 

effectively utilized for damage identification under severer 

wind conditions. 

 

4.3.3 Noise injection learning 
Noise injection learning is a scheme of training with 

noisy input data to reduce the noise effect in the testing 

stage (Matsuoka 1992, Yun and Bahng 2000). The 

prediction errors for 6 cases with different noise conditions 

in the training and testing data sets are summarized in Table  

7, which shows considerable improvement in prediction 

error, particularly the robustness to the different noise levels 

between the training and testing data. 

 

4.4 Selection of hyperparameters 
 

For deep neural networks like CNN, the selection of the 

hyperparameters is one of the biggest challenges 

(Miikkulainen et al. 2017). In CNN, the sizes of the 

convolution kernel and mini-batch are essential hyper- 

 

Table 6 Average relative errors in the predictions for 3 ML-based Methods 

Damage States 

Relative Errors for testing Set 2 (U = 3, 7, or 15 m/s) 

Without noise With 10% noise 

CNN with 

FAS 
CNN with time-

history 

NN with 

FAS 
CNN with 

 FAS 

CNN with time-

history  

NN with 

FAS  

Minor 

Damage 

Ave 0.015 0.078 0.083 0.013 0.082 0.089  

Max 0.049 0.271 0.153 0.055 0.276 0.167  

SD 0.006 0.062 0.011 0.006  0.063 0.017 

Moderate 

Damage 

Ave 0.015 0.089  0.090  0.016 0.094 0.084   

Max 0.047 0.248  0.168  0.050 0.252 0.137  

SD 0.005 0.042 0.018 0.005  0.044 0.015 

Severe 

Damage 

Ave 0.014 0.128  0.155  0.015 0.145  0.136  

Max 0.056 0.280  0.269  0.069 0.302  0.272  

SD 0.005 0.048 0.004  0.006  0.050 0.040 

Average errors 0.014 0.104 0.117 0.015 0.114 0.107 

Average SD 0.005 0.052 0.044 0.006  0.056 0.038 

515



 

Yuanfeng Duan, Qianyi Chen, Hongmei Zhang, Chung Bang Yun, Sikai Wu and Qi Zhu 

 

 

 

 

 

parameters to be selected before training.There is not 

rigorous procedure for their selection. With increased kernel 

sizes, the feature extraction capability may be improved. 

However, a large number of the parameters need to be 

determined during the training and the computational 

complexity increases drastically. When the batch size is 

enlarged, it may be easier for the loss function to converge  

to the minimum. However, the computing time increases 

because more samples are to be processed in the batch. 

Based on the results of the parametric study shown in Fig. 

10, the convolution kernel size is taken as 3*7 and the mini-

batch size as 128. 

 

 

 

 

 

 

 

5. Conclusions 
 

A method using the convolutional neural network (CNN) 

is proposed for structural damage identification on hangers 

in a tied-arch bridge structure. The spatial and spectral 

information of the acceleration responses on the deck are 

used as the input to the CNN, which consists of Fourier 

amplitude spectra (FAS) of the wind-induced responses at 

multiple locations on the bridge deck. No special sensors 

are needed for local monitoring of the cables, such as 

elasto-magneto-electric sensors and guided wave sensors. 

No extensive pre-processing such as modal identification is 

required, and the size of the input matrix to the CNN can be  

 

Table 7 Results of noise-injection learning 

Damage states 

Relative Errors 

Training without noise Training with 10% noise 

Testing 

Without 

noise 

Testing 

With10% 

noise 

Testing 

with 20% 

noise 

Testing 

Without 

noise 

Testing 

with 10% 

noise 

Testing 

with 20% 

noise 

Minor 

Damage 

Ave 0.014 0.016 0.065 0.013 0.013 0.060 

Max 0.047 0.056 0.126 0.046 0.055 0.134 

SD 0.006  0.007  0.018  0.006  0.006  0.020  

Moderate 

Damage 

Ave 0.015 0.017 0.084 0.015 0.016 0.087 

Max 0.044 0.061 0.180 0.041 0.050 0.168 

SD 0.005  0.006  0.023  0.005  0.005  0.021  

Severe 

Damage 

Ave 0.013 0.015 0.062 0.014 0.015 0.061 

Max 0.056 0.076 0.176 0.069 0.069 0.155 

SD 0.005  0.006  0.027  0.006  0.006  0.023  

Average error 0.014 0.016 0.072 0.014 0.015 0.071 

Average SD 0.005  0.006  0.026  0.005  0.006  0.025  

Notes: Mean wind speed is one of 5, 8, and 10 m/s in training and 3, 7, and 15 m/s in testing 

  
(a) Training with same batch size of 128 (b) Training with same kernel size of 3*7 

Fig. 10 Loss vs. iteration for different convolution kernel and batch sizes 
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reduced by using FAS instead of the time-history data. 

Hierarchical processes are presented for the construction of 

the CNN model and the localization and quantification of 

multiple damages. Discussions are presented on the 

hyperparameter optimization related to the overfitting 

problem and the convergence and accuracy of damage 

identification. Performance of the proposed CNN is 

investigated through a numerical simulation study under 

daily wind conditions. Comparative studies are carried out 

for various damage states, wind speeds, and observation 

noise. The results of the present study are summarized as 

follows: 

 The overall performance of the present CNN is 

excellent for various damage states. The mean values of  

the relative prediction errors are less than 0.02 for the 

testing sample cases without the observation noises,  

which indicates the excellent generalization performance of 

the CNN. In addition, the maximum relative errors are 

found to be less than 0.06, showing the consistently high 

prediction accuracy of this method. 

 The CNN performance is very robust against the 

observation noise. For samples with 10% and 20% noises, 

average relative errors are less than 0.02 and 0.06 

respectively, which are slightly larger but acceptable for 

damage localization and quantification.  

Noise injection learning is proven to be effective in 

improving the robustness to the difference of the 

observation noise level in the training and testing data. 

 The proposed CNN trained under the daily wind 

condition was found to be very robust to severer wind 

conditions. The average and maximum values of the 

prediction error remained almost the same. 

 Compared with the traditional NN with FAS and the 

CNN with time-history data, the present CNN with FAS 

learns faster and achieves a smaller error within the same 

training time, owing to the better capability of the FAS data 

in representing important features for damage identification 

such as modal properties. 

Future research and applications are suggested in the 

following areas: experimental validation, application to real 

cable-supported structures, and other kinds of cable damage 

such as wire breakage and corrosion. Besides, changes in 

the environmental condition such as temperature and traffic 

loads may cause significant effects on the modal properties 

of the bridge. Further research needs to be carried out to 

develop proper methodologies to deal with those effects on 

the damage identification. 

 

 

Acknowledgments 
 

This research work was supported by the National 

Natural Science Foundation of China (U1709216, 

51578419, 51522811, 51478429, and 90915008), the 

National Key R&D Program of China (2017YFC0806100), 

and the Fundamental Research Funds for the Central 

Universities (2015XZZX004-28). 
 

 

 

References 

 
Abadi, M., Agarwal, A., Barham, P., Brevdo, E. and Zheng, X. 

(2015), TensorFlow: Large-Scale Machine Learning on 

Heterogeneous Distributed Systems.  

Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D. 

J. (2017), “Real-time vibration-based structural damage 

detection using one-dimensional convolutional neural 

networks”, J, Sound Vib., 388, 154-170. 

https://doi.org/10.1016/j.jsv.2016.10.043.  

Arangio, S. and Bontempi, F. (2015), “Structural health 

monitoring of a cable-stayed bridge with Bayesian neural 

networks”, Struct. Infrastruct. Eng., 11(4), 575-587. 

https://doi.org/10.1080/15732479.2014.951867. 

Cao, Y., Xiang, H. and Zhou, Y. (2000), “Simulation of stochastic 

wind velocity field on long-span bridges”, China Civil Eng. J., 

126(1), 1-6. https://doi.org/10.1061/(ASCE)0733-

9399(2000)126:1(1). 

Cha, Y.J., Choi, W. and Büyüköztürk, O. (2017), “Deep learning-

based crack damage detection using convolutional neural 

networks”, Comput.-Aided Civil Infrastruct. Eng., 32(5), 361-

378. https://doi.org/10.1111/mice.12263. 

Chen, C., Wu, W., Liu, C. and Lai, G. (2016), “Damage detection 

of a cable-stayed bridge based on the variation of stay cable 

forces eliminating environmental temperature effects”, Smart 

Struct. Syst., 17(6), 859-880. 

http://dx.doi.org/10.12989/sss.2016.17.6.859. 

Chen, K.F. and Mei, S.L. (2010), “Composite interpolated fast 

fourier transform with the hanning window”, IEEE T. 

Instrument.Measurement, 59(6), 1571-1579. DOI: 

10.1109/TIM.2009.2027772. 

Cho, S., Jo, H., Jang, S., Park, J., Jung, H.J., Yun, C.B., Spencer, B. 

F. and Seo, J.W. (2010), “Structural health monitoring of a 

cable-stayed bridge using wireless smart sensor technology: 

data analyses”, Smart Struct. Syst., 6(5-6), 461-480. 

http://dx.doi.org/10.12989/sss.2010.6.5_6.461. 

Cho, S., Lynch, J.P., Lee, J. and Yun, C.B. (2010), “Development 

of an automated wireless tension force estimation system for 

cable-stayed bridges”, J. Intel. Mat. Syst. Str., 21(3), 361-376. 

https://doi.org/10.1177/1045389X09350719. 

Cho, S., Yim, J., Shin, S.W., Jung, H., Yun, C.B. and Wang, M.L. 

(2013), “Comparative field study of cable tension measurement 

for a cable-stayed bridge”, J. Bridge Eng., 18(8), 748-757. 

https://doi.org/10.1061/(ASCE)BE.1943-5592.0000421. 

Dekel, O., Ran, G.B., Shamir, O. and Xiao, L. (2012), “Optimal 

distributed online prediction using mini-batches”, J. Mach. 

Learn. Res., 13(1), 165-202.  

Deng, L. and Yu, D. (2014), Deep learning: methods and 

applications. Foundations and Trends®  in Signal Processing, 

7(3-4), 197-387. 

Deodatis, G. (1996), “Simulation of ergodic multivariate 

stochastic processes”, J. Eng.Mech., 122(8), 778-787. 

https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(778). 

Ding, Y., An, Y. and Wang, C. (2016), “Field monitoring of the 

train-induced hanger vibration in a high-speed railway steel arch 

bridge”, Smart Struct. Syst., 17(6), 1107-1127. 

http://dx.doi.org/10.12989/sss.2016.17.6.1107. 

Duan, Y.F., He, K., Zhang, H., Ting, E.C., Wang, C.Y., Chen, S.K., 

and Wang, R.Z. (2014), “Entire-process simulation of 

earthquake-induced collapse of a mockup cable-stayed bridge 

by Vector Form Intrinsic Finite Element (VFIFE) method”, Adv. 

Struct. Eng., 17(3), 347-360. https://doi.org/10.1260/1369-

4332.17.3.347. 

Duan, Y., Tao, J., Zhang, H., Wang, S. and Yun, C. (2019), “Real‐
time hybrid simulation based on vector form intrinsic finite 

element and field programmable gate array”, Struct. Control 

Health Monit., 26(1), e2277. https://doi.org/10.1002/stc.2277. 

517



 

Yuanfeng Duan, Qianyi Chen, Hongmei Zhang, Chung Bang Yun, Sikai Wu and Qi Zhu 

Duan, Y.F., Wang, S.M., Wang, R.Z., Wang, C., Shih, J.Y. and Yun, 

C.B. (2018), “Vector form intrinsic finite-element analysis for 

train and bridge dynamic interaction”, J. Bridge Eng., 23(1), 

04017126. https://doi.org/10.1061/(ASCE)BE.1943-

5592.0001171. 

Duan, Y.F., Wang, S.M., Wang, R.Z., Wang, C.Y. and Ting, E.C. 

(2017), “Vector form intrinsic finite element based approach to 

simulate crack propagation”, J. Mechanics, 33(6), 1-16. 

https://doi.org/10.1017/jmech.2017.85. 

Duan, Y., Wang, S. and Yau, J. (2018), “Vector form intrinsic finite 

element method for analysis of train–bridge interaction 

problems considering the coach-coupler effect”, Int. J. Struct. 

Stab. Dynam., 1950014. 

https://doi.org/10.1142/S0219455419500147. 

Duan, Y.F., Zhang, R., Dong, C.Z., Luo, Y.Z., Or, S.W., Zhao, Y., 

and Fan, K.Q. (2016), “Development of Elasto-Magneto-

Electric (EME) sensor for in-service cable force monitoring”, 

Int. J. Struct. Stab. Dynam., 16(4), S68-S78. 

https://doi.org/10.1142/S0219455416400162. 

Duan, Y.F., Zhang, R., Zhao, Y., Or, S.W., Fan, K.Q. and Tang, Z. 

F. (2011), “Smart elasto-magneto-electric (EME) sensors for 

stress monitoring of steel structures in railway infrastructures”, 

J. Zhejiang Univ. –Sci. A, 12(12), 895-901.  

Duan, Y.F., Zhang, R., Zhao, Y., Or, S.W., Fan, K.Q. and Tang, Z. 

F. (2012), “Steel stress monitoring sensor based on elasto-

magnetic effect and using magneto-electric laminated 

composite”, J. Appl. Phys., 111(7), 68. 

https://doi.org/10.1063/1.3679420.  

Erhan, D., Bengio, Y., Courville, A. and Vincent, P. (2009), 

“Visualizing higher-layer features of a deep network”, 

University of Montreal, 1341(3), 1.  

Fukushima, K. (1980), “Neocognitron: A self-organizing neural 

network model for a mechanism of pattern recognition 

unaffected by shift in position”, Biol. Cybern., 36(4), 193-202. 

Guo, J., Xie, X., Bie, R. and Sun, L. (2014), “Structural health 

monitoring by using a sparse coding-based deep learning 

algorithm with wireless sensor networks”, Personal & 

Ubiquitous Computing, 18(8), 1977-1987.  

He, K., Zhang, X., Ren, S. and Sun, J. (2015), “Delving deep into 

rectifiers: Surpassing human-level performance on imagenet 

classification”, International conference on computer vision, 

1026-1034.  

Hubel, D.H. and Wiesel, T.N. (1968), “Receptive fields and 

functional architecture of monkey striate cortex”, J. Physiology, 

195(1), 215-243. 

https://doi.org/10.1113/jphysiol.1968.sp008455. 

Ioffe, S. and Szegedy, C. (2015), “Batch normalization: 

accelerating deep network training by reducing internal 

covariate shift”, International conference on machine learning, 

448-456.  

Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S., Jung, 

H., Yun, C., Spencer, B.F. and Agha, G.A. (2010), “Structural 

health monitoring of a cable-stayed bridge using smart sensor 

technology: deployment and evaluation”, Smart Struct. Syst., 

6(5), 439-459. http://dx.doi.org/10.12989/sss.2010.6.5_6.439. 

Jin, S., Cho, S., Jung, H., Lee, J. and Yun, C. (2014), “A new 

multi-objective approach to finite element model updating”, J. 

Sound Vib., 333(11), 2323-2338. 

https://doi.org/10.1016/j.jsv.2014.01.015. 

Kaimal, J.C., Wyngaard, J.C., Izumi, Y. and Cote, O.R. (1972), 

“Spectral characteristics of surface‐layer turbulence”, 

Quarterly J. Roy. Meteorol. Soc., 98(417), 563-589. 

https://doi.org/10.1002/qj.49709841707. 

Kim, H., Ahn, E., Shin, M. and Sim, S. (2018), “Crack and 

noncrack classification from concrete surface images using 

machine learning”, Struct. Health Monit., 147592171876874. 

https://doi.org/10.1177/1475921718768747. 

Kim, J., Ho, D., Nguyen, K., Hong, D., Shin, S.W., Yun, C.B. and 

Shinozuka, M. (2013), “System identification of a cable-stayed 

bridge using vibration responses measured by a wireless sensor 

network”, Smart Struct. Syst., 11(5), 533-553. 

http://dx.doi.org/10.12989/sss.2013.11.5.533. 

Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), ImageNet 

Classification with Deep Convolutional Neural Networks. Paper 

presented at the neural information processing systems. 

LeCun, Y., Bengio, Y. and Hinton, G. (2015), “Deep learning”, 

Nature, 521(7553), 436.  

LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R. 

E., Hubbard, W. and Jackel, L.D. (1989), “Backpropagation 

applied to handwritten zip code recognition”, Neural Comput., 

1(4), 541-551.  

Lee, J., Lee, J.W., Yi, J., Yun, C.B. and Jung, H.Y. (2005), “Neural 

networks-based damage detection for bridges considering errors 

in baseline finite element models”, J. Sound Vib., 280(3), 555-

578. https://doi.org/10.1016/j.jsv.2004.01.003. 

Liang, Z.J., Liao, S.B. and Hu, B.Z. (2018), “3D convolutional 

neural networks for dynamic sign language recognition”, 

Comput. J., 61(11), 1724-1736. 

https://doi.org/10.1093/comjnl/bxy049. 

Lin, Y., Nie, Z. and Ma, H. (2017), “Structural damage detection 

with automatic feature-extraction through deep learning”, 

Comput.-Aided Civil Infrastruct. Eng., 32(12), 1025-1046. 

https://doi.org/10.1111/mice.12313. 

Matsuoka, K. (1992), “Noise injection into inputs in back-

propagation learning”, Syst. Man Cybernetics, 22(3), 436-440. 

DOI: 10.1109/21.155944. 

Midas (2017), MIDAS Information Technology Co., Ltd., Korea. 

http://www.MidasUser.com. 

Miikkulainen, R., Liang, J.Z., Meyerson, E., Rawal, A., Fink, D., 

Francon, O., Raju, B., Shahrzad, H., Navruzyan, A. and Duffy, 

N. (2017), Evolving Deep Neural Networks. arXiv: Neural and 

Evolutionary Computing, 293-312.  

Min, J., Park, S., Yun, C.B., Lee, C. and Lee, C. (2012), 

“Impedance-based structural health monitoring incorporating 

neural network technique for identification of damage type and 

severity”, Eng. Struct., 39, 210-220. 

https://doi.org/10.1016/j.engstruct.2012.01.012. 

Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W. and Ni, P. (2018), 

“Structural damage identification based on autoencoder neural 

networks and deep learning”, Eng. Struct., 172, 13-28. 

https://doi.org/10.1016/j.engstruct.2018.05.109. 

Scherer, D., Muller, A. and Behnke, S. (2010), Evaluation of 

pooling operations in convolutional architectures for object 

recognition, Paper presented at the international conference on 

artificial neural networks. 

Sekhar, A.S. (2004), “Crack identification in a rotor system: a 

model-based approach”, J. Sound Vib., 270(4), 887-902. 

https://doi.org/10.1016/S0022-460X(03)00637-0. 

Simiu, E. and Scanlan, R.H. (1996), Wind effects on structures: 

Fundamentals and application to design, Book published by 

John Willey & Sons Inc, 605.  

Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I. and 

Salakhutdinov, R. (2014), “Dropout: a simple way to prevent 

neural networks from overfitting”, J. Mach. Learn. Res., 15(1), 

1929-1958.  

Ting, E.C., Shih, C. and Wang, Y. (2004), “Fundamentals of a 

vector form intrinsic finite element: Part I. basic procedure and 

a plane frame element”, J. Mechanics, 20(2), 113-122. 

https://doi.org/10.1017/S1727719100003336. 

Wang, S.M. (2018), Dynamic analysis of wind-train-rail-long span 

bridge based on the vector form intrinsic finite element. 

Zhejiang University.    

Yim, J., Wang, M. L., Shin, S.W., Yun, C.B., Jung, H., Kim, J. and 

Eem, S. (2013), “Field application of elasto-magnetic stress 

518



 

CNN-based damage identification method of tied-arch bridge using spatial-spectral information 

sensors for monitoring of cable tension force in cable-stayed 

bridges”, Smart Struct. Syst., 12(3-4), 465-482. 

https://doi.org/10.12989/sss.2013.12.3_4.465. 

Yuan, X., Chen, C., Duan, Y. and Qian, R. (2018), “Elastoplastic 

analysis with fine beam model of vector form intrinsic finite 

element”, Adv. Struct. Eng., 21(3), 365-379. 

https://doi.org/10.1177/1369433217718984. 

Yun, C.B. and Bahng, E.Y. (2000), “Substructural identification 

using neural networks”, Comput. Struct., 77(1), 41-52. 

https://doi.org/10.1016/S0045-7949(99)00199-6. 

Zhang, P., Tang, Z., Duan, Y., Yun, C.B. and Lv, F. (2018), 

“Ultrasonic guided wave approach incorporating SAFE for 

detecting wire breakage in bridge cable”, Smart Struct. Syst., 

22(4), 481-493. https://doi.org/10.12989/sss.2018.22.4.481. 

Zhang, R., Duan, Y., Or, S.W. and Zhao, Y. (2014), “Smart elasto-

magneto-electric (EME) sensors for stress monitoring of steel 

cables: design theory and experimental validation”, Sensors, 

14(8), 13644-13660. https://doi.org/10.3390/s140813644. 

Zhang, R., Duan, Y., Zhao, Y. and He, X. (2018), “Temperature 

compensation of Elasto-Magneto-Electric (EME) sensors in 

cable force monitoring using BP neural network”, Sensors, 

18(7), 2176. https://doi.org/10.3390/s18072176. 

 

 

HJ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

519



 

Yuanfeng Duan, Qianyi Chen, Hongmei Zhang, Chung Bang Yun, Sikai Wu and Qi Zhu 

 

 

Appendix I: Bath normalization and drop-out 
 

Batch normalization (BN) is helpful in accelerating the 

training and improving the accuracy of both training and 

testing sets (Ioffe and Szegedy 2015). The BN operational 

is related to the mini-batch gradient descent. In BN, the 

input for an activation function is transformed to a standard 

Gaussian variable as 

2
ˆ ˆ  and  

x
x y x


 

 


  

  

(I-1) 

where x  and y  are the input and the corresponding 

output of the BN operation;  and   are the mean and 

standard deviation for the mini batch; and   is a small 

number to prevent the denominator from becoming zero. 

  and   are the scale and shift parameters. At first,   

and   are computed for each mini-batch, then y  is 

obtained.   and   are to be updated during training. In 

this study, the BN is applied to the activation functions in 

the convolution layers. 

Dropout is a regularization method whose idea is 

randomly drop units form the neural networks during 

training (Srivastava et al. 2014). This technique is 

introduced to reduce the overfitting problem. 

 

 

Appendix II: Simulation of wind velocities: (t)u  and 

(t)w  

 
Time-histories of the horizontal and vertical wind 

velocity fluctuations at the jth point, (t)ju  and (t)jw , 

can be simulated from the wind spectra ( )uS   and 

( )wS   considering the spatial coherence as (Cao et al. 

2000, Deodatis 1996) 

 

 

 

 

 

 

1 1

1 1

(t) 2( ) ( ) ( )cos( t )

 j 1,2,...n

(t) 2( ) ( ) ( )cos( t )

 j 1,2,...n

j N

j u ml jm ml ml ml

m l

j N

j w ml jm ml ml ml

m l

u S G

w S G

   

   

 

 

  



  







 

(II-1) 

1 2

1 2 2 2

1

1
G( ) , exp( )

... ... ... ... 2 (z)

1 ... 1n n

C C
C

U

C C C C






 

 
 

  
   
 
   

 

(II-2) 

( 1) ,  1,2,...,ml

m
l l N

N
       

 

(II-3) 

where
 ( )jm m lG  is a cross-spectral density matrix 

representing the spatial coherence of (t)u  and w(t)  at 

  between the jth and mth points,    is the uniform 

distance between adjacent points;   is a constant value 

for the spatial coherence which is usually taken between 7 

and 10; 
ml  is a random phase angle with a uniform 

distribution in 0- 2  ;   is the sampling frequency;  

and N is the number of frequency points. 

In this study, ( )uS   and ( )wS   are taken as Kaimal 

spectra (Kaimal et al. 1972) as 
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where 
2 (z)

z
f

U




 ; 

*

0

( )

ln( / )

KU z
U

z z
 ; 0.4K  ; ( )U z  is 

the mean horizontal wind speed at z; z is the elevation of 

the deck above the ground; and z0 is the ground roughness.  

The power spectra of horizontal and vertical wind 

velocity for different average velocities are shown in Fig. 

11. 

  
(a)  Horizontal wind velocity spectra (b) Vertical wind velocity spectra 

Fig. 11 Power spectra of wind velocity under three different average wind velocities 
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