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1. Introduction 
 

By advancement the material science, the researchers 

are encouraged to study more about new materials and 

consider their effects on the engineering structures 

mechanical behaviors such as bending, buckling, and 

vibrations. Nowadays porous materials are one of the most 

important materials in the engineering structures and by 

considering their effect, theoretical results will be near to 

the experimental ones. Biot (1964) is the pioneer to study 

about poroelasticity. In his model, the porous materials are 

consist of two parts: the solid and fluid phases. The 

constitutive relations for saturated porous materials 

regarding the mentioned phases presented by Detournay 

and Cheng (1995). Theodorakopoulos and Beskos (1994) 

studied about flexural vibrations of poroelastic plates. They 

used Kirchhoff assumptions to derive the governing 

equations for the rectangular plate which was subjected to 

harmonic load using the analytical-numerical method and 

used Biot’s model for the porous material. Leclaire et al. 

(2001) investigated the vibration of a porous rectangular 

plate which was filled by a fluid. They used classical plates 

theory (CPT) and assumed that the porosity distributed 

uniformly across the thickness. They considered the effect 

of porosity and other important parameters on the results. 

Chen et al. (2016) presented their research about porous 

beams and sandwich beams with a porous core with 

accounting the large amplitude deformations. They  
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considered different distribution types of pores in their 

studies and investigated the effect of porous materials 

properties on the results. Khorshidvand et al. (2014) studied 

about buckling of a circular plate which was integrated by 

piezoelectric sensor- actuator layers. They considered the 

effect of the piezoelectric patches, feedback gain and shape 

parameters of the clamped plate on the results. Arshid and 

Khorshidvand (2017) studied about a porous solid circular 

plate based on CPT. They presented another study about its 

vibration by integrating the mentioned structure with 

piezoelectric actuators and considered the effect of structure 

and piezoelectric actuators on the natural frequencies 

(Arshid and Khorshidvand 2018). They found out generally 

the porosity increasing, causes decreasing in natural 

frequency. Ebrahimi et al. (2017a) studied about the 

vibration of magneto-electro elastic (MEE) porous 

rectangular plates using tangential shear deformation plates 

theory. They account neutral axis position and used power- 

law model for describing the pores distribution. Also, a 

study about mechanical behavior of FGMEE skew plates 

carried out by Kiran and Kattimani (2018). They used the 

finite element method (FEM) to obtain the results for free 

vibration and static responses. The motion equations of a 

porous rectangular plate were solved analytically by Rezaei 

and Saidi (2015). They considered the effect of the fluid in 

pores and assumed that the pores distribution obey cosine 

function through the thickness and employed Reddy’s 

TSDT to obtain the equations and solved them for a specific 

boundary condition analytically. Barati et al. (2017) 

investigated the vibration of piezoelectric FG plates with 

porosities. Their study was based on a refined four-variable 

theory and used the power-law model for pores distribution. 
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They discussed about applied voltage, porosity, and other 

parameters effects on the results.  

Also, reinforced composites are recently used to refine 

the properties of the structures. One of the best and well- 

known reinforcements of the composites are carbon 

nanotubes (CNTs). Iijima has been discovered CNTs in the 

1990s (Iijima 1991) and after that by doing researches by 

the others, it was found that because of very high elastic 

modulus and magnetic feature, they can be so useful and 

valuable. Consequently, carbon nanotubes reinforced 

composites (CNTRCs) are used as an important part of 

engineering structures which the desired properties are 

needed. It is noteworthy that CNTs are usually used as 

reinforcement for the polymeric composites and their 

arrangement direction is one of the most important factors 

to obtain the mechanical properties of CNTRCs. Depends 

on the matrix properties, the CNTRCs have a wide range of 

usage. For example, by using Polyvinylidene fluoride 

(PVDF) which has the magnetic properties as the matrix, 

they can be used in magneto and electro engineering, 

aerospace industries, MEMS and NEMS (Abdel-Rahman et 

al. 2002, Ashrafi et al. 2006). 

In recent years study about the beams, shells and plates 

are developing and the researchers are trying to use new 

methods to improve their behaviors. Using sandwich 

structure is one of the best ways to achieve this goal. A soft 

core in comparison to stiffer face sheets is one of the most 

important features of the sandwich structures. So choosing 

appropriate material as core and face sheets are important to 

achieve the best desired results. Ferreira et al. (2013) used 

generalized differential quadrature method (GDQM) to 

obtain the frequencies of a sandwich plate. An efficient 

meshfree method for vibration analysis of laminated 

composite plates presented by Bui et al. (2011). Static and 

dynamic stability of FG plates and shells in nonlinear form 

investigated by Duc (2014). A CNTRC plate vibration 

analysis was performed via FEM based on the first order 

shear deformation theory (FSDT) by Zhu et al. (2012). 

Their analysis was for different kinds of CNTs distributions 

and obtained the bending response, natural frequencies for 

various boundary conditions. Nonlinear stability analysis of 

imperfect three-phase sandwich laminated polymer 

nanocomposite panels in thermal environments presented 

by Pham and Duc (2016). Loghman and Cheraghbak (2018) 

considered agglomeration effects on the behavior of nano-

composite piezoelectric cylinder. They assumed that the 

structure was under an internal pressure and CNTs selected 

as the reinforcement of the composite. Mirzaei and Kiani 

(2016) used the refined rule mixture to analyze FG-CNTRC 

cylindrical panels. They considered CNTs different effects 

on the results. Lei et al. (2013) applied the Ritz method to 

analyze vibration of FG-CNTRC plates. The plate was in a 

thermal environment and they considered both uniform and 

FG distribution of CNTs and studied about the effect of 

different parameters on the results. Nonlinear thermo-

electro-mechanical dynamic response of shear deformable 

piezoelectric Sigmoid FG sandwich circular cylindrical 

shells presented by Duc (2018). Also, Mehar et al. (2017) 

used FEM to solve the nonlinear equations of a doubly 

curved FG-CNTRC shell. The structure was in a thermal 

environment and was modeled based on higher-order 

kinematics theory and Green-Lagrange geometrical 

nonlinear strains. Nonlinear thermo-mechanical buckling 

and post-buckling response of porous FGM plates using 

Reddy’s theory carried out by Cong et al. (2018). In another 

study, Duc et al. (2018) investigated nonlinear dynamic 

response of FGM porous plates on elastic foundation 

subjected to thermal and mechanical loads using the FSDT. 

CNTRCs are also used as face sheets in sandwich 

structures. FSDT used by Amir et al. (2018a) to study about 

buckling behavior of the nano-composite sandwich plate 

regarding the flexoelectricity effects. They used the 

analytical method to obtain the results. The vibration of a 

magnetorheological (MR) fluid plate which was placed 

between two nano-composite layers studied by 

Ghorbanpour Arani et al. (2018). The face sheets of the 

considered plate were piezoelectric nano-composite. They 

concluded increasing the CNTs caused the higher stiffness 

for the structure. Wang and Shen (2012) presented a 

nonlinear analysis of sandwich plates with CNTRC face 

sheets. They assumed that the properties of the face sheets 

were varied by temperature changes and considered the 

effect of temperature variations on the results. Effect of 

high temperature on mechanical behaviors of heated FG 

plates was considered by Bui et al. (2016) based on a new 

third-order shear deformation theory. They found not all 

FGMs possess similar mechanical behaviors and 

performance in high temperature. Also, Do et al. (2017) 

investigated material combinations effect on the mechanical 

behavior of FG sandwich plates in thermal environment. 

Nonlinear dynamic and vibration of sigmoid power law 

distribution FGM elliptical cylindrical shells surrounded on 

elastic foundations in thermal environments analyzed by 

Duc et al. (2017). Moreover, Duc (2016) employed Reddy’s 

third-order shear deformation shell theory to analyzed 

nonlinear thermal dynamic of eccentrically stiffened 

circular cylindrical shells. Effect of temperature-dependent 

properties on the dynamic behavior of imperfect FGM 

double curved thin shallow shells discussed by Duc and 

Quan (2015). Mechanical behavior of shear deformable 

eccentrically stiffened sigmoid power law distribution FGM 

cylindrical panels resting on elastic foundation carried out 

by Quan et al. (2015). The formulation of an annular sector 

plate with piezoelectric layers have been derived regarding 

large amplitude deformation, using FSDT and Von-Karman 

assumption for strain-displacement relations presented by 

Mohammadzadeh-Keleshteri et al. (2017) and GDQM has 

been employed to solve the equations. 

Due to the difference in results of the macro and small 

scales analysis, the researchers have been interested to 

study about small scale behavior of the structures. Eringen 

is from the first researchers who has been studied about the 

structures in the small dimensions and especially nano one 

which his theory called nonlocal (Eringen 1983, 2002). 

After Eringen’s studies, the study about small scales effects 

extended rapidly and other researches also find out new 

hints (Ghorbanpour Arani et al. 2013a, b, 2016, Mechab et 

al. 2016). Also, Ghorbanpour Arani and Zamani (2018) 

considered porosity and size effects on the vibration of a 

porous sandwich plate. Amir et al. (2018b) analyzed the 
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vibration of a rectangular porous nano sandwich plate based 

on sinusoidal shear deformation (SSDT) and nonlocal 

theories. They solved the equations using Navier’s solution 

method and discussed influence of different parameters on 

the results in details. Through time and doing various 

researches using nonlocal theory and finding out its defects, 

other small scales theories were presented (Shafiei and 

Kazemi 2017, Shafiei et al. 2017, Shahverdi and Barati 

2017). Modified couple stress (MCS) and modified strain 

gradient theories are the featured of them which are often 

used for micro scales. Loghman et al. (2017) researched 

about the stability of non-axisymmetric FG-CNTRC micro 

plates. They used MCST to account the size effects. Liu et 

al. (2017a) analyzed vibration, buckling and bending 

behaviors of homogenous and FG micro plates using MCST, 

based on non-classical Kirchhoff’s theory and discussed 

small scale effect on the results. In another study, Liu et al. 

(2017b) considered mechanical behaviors of a moderately 

thick micro plate based on FSD and MCS theories. Liu et al. 

(2018) also presented an effective numerical model based 

on extended isogeometric analysis for assessment of 

vibration and buckling of FG microplates with cracks. They 

captured the size effects using MCST. Kolahdouzan et al. 

(2018) analyzed FG-CNTRC micro sandwich plate based 

on MCST. Their work focused on the buckling and 

vibration response of the plate. A novel MCST based size-

dependent quasi-3D isogeometric beam model for two-

directional FG microbeams presented by Yu et al. (2019b). 

The influences of material gradient factors along the axial 

and thickness directions, material length scale factor, 

boundary condition, and other aspect ratios of two-

directional FG microbeams on mechanical behavior were 

investigated in their study. A computational approach for 

mechanical behavior of nanoplates presented Liu et al. 

(2019). The MCST was used to capture the microstructural 

effect and they concluded that both microstructure and 

surface energy effects increase the rigidity of nanoplates. 

Size-dependent behaviors of thick FG microbeams 

investigated by Yu et al. (2019a). To capture the size effects, 

they employed an extension of quasi-3D theory to integrate 

with the MCST.  

The current study aims to analyze vibration of the 

annular/ circular micro sandwich plate which its core is 

made of saturated porous material which is presented based 

on Biot’s model and the face sheets are made of FG-

CNTRCs. The properties of the porous core are varying 

through its thickness according to the given functions which 

are related to pores placement and the mechanical 

properties of the FG-CNTRCs face sheets based on CNTs 

distribution, follows five different types. Using MCST and 

based on the FSDT which is more complex rather than CPT 

and account shear deformations effect, the motion equations 

are obtained. Using GDQM which is known as an accurate 

and rapid-converge numerical method, the equations will be 

solved for various boundary conditions. The results will be 

verified for the simpler states in the literature and effect of 

different materials parameters and geometric size of the 

plate will be presented and will be discussed about them in 

details. Reviewing the literature showed there is no study 

about such a plate and the novelty of the present work is 

considering three-layered annular/circular saturated porous 

micro plate which is integrated by FG-CNTRC face sheets 

and is subjected to magneto-electric fields and multi-

physical pre loads. The findings of this work will help to 

design and create more optimal engineering and smart 

structures such as sensors and actuators. 

 

 

2. Theoretical relations 
 

As shown in Fig. 1 three-layered micro annular and 

circular plates with the porous core and FG-CNTRC face 

sheets are under consideration. The inner and outer radius 

of the plate are shown by b and a, respectively and hc, ht 

and hb represent the thickness of the core, top, and bottom 

layers. The structure is resting on Pasternak type of elastic 

foundation and is under magneto electro-mechanical pre 

loads. The origin of the cylindrical coordinate system (r,θ,z) 

which is used to describe the displacements is at the center 

of the middle plane. 

 

2.1 MCST 
 

According to MCST the strain energy is as follow 

(Reddy and Berry 2012) 

 
1

σ : ε m : χ dr dθdz
2

M
r z

U r


   
 

(1) 

where σ, ε, m and χ are the symmetric part of the Cauchy 

stress, strain, deviator part of the couple stress and the 

symmetric curvature tensors, respectively and the subscript 

M refers to MCST. The mentioned tensors are defined as 

follows (Ke et al. 2012) 

σ tr(ε)I 2 ε,  
 (2) 

 
1

ε u u ,
2

T    
   

(3) 

2m 2 χ ,ml 
 

(4) 

 

 

 

Fig. 1 Schematic of the considering sandwich annular/ 

circular micro plate with saturated porous core and FG-

CNTRCs face sheets resting on Pasternak foundation 
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 
1

Θ Θ
2

T
     

   
(5) 

where u represents the displacement vector, Lame’s 

constant are shown by λ and μ, lm is the parameter of the 

material length scale, and rotation vector is presented by Θ 

which is defined as 

1
u

2
  

 
(6) 

 

2.2 Displacement components and strains 
 

According to the FSDT which accounts the shear 

deformation effects, the displacements are as (Reddy and 

Khdeir 1989, Arshid et al. 2019) 

     0, , , , , , , ,ru r z t u r t z r t    
 

     0, , , , , , , ,v r z t v r t z r t    
 

   0, , , , ,w r z t w r t 
 

(7) 

where u, v and w are the displacements of an arbitrary point 

of the structure in r, θ and z directions, respectively and u0, 

v0 and w0 represent the displacements of the middle plane of 

the plate in the mentioned directions. Also, λr and λθ are the 

transverse normal rotation about the θ and r axes, 

respectively. 

The strain-displacement relations in the cylindrical 

coordinate system are given as (Brush et al. 1975) 

,rr

u

r




     

,
1 v u

r r





 

  

,rz

u w

z r


 
 
      

1
z

v w

z r




 
 
   

1
,r

u v v

r r r




 
  

   

(8) 

Substituting displacement components from Eq. (7) to 

strain-displacement relations, yields 
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01
z

w

r
  




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  

(9) 

 

 

 

2.3 Material properties 
 
2.3.1 Porous core 
In order to determine the structure’s properties, firstly 

the porous core will be considered. The stress-strain relation 

for the saturated porous core is as follow (Detournay and 

Cheng 1995) 

2 ( ) ( )ij ij ij p i

c

jG z z P      
 

(10) 

in which 

 2
,

1 2

u

u

G z 






 

(11) 

  ,pP M   
 

(12) 

  

  2

2
,

1 2 1 2

u

u

G z
M

 

  




 
 

(13) 

 

 

1 2 / 3

1 1 2 / 3
u

B

B

  


 

 


 
 

(14) 

In the above relations, G(z) is the shear modulus, ε is the 

volumetric strain which is defined as εrr+εθθ+εkk, δij is the 

Kronecker delta, α(z) is the Biot coefficient and is equal to 

1-G(z)/G0. Also, Pp is the pore fluid pressure, M is the Biot 

modulus and ζ is the variations of the fluid in the pores and 

for the undrained condition, ζ is equal to zero. In this 

condition, the pores pressure can be simplified as follow 

 pP M  
 

(15) 

Poisson’s ratio in drained and undrained conditions are 

defined as the following 

0| , 0
jj

jj

p

ii

P





  

 

(16) 

0| , 0
jj

jj

u

ii




 


  

 

(17) 

Also, B is the Skempton coefficient which expresses the 

pressure of the fluids within the pores. 

Consequently, the stress-strain relation for the undrained 

condition of the porous core can be rewritten as follow 

 22 ( )c

ij ij ijG z M      
 

(18) 

Using the plane stress assumption, the stress 

components of the porous core in terms of strains can are as 

the following 

1 1

1 1

( ) ( ) 0 0 0

( ) ( ) 0 0 0

0 0 ( ) 0 0

0 0 0 ( ) 0

0 0 0 0 ( )

rr rr
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B z A z
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G z
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 

 

 

 

 

 

 

 

    
    
       

    
    
    
          

(19) 
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in which κf is the shear correction factor of FSDT and for 

circular plate is equal to π
2
/12 and 

1

1 4 2
( ) 2 ( ),

1 3 2

u

u

A z G z
 

 

 


 
 

(20) 

 
1

2 1
( ) 2 ( )

1 3 2

u

u

B z G z
  

 

  


 

 

(21) 

The attributes of the porous core are varied across its 

thickness. So, three functions called porosity distribution 

are considered. The general relations for Young’s elasticity 

modulus and density of these three types are as follow 

0( ) ( ),E z E f z
 

0( ) ( )z g z 
 

(22) 

For the nonlinear non-symmetric porosity distribution, E 

and ρ depend on z as (Arshid and Khorshidvand 2018) 

1( ) 1 cos
2 2

c

c

h
f z e z

h

  
    

    

( ) 1 cos
2 2

c
m

c

h
g z e z

h

  
    

    

(23) 

where hc is the thickness of the porous core and the porosity 

coefficient is shown by e1 which indicates the pores to total 

volume ratio (0 < e1 < 1). Also, this coefficient can be 

defined as follow 

1
1

0

1 ?
E

e
E

 

 

(24) 

in which E1 and E0 are the minimum and maximum values 

of Young’s elasticity modulus which occur at the bottom 

and top surfaces of the core, respectively. 

em is called mas density coefficient and is introduced in 

terms of densities and porosity coefficient as (Amir et al. 

2018b) 

1
1

0

1 1 1 ?me e



    

 

(25) 

Similar to moduli of elasticity, ρ1 and ρ0 are densities of the 

core. 

For the nonlinear symmetric porosity distribution, E and 

ρ are distributed based on a symmetric cosine function as 

(Arshid and Khorshidvand 2018) 

1( ) 1 cos ,
c

z
f z e

h

 
   

   

( ) 1 cosm

c

z
g z e

h

 
   

   

(26) 

And for the monotonous porosity distribution, E and ρ 

are independent of z and are given as (Arshid and 

Khorshidvand 2018) 

 

1( ) 1 ,f z e  
 

1( ) 1g z e  
 

(27) 

where 

2

1

1 1

1 1 2 2
1 1e

e e


 


 
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   

(28) 

 

2.3.2 FG-CNTRCs Face sheets 
Extended mixture rule is employing to determine the 

effective properties of face sheets. According to this rule the 

mechanical properties of the face sheets i.e., Young’s and 

shear moduli can be achieved using the following relations 

(Arani et al. 2015) 

11 1 11

CNT

CNT m mE V E V E 
 

(29) 

2

22 22

CNT m

CNT

m

V V

E E E


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(30) 

3

12 12

CNT m

CNT

m

V V

G G G


 

 
(31) 

in which 
11

CNTE , 
22

CNTE , 
12

CNTG , Em and Gm are longitudinal 

and transversely Young’s and shear moduli of the CNTs and 

matrix, respectively. Also, VCNT is volume fraction of CNTs 

which is determined for different types of CNTs 

distributions and Vm represents volume fraction of matrix 

and VCNT+Vm=1. It should be noted that PVDF is considered 

as matrix in this paper. η1, η2, and η3 are efficiency 

parameters of CNTs which are determined by molecular 

dynamics simulation.  

Also, the mixture rule can be developed for other 

properties of the FG-CNTRCs face sheets i.e., magnetic and 

electric ones as follow (Loghman and Cheraghbak 2018) 

CNT m

ij CNT ij m ijP V P V P 
 

(32) 

where Pij represents the effective properties of the face 

sheets and CNT

ijP and m

ijP  demonstrate the same property 

for the CNTs and matrix. Pij indicates different mechanical 

and magneto-electric properties of the face sheets such as 

density, piezoelectric and magnetic coefficients, electro-

magnetic coupling and dielectric and magnetic 

permeability. However, the Poisson’s ratio varies through 

the following relation 

*

12 12

CNT

CNT m mV V   
 

(33) 

It’s clear that the Poisson’s ratio does not depend on 

CNTs distribution. *

CNTV  is the volume fraction of CNTs and 

defined as follow 

* CNT
CNT

CNT CNT
CNT CNT

m m

w
V

w w
 

 


   
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(34) 
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in which wCNT denotes the mass density of the CNTs and 

ρCNT and ρm are densities of the CNTs and matrix. 

The CNTs are distributed symmetrically in the face sheets 

according to uniform and different FG types. Consequently, 

UU, FG-VA, FG-AV, FG-XX, FG-OO CNTs distribution 

types are considered in this study. It should be noted that the 

first letter is related to the top face sheet and the second one 

is for the bottom face sheet. The mentioned types are shown 

in Fig. 2 and their relation with CNTs volume fraction are 

as follow (Ghorbanpour Arani et al. 2018) 
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For the bottom face sheet 
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Fig. 2 Various distribution types of CNTs through the 

thickness of the face sheets 

 

 

The stress-strain relations for FG-CNTRC face sheets in 

presence of magneto-electric fields may be written as 
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(37) 

Here, eij represent piezoelectric and qij magnetic 

coefficients, electric and magnetic fields are shown by Ei 

and Hi, respectively and Qij are stiffness matrix components 

and are defined as follow (Amir et al. 2018a) 
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(38) 

Also, the electric and magnetic displacements can be 

introduced using the following relations (Ke and Wang 

2014) 
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(40) 

where sii, dii, and µ ii are dielectric permeability, magneto-

electric coefficients and magnetic permeability, respectively 

and Di and Bi represent electric and magnetic 

displacements. 

To satisfy Maxwell’s relations, the electric and magnetic 

fields can be defined as follow (Ghorbanpour Arani and 

Zamani 2017, Ellali et al. 2018) 

,E    (41) 

H    (42) 

The electric and magnetic potentials are summation of 

cosine and linear terms as follows (Ke and Wang 2014) 
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where ϕ0 and ψ0 are the external applied electric and 

magnetic potentials, respectively and hf is the thickness of 

each face sheet. According to Eqs. (41) and (42), the 

components of electric and magnetic fields are as 
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3. Motion equations and boundary conditions 
 

3.1 Strain energy 
 
The total strain energy of the three-layered annular/ 

circular is divided into two parts: the first part is for the 

modified couple stress as explained in Eqs. (1)-(6) and the 

second part is related to the classical structure. 

c MU U U 
 (47) 

in which Uc and UM denote the strain energies of classical 

and MCST, respectively. Thus the strain energy of the plate 

can be achieved using the below relation (Ke et al. 2014) 
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(48) 

Replacing the strain-displacement relations and defining 

the stress resultants, variations of strain energy can be 

achieved as 
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in which the used resultants in Eq. (49) are as follow 
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in which 
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3.2 Kinetic energy  
The three-layered micro plate kinetic energy is written 

as (Ferreira et al. 2008) 
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(52) 

Inserting displacements from Eq. (7) into Eq. (52), the 

variations of kinetic energy is determined as 
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in which 
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(55) 

 

3.3 External work 
 
The external work in the current study includes two 

sectors: the first one due to the Pasternak elastic foundation 

and the second one for magneto electro-mechanical pre 

loads. So 

ext foundation preloadsW W W 
 

(56) 

The force of elastic foundation can be written as (Duc 

2013, Arefi et al. 2018) 

2( , , ) ( , , )foundation W Gf rK w r t rK w r t   
 

(57) 

Spring and shear layer constants are shown by KW and 

KG, respectively. Therefore, the work of foundation force 

can be calculated using the below relation (Ebrahimi et al. 

2017b, Yazid et al. 2018) 

1
( , , ) dr dθ

2
foundation foundation

r
W f w r t r
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(58) 

The work of pre loads can be achieved using the 

following equation as (Meirovitch 1997) 

2 2

2

1 1
dr dθ

2

ext ext

preloads r
r

w w
W N N r

r r


 

     
     

      
 

 

(59) 

in which ext

rN  and extN
 are the external forces in the 

radial and tangential directions and are consist of 

mechanical, electrical and magnetic loads as follows 

,ext M E H

r r r rN N N N  
 

(60) 

ext M E HN N N N     
 

(61) 

where the multi-physical loads are defined as 

0 31 0 31 0, 2 , 2 ,M E H

r r rN P N e N q     
 (62) 

0 32 0 32 0, 2 , 2M E HN P N e N q       
 (63) 

in which P0 is the mechanical pre load. 

  

3.4 Hamilton’s principle 
 
Hamilton’s principle is employed in the present research 

to obtain motion equations as follow (Amir 2016, Sidhoum 

et al. 2018): 

 
2

1

dt 0
t

ext
t

U K W    
 

(64) 

where δU and δK represent the variation of strain and 

kinetic energies, and δWext is external work variation.  

  

3.5 Governing motion equations 
 
Using Eqs. (49), (54) and (59), substituting in 

Hamilton’s principle and by the assumption of axial 

symmetric which makes the equations simpler and vanished 

some terms, the equations are achieved as follow 
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(69) 

where the used coefficients in the governing motion 

equations are defined in the “Appendix” section. 

 

3.6 Boundary and continuity conditions 
 
The boundary and continuity conditions of the annular 

and circular micro plate are presented in the following. It is 

noteworthy that the classical (macro) plate needs five 

conditions at each outer and inner edges (Reddy et al. 

1999), while the micro plate needs one more condition.  

 

3.6.1 Circular plate 
For the circular micro plates, at the center of the plate, 

the continuity condition should be established. To this 

purpose the following relations are used 
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(70) 

and for the edges of the micro plate, depends on the type of 

boundary condition, their relations are ruling as: 

 (a) Clamped edges 
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ru w
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(71) 

(b) Simply supported edges 

0, 0, 0,

0, 0, 0
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M



 

  
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 (72) 

 
3.6.2 Annular plate 
The boundary conditions of the annular micro plate can 

be one of the clamped or simply supported type in edges of 

the plate. Noted that the boundary conditions of the annular 

plates are expressed using two letters: the first letter 

describes the condition of the inner edge and the second one 

is related to the outer edge. For example, C-S refers to the 

inner clamped and outer simply supported edges. 
 
 
 

4. Solution procedure 
 

Among the various methods to solve the differential 

equations, GDQM is selected in the present study as an 

accurate method. In addition by comparison with other 

numerical methods such as Galerkin or FEM, it can be 

found that convergence of the GDQM occurs earlier than 

the others (Malekzadeh and Zarei 2014). The general idea 

of the GDQ method is based on estimating the derivative of 

a function relative to a variable at a point by a linear 

combination of the weighted values of the function at all 

points in the direction of that variable. As a first step to use 

this method, the problem domain must be discrete. Then the 

weighting coefficients should be calculated based on the 

discrete points. 

Distribution of grid points is important in determining the 

convergence rate and stability of the GDQM. The optimal 

distribution of points depends on the degree of derivation in 

boundary conditions and the number of used points. In this 

section, the discretization method in the form of a single- 

variable function is explained. Consider the single- variable 

function f(r) in the domain a < r < b. Different methods are 

available for discretization of the domain. Based on 

Chebyshev polynomial, the points in the domain of problem 

in radius direction can be distributed as follow (Bert and 

Malik 1996) 
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    
(73) 

where N represents the number of points, b and a are the 

inner and outer radii, respectively. 

According to GDQ method, the derivative of the m-th order 

function f(r) at point ri is equal to (Liew et al. 1996) 
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(74) 

in which ( )m

ijC  is the weighting coefficient of the GDQM. 

To determine these weighting coefficients, Lagrange 

interpolation polynomials are used as (Tohidi et al. 2018) 
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(76) 

That M
(1) 

(r) is the first-order derivative of M(r). The first-

order derivative weighting coefficients are derived from the 

below relation (Shu 2012) 
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(77) 

The higher order weighting coefficients will be calculated 

using the following equation 
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(78) 

Using the GDQ relations and by converting the motion and 

boundary conditions equations to the following for, natural 

frequencies of the structure can be obtained 

     2 0K M d 
 

(79) 

where {d} represents the displacements vector. Solving the 

eigenvalue problem of Eq. (79), leads to obtaining the 

frequencies. 

 

 

5. Numerical results and discussion 
 

5.1 Convergence of the results 
As stated in the previous section, rapid convergence is 

one of the featured features of the GDQM. So, in the 

present section, the convergence of the results respect to the 

number of grid points is considered. Tables 1 and 2 are 

presented the results of the circular and annular micro 

plates, respectively for different boundary conditions with 

regard to variation of grid point’s number. It should be 

noted that these tables are presented for the non-symmetric 

porosity distribution of porous core and uniform CNTs 

distribution of CNTRCs face sheets. 

It is found that the convergence occurs rapidly for both 

types of considering plate with about 15 points. So, all the 

other results in tables and figures are obtained based on 19 

points. 

 

 

 

Table 1 Convergence of the fundamental natural frequency 

of circular plate 

 Boundary Condition 

N Clamped ( 610 ) 
Simply supported 

( 710 ) 

5 4.3715 1.2754 

7 3.4104 0.1298 

9 3.1319 0.1304 

11 3.0083 0.1255 

13 2.9468 0.1214 

15 2.9123 0.1185 

17 2.8905 0.1163 

19 2.8752 0.1146 

21 2.8639 0.1134 

23 2.8549 0.1124 

25 2.8484 0.1116 

 

 

 

 

Table 2 Convergence of the fundamental natural frequency 

for various boundary conditions of annular plate 

 Boundary Condition 

N 
C-C 

( 710 ) 

S-C 

( 710 ) 

C-S 

( 710 ) 

S-S 

( 710 ) 

5 1.5958 2.2666 0.6466 1.5484 

7 1.4835 1.2691 1.1061 1.3286 

9 1.4530 1.2516 1.1079 0.9457 

11 1.4492 1.2493 1.1106 0.9459 

13 1.4488 1.2490 1.1113 0.9460 

15 1.4488 1.2490 1.1114 0.9460 

17 1.4488 1.2490 1.1114 0.9459 

19 1.4488 1.2490 1.1114 0.9459 

21 1.4488 1.2490 1.1114 0.9460 

23 1.4488 1.2490 1.1115 0.9459 

25 1.4488 1.2490 1.1115 0.9459 

 
 

5.2 Validation of the results 
 
To validate the formulation and solution process, the 

results for the simpler states are considered. Table 3 

presents the dimensionless fundamental frequency of an 

isotropic circular macro plate and is compared the results 

with the previous studies (Lal and Ahlawat 2015, Leissa 

1969, Wu et al. 2002, Zhou et al. 2003). So, by neglecting 

small scale parameter, magneto electro fields and in absence 

of an elastic foundation for a single-layered isotropic 

homogenous plate, the results are obtained. The 

dimensionless frequency for this table is defined as 

1a h P   and ν=0.3. Results are in good convergence 

with the other studies and the little difference between the 

results can be caused by the different used theories. The 

other studies used CPT while the present one is based on 

FSDT. 

 
 
Table 3 Comparison of the present results with previous 

ones for circular macro plate 

Mode 

Number 

 Boundary Condition 

 Clamped 
Simply 

supported 

1 

Zhou et al. (2003) 10.216 4.9352 

Leissa (1969) 10.216 - 

Lal and Ahlawat (2015) 10.2158 4.9351 

Wu et al. (2002) 10.216 4.935 

Present 10.2142 4.9417 

2 

Zhou et al. (2003) 39.771 29.720 

Leissa (1969) 39.771 - 

Lal and Ahlawat (2015) 39.7711 29.7200 

Wu et al. (2002) 39.771 29.720 

Present 39.4166 29.5847 
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Table 4 Comparison of the present results with other studies 

for annular macro plate 

Boundary 

Condition 

Results 

Chakraverty 

et al. (2001) 

Zhou  

et al. 

(2011) 

(Ansys) 

Zhou et al. 

(2011) 

(Analytical) 

Present 

C-C 61.88 61.70 61.872 61.7365 

S-C 44.93 44.982 44.932 45.7028 

C-S 41.27 41.155 41.261 40.6689 

S-S 28.08 28.127 28.184 28.2904 

 
Table 5 Comparing the natural frequencies of the first three 

modes of isotropic homogenous annular micro plate 

(h/lm=2) 

Boundary 

Condition 

Mode 

Number 

Results 

Ke et al. (2012) Present 

C-C 

1 3.9901 3.9975 

2 6.3932 6.3932 

3 8.9566 9.0274 

S-S 

1 2.3169 2.3184 

2 6.3932 6.3932 

3 7.2014 7.2032 

 
 

Table 4 is considered the dimensionless natural 

frequency of the first mode of the isotropic homogenous 

macro annular plate for the various boundary conditions. 

The non-dimensional frequency is defined the same as 

Table 3, the Poisson’s ratio is equal to 1/3 and ratio of the 

inner to the outer radius is 0.4. These results are also in 

good agreement with the previous ones (Chakraverty et al. 

2001, Zhou et al. 2011). 

At the final step to examine the reliability of the results, 

the natural frequencies of first three modes of micro annular 

plate which is isotropic homogenous and single-layer are 

considered and are presented in Table 5. Similar to the 

previous results, it shows the excellent agreement between 

the present results and those reported by Ke et al. (2012). 
 

5.3 Parametric study 
 
Now the results for the MEE vibration analysis of 

circular/ annular micro sandwich plates with saturated 

porous core and FG-CNTRCs face sheets subjected to 

magneto- electro-mechanical pre loads are presented and 

effect of different parameters such as pores distribution in 

core, porosity coefficient, pores compressibility, CNTs 

distribution in face sheets, volume fraction of CNTs, 

foundation parameters, multi-physical pre loads and 

geometric size of the annular and circular plates are 

investigated. As stated before, the face sheets are made 

from PVDF as the matrix and SWCNTs as the 

reinforcements. The material properties of the SWCNTs and 

PVDF are presented in Table 6 and the efficiency 

parameters of CNTs are in Table 7. 

Table 6 Material properties of the CNTRCs face sheets 

(Amir et al. 2018a) 

Properties SWCNTs PVDF 

ν 0.175 0.34 

ρ (kg/m3) 1400 1780 

e31 (C/m2) 0 -0.13 

e32 (C/m2) 0 -0.145 

e15 (C/m2) 0 -0.135 

q31 (N/Am) 22 0 

d33 (Ns/CV) 0 -46 

μ33 (Ns2/C2) 0.25 -46 

s11 (nF/m2) 0 0.1107 

s33 (nF/m2) 0 0.1061 

 E11 (TPa)= 5.6466 Em (GPa)= 2.2 

 E22 (TPa) 7.0800  

 G12 (TPa)= 1.9445  

 
 
Table 7 Efficiency parameters of CNTs (Amir et al. 2018a) 

*

CNTV
 

η1 η2 η3 

0.12 0.137 1.022 0.715 

0.17 0.142 1.626 1.138 

0.28 0.141 1.585 1.109 

 
 

It should be noted that the Tennessee marble is selected 

as the porous core with Young’s elasticity modulus equal to 

60 GPa, density 2700 kg/m
3,
 and its Poisson’s ratio is 0.25.  

Fig. 3 depicts the effect of porosity variations on the 

fundamental frequency of the annular micro plate. The non-

symmetric pores distribution type is selected for the core 

and CNTs are distributed uniformly through the face sheets 

thickness. Results are shown for various boundary 

conditions i.e., C-C, C-S, S-C, and S-S. As it can be seen in 

this figure, increasing the porosity coefficient which shows 

the ratio of void to bulk volume, the frequency decreases. 

Also as it can be expected the frequency of both edges 

clamped plate is more than the other conditions. Generally, 

the clamped condition raises the stiffness and stability of 

the plate and as the plate becomes stiffer, its vibrations will 

be reduced and natural frequency will be increased. 

Fig. 4 shows the effect of porosity increasing for three 

considering porosity distributions. Similar to Fig. 3, 

increasing the porosity decreases the frequency. The 

frequency of symmetric distribution is more than two other 

types. The natural frequency is related to the root square of 

stiffness to mass ratio and for the symmetric distribution, 

the rate of decreasing of this ratio is less than symmetric 

and monotonous pores distribution. For Figs. 3 and 4 the 

following specifications are used: B=0.1, b=0.1µm, a=5b, 

hc=a/6, lm=hc/2, ht=hb=hc/10 and volume fraction of CNTs 

equals to 0.17. 
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Fig. 3 Comparison of the various boundary conditions of 

the annular plate 

 
 
 

 

Fig. 4 Effect of porosity variations on the fundamental 

frequency of the annular plate 

 
 
 

 

Fig. 5 Investigation the pores distributions and 

compressibility on the fundamental frequency of the 

circular clamped plate 

 
 
 

Table 8 Effect of pores compressibility on the fundamental 

natural frequency of the annular plate 

 C-C 

 B 

 0 0.2 0.4 0.6 0.8 

 Non-symmetric distribution 

ω1 (GHz) 2.8764 2.8780 2.8795 2.8810 2.8824 

 Symmetric distribution 

ω1 (GHz) 2.8845 2.8855 2.8864 2.8874 2.8884 

 Monotonous distribution 

ω1 (GHz) 2.8657 2.8676 2.8693 2.8710 2.8726 

 S-S 

 Non-symmetric distribution 

ω1 (GHz) 1.7661 1.7687 1.7711 1.7736 1.7759 

 Symmetric distribution 

ω1 (GHz) 1.7779 1.7797 1.7804 1.7832 1.7852 

 Monotonous distribution 

ω1 (GHz) 1.7587 1.7623 1.7654 1.7677 1.7693 

 

 

The effect of pores compressibility which is shown by 

Skempton coefficient B is investigated in Table 8. This table 

shows by increasing pores compressibility the plate 

becomes stiffer and its stability increases, so its frequency 

increases slightly. This effect is considered for C-C and S-S 

micro annular plate and for three types of porosity 

distributions. 

The effect of Skempton and porosity coefficients for the 

micro circular plate is considered in Fig. 5. Effects of these 

parameters on the fundamental frequency are similar to the 

annular plate. For this figure, e1=0.3 is used. 

Table 9 and Figs. 6-7 show the effect of different CNTs 

distribution in the face sheets for the circular, C-C and S-S 

annular plates, respectively. 

 

 

 

Fig. 6 Effect of various CNTRC face sheets FG types on 

the fundamental frequency of the annular plate. (C-C) 
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Fig. 7 Effect of various CNTRC face sheets FG types on 

the fundamental frequency of the annular plate. (S-S) 

 
 
 

 

Fig. 8 Effect of CNTs volume fraction variations on the 

fundamental frequency of the annular plate 

 
 
Table 9 Various FG types of CNTs distributions effect on 

the fundamental natural frequency of the clamped circular 

plate 

 e1 

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

 U-U 

ω1 

(GHz) 
1.1754 1.1642 1.1526 1.1409 1.1291 1.1174 1.1064 

 FG V-A 

ω1 

(GHz) 
1.1831 1.1723 1.1610 1.1494 1.1378 1.1263 1.1155 

 FG X-X 

ω1 

(GHz) 
1.1757 1.1645 1.1529 1.1412 1.1294 1.1177 1.1067 

 FG O-O 

ω1 

(GHz) 
1.1752 1.1640 1.1524 1.1407 1.1289 1.1172 1.1062 

 FG A-V 

ω1 

(GHz) 
1.1680 1.1559 1.1442 1.1323 1.1203 1.1084 1.0971 

 

As it can be seen in Table 9, five different types of FG 

distribution of CNTs are considered. Maximum and 

minimum values of the results are for The FG-VA and FG-

AV types, respectively. It caused the CNTs in FG-VA are 

more in the surfaces of the plate rather than the other types.  

Increasing volume fraction of the CNTs, enhances the 

plate’s stiffness and the natural frequency will be increased, 

too. This effect is shown in Fig. 8 for the C-C micro annular 

plate with non-symmetric core type and uniform CNTs 

distribution for the face sheets and ht=hb=0.1µm. 

Effect of the small scale length parameter lm is presented 

in Fig. 9 for the circular plate with a=0.5µm and in Table 10 

for the annular plate. These data show the effect of total 

thickness of the plate h which is equal to the sum of three 

layers thicknesses to the small scale parameter on the 

fundamental frequency. It can be concluded that by 

enhancing the small scale parameter, the frequency raises, 

too. 

Core’s thickness to the radius of the circular plate ratio 

variations and its effect on the fundamental frequency of the 

plate is considered for two clamped and simply supported 

boundary conditions in Fig. 10. As the core of the sandwich 

plate becomes thicker, its stiffness increases and 

consequently its frequency increases too.  
 
 

 

Fig. 9 Size effect on the fundamental frequency of the 

circular plate 

 
 

 

Fig. 10 Effect of core’s thickness to plate’s radius ratio on 

the fundamental frequency of the circular plate 
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Table 10 Size Effect on the fundamental natural frequency 

of the C-C annular plate 

 h/lm 

 1 2.5 4 5.5 7 8.5 10 

 Non-symmetric distribution 

ω1 

(GHz

) 

4.223
0 

2.841
7 

2.555 
2.451

8 
2.401

8 
2.373

6 
2.355

9 

 Symmetric distribution 

ω1 

(GHz

) 

4.226
2 

2.849
8 

2.566
3 

2.463
5 

2.414
0 

2.385
9 

2.368
3 

 Monotonous distribution 

ω1 

(GHz

) 

4.183
6 

2.831
2 

2.546
2 

2.442
9 

2.323
9 

2.265
0 

2.247
4 

 
 
 
Also, the rate of this increase in clamped condition is more 

than simply supported one. For this figure, the radius of the 

circular plate is considered as a=0.5µm. 
The effect of aspect ratio of the annular plate is depicted 

in Fig. 11 for e1=0.3 and B=0.1. As the outer radius 

becomes more and by keeping the inner radius constant, the 

frequency reduces. 
Effect of core’s to face sheets thickness ratio is 

considered in Fig. 12. This figure illustrates by increasing 

the porous core thickness respect to FG-CNTRCs face 

sheets, due to the much more the stiffness of the face sheets 

than the core, the plate’s stiffness will be reduced and its 

vibration will be increased. So its frequency will be 

decreased. 
All of the mentioned results were in the absence of the 

elastic foundation and the effect of Pasternak elastic 

foundation constants i.e., spring constant KW and shear layer 

constant KG is presented in Figs. 13 and 14. It’s clear that by 

increasing both foundation constant, the natural frequency 

will be increased. It caused that adding the elastic 

foundation will increase the stiffness of the structure and 

based on it, the vibration of the structure reduces. As can be 

seen in these two figures, the effect of shear layer is more in 

comparison to spring constant. 

 

 

Fig. 11 Effect of aspect ratio on the fundamental 

frequency of the annular plate 

 

 

Fig. 12 Effect of core to face sheets thickness ratio on the 

fundamental frequency of the annular plate 

 
 
 

 

Fig. 13 Effect of Winkler constant of the elastic 

foundation on the fundamental frequency of the annular 

plate. (KG=0) 

 
 

 

Fig. 14 Effect of shear layer constant of the elastic 

foundation on the fundamental frequency of the annular 

plate. (KW=10
9
) 
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Fig. 15 Effect of electric potential variations on the 

fundamental frequency of the annular plate 

 
 

 

Fig. 16 Effect of magnetic potential variations on the 

fundamental frequency of the annular plate 

 
 

 

Fig. 17 Effect of mechanical pre load on the fundamental 

frequency of the annular plate 

 
 
Effect of multi-physical pre load is presented in Figs. 15-17. 

Fig. 15 shows the effect of electric potential on the 

frequency. Increasing the electric potential Φ0 decreases the 

frequency slightly. 
 

But the magnetic potential Ψ0 which its effect on the 

frequency is shown in Fig. 16 increases the frequency. It’s 

clear that in these figures the symmetric porosity 

distribution as stated before has the most values of 

frequencies in comparison two other types. 

Fig. 17 demonstrates the effect of tensile and 

compressive pre mechanical loads P0 on the natural 

frequencies and it is concluded that by enhancing it, the 

frequency will be decreased. 
 
 
6. Conclusions 

 
Free vibration of three-layered micro annular/ circular 

plates is analyzed in the current study based on the MCS 

and FSD theories. The core of the plate was made of 

saturated porous materials and its face sheets were made of 

FG-CNTRCs. The matrix of the CNTRCs was PVDF and 

CNTs were selected as the reinforcement. Pasternak model 

is used for foundation and multi-physical pre loads are 

applied to the structure. The attributes of the middle layer 

were varied through its thickness following the given 

functions namely non-symmetric, symmetric and 

monotonous. Hamilton principle and variation formulation 

were employed to achieve the motion equations and they 

were solved for various boundary conditions numerically 

via GDQM which converted them to algebraic equations. 

Effect of different parameters investigated and concluded 

that: 

 Enhancing the porosity increases the natural 

frequency. 

 The symmetric porosity distribution has the most 

and monotonous distribution has the least values of the 

frequencies. 

 As the plate becomes more clamped, the 

frequency increases. Vice versa as the edges of the plate 

become free, the frequency will be reduced. 

 Increasing Skempton coefficient which shows the 

pores compressibility increases the frequency slightly. 

 Among the various CNTs distribution, FG-VA and 

FG-AV have the most and least values of frequency, 

respectively. 

 Enhancing CNTs volume fraction reduces the 

vibrations of the structure. 

 Increasing small scale length parameter will be 

caused the plate to vibrate less. 

 As the plate’s core becomes thicker in comparison 

to its face sheets, the natural frequency decreases due to its 

less stiffness in comparison to face sheets. 

 By increasing the core’s thickness to the radius of 

the circular plate ratio, the natural frequency will be raised. 

 Increasing outer to the inner radius of the annular 

plate ratio decreases the fundamental frequency. 

 Adding the elastic foundation, increases the 

stiffness of the structure, so the frequency of the sandwich 

plate will be increased. 

 The shear layer constant has more effect rather 

than spring constant on frequencies of the structure. 

 Increasing electric potential and mechanical pre 

load, decreases the frequency. Vice versa increasing the 
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magnetic potential will be increased the frequency of the 

structure. 
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Appendix 
 
The used coefficients in Eqs. (65)-(69) are defined as 

follow 
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