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1. Introduction 
 

There is generally a certain stress threshold in the 

mechanical behavior of all materials, beyond which the 

elastic behavior is lost. In brittle materials this threshold is 

considered to be a breaking point, whereas in ductile 

materials the loss of elastic behavior represents the yield 

point, beyond which there are additional resources that 

change its constitutive law. 

The weakness of brittle materials derives from the 

presence of microscopic surface and/or volume defects, 

which can propagate and evolve into macroscopic fractures, 

until the structural element collapses (Foraboschi 2009, 

2017). Depending on many factors such as size and shape 

of surface defects, close flaws may interact with one 

another, evolving into a multiple fracture Castori and 

Speranzini (2017). Therefore, in order to understand the 

mechanical behavior of brittle materials, it is necessary to 

be able to predict and control the development of their 

defects, which depends not only on stress but also on 

physical and chemical interactions with the environment. 

Strength depends on the size of the greater defect which is 

called the critical defect.  

A large amount of research has been conducted on 

brittle materials concerning different response to tensile and 

compressive (Brencich et al. 2001), cracking of quasi brittle 

materials under monotonic and cyclic loadings (Cervera et 

al. 2018), performances of pantographic structures affected 

by statistically distributed defects (Turco et al. 2016) and 

multiple crack evaluation on concrete using a line laser 

thermography scanning system (Jang and An 2018, Surkay 

et al. 2018, Kim and Cho2018). 
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Research on the strength of brittle materials as function 

of defects goes back into the past and was mainly concerned 

with glass and ceramic materials (Wiederhorn and Evans 

(1974). These materials are subject to stress-corrosion, a 

complex phenomenon still under investigation, which 

causes defects to evolve under constant external stress even 

well below the theoretical strength limit. This circumstance 

attracted considerable interest, as can be seen from the 

impressive amount of published works on this topic, among 

which are the studies by Charler (1958), Wiederhorn 

(1970). A review on this topic has been written by Ciccotti 

(2009). Like all the other material corrosions, glass stress-

corrosion is governed by a set of physical and chemical 

phenomena occurring at the micro/nanoscopic scale, whose 

main factors are the chemical composition of glass, the 

presence of water or water vapour in the atmosphere, the 

temperature of the environment and the pH (Briccoli et al. 

2010, Andreozzi et al. 2015). This phenomenon is caused 

by the growth of small cracks in the surface and the 

combination of the influence of humidity and the applied 

loads. Another problematic feature of brittle nonmetallic 

materials is the size effect i.e., the decrease in the strength 

due to the increase in the size of the structural element (in 

volume or surface). 

Studies on the behavior of materials affected by defects 

have been developed with the LEFM (Linear Elastic 

Fracture Mechanics) theory, in which the behavior of the 

material is modeled by looking at cracks (Carpinteri 1992). 

Given that glass is an elastic-brittle material, it was used for 

developing the basics of this theory. A stress analysis 

conducted on an elliptical cavity in a uniformly stressed 

plate showed that the local stress surrounding a notch or 

corner could rise to a level several times higher than the 

applied stress, and then even submicroscopic flaws might 

be potential sources of weakness in materials.  

Fracture surface analysis can provide useful suggestions 

for the study of brittle materials. Different types of crack 
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growth (e.g., fatigue, stress corrosion cracking, and 

excessive loading) produce characteristic features on the 

surface that can be used to help identify the failure mode 

(Castilone et al. 2002). One of the aims of fractographic 

inspection is to determine the cause of failure and calculate 

the failure strength by means of certain physical parameters, 

such as the depth of the flaw and the mirror radius of the 

fracture, which are measured after the failure of the material 

(Marsili et al. 2017). It can also be used in a more 

fundamental manner to develop and evaluate theoretical 

models of crack growth behavior. This technique has been 

widely used for brittle materials such as glassy carbon, 

ceramics and glass. Glassy carbon is a brittle form of 

carbon with a randomized structure and offers high purity, 

corrosion resistance, thermal stability and a structure 

impermeable to both gases and liquids. It is used in vessels 

for ultra-high purity materials technology, semiconductor 

connections and protective tubes for heating elements. 

Ceramic materials are used in bioengineering for 

prosthesis, and in the automotive and aerospace industries 

for their higher fracture toughness and resistance to high 

temperatures, while advanced ceramic materials are 

especially suitable for corrosive environments and are 

widely used in the aeronautics and aerospace sectors. Glass-

ceramic is attractive for its high abrasion and chemical 

resistance, is used in the building industry, and is also a 

promising material for structural uses (Collini and Royer 

2014). 

This paper investigated the failure behavior of the brittle 

materials examining the plane of the crack after the failure. 

In this investigation it was decided to use specimens of 

annealed float glass because the results were expected to be 

more significant than with other brittle materials, due to 

glass transparency. Rectangular glass elements were cut 

from a sheet of glass and the edges were ground and/or left 

simply cut. These were loaded to bending in the plane, and 

the corresponding results were studied in terms of strength 

and energy dissipation. The fracture surface was analyzed 

by using microscopic analysis. The results obtained are in 

agreement with those obtained from the linear elastic 

fracture mechanics theory. This survey proves the 

possibility of determining the stress of brittle materials at 

the time of breaking directly on the fragments by means of 

analyses and measurements performed on the plane 

containing the fracture surface. This approach can be used 

for investigations after breakage and to validate the 

theoretical results of new studies concerning brittle 

structures. 

 

 

2. Methods 
 

2.1 The theory of brittle materials failure 
 

Defects in the materials are to be considered the main 

causes of triggering brittle fractures; this is why a theory for 

the study of cracks has been developed. A crack is an 

idealized model of a flaw with a defined geometry and lying 

in a plane, located on the surface or embedded within the 

volume. The effects of the stress concentration in the 

vicinity of flaws and defects have been studied since the 

late 1800s, when Kirsch investigated the problem of a glass 

pane with a round hole and subjected to traction, and then 

Inglis (1913) extended the study to the more general case of 

a glass sheet with an elliptical hole, in which the strength of 

the material depends on the ratio between the axes of the 

hole’s ellipse. In 1920 Griffith, in analyzing the fracture 

phenomenon, referred to energy considerations in addition 

to stress and showed that the elastic strain energy UE 

released by a glass pane of unitary thickness, subjected to 

traction , when this is cut with an incision having a length 

of “2a” and the displacements without end are kept 

constant, is proportional to the energy contained in the 

circle with radius a before the incision. Griffith added that 

to create a cut of length 2a it is necessary to have a surface 

energy US required by the new portion of open surface 

created. Therefore UE and US are expressed in 

𝑈𝐸 =  
𝜋𝑎2𝜎2

𝐸
  

 𝑈𝑆 = 4𝑎𝛾 

(1) 

where E is the elastic modulus of the material and  the 

energy related to the surface unit. Because a crack becomes 

unstable when the variation in strain energy resulting from 

an increase da in crack growth is sufficient to overcome the 

surface energy , the instability condition provides 

    
𝜕𝑈𝐸

𝑑𝑎
 ≥  

𝜕𝑈𝑆

𝑑𝑎
  

  𝜎𝐹 =  √
2𝛾𝐸

𝜋𝑎
 

(2) 

where F is the failure stress of the material. If there is 

<F, the crack is stable and does not propagate; on the 

contrary, with F the fracture propagates spontaneously.  

Irwin (1957) introduced the concept of the stress 

intensity factor (SIF) KI, expressed to evaluate structural 

element failure. The general relationship among KI, the 

nominal tensile stress normal to the crack’s plane σn, the 

correction factor Y depending on the geometry of the crack 

and a representing the half-length of the crack (or defects), 

is given by 

𝐾𝐼 = 𝑌𝑛 √ 𝑎 (3) 

Eq. (3) is only valid in testing conditions where stress 

corrosion can be neglected. Otherwise, under loading and in 

humidity conditions, the subcritical crack growth 

propagates as a function of loading duration. In this 

condition the crack growth velocity is a function of the 

stress intensity factor KI and of the environmental 

conditions. KI falls between two limit values: the lower 

value KI0, which depends on the environmental conditions, 

below which there is no propagation; and the upper critical 

value, KIC, characteristic of the material, above which 

growth is independent of the environmental conditions and 

occurs at such speeds as to bring about instantaneous failure 

(for soda lime silica glass, for example, it is about 1500 

m/s). The intermediate values of KI define the sub-critical 
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growth interval of the fracture, which leads to delayed 

failure over time. Wiederhorn (1969) provided the 

following kinematic relationship between velocity v and the 

stress intensity factor KI 

,0
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


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
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  (4) 

where v0 [m/s] represents the conventional value of the 

subcritical propagation of the crack, as it expresses the 

growth speed that the fracture would reach if it propagated 

up to the KIC following Eq. (4). Both v0 and n are constants 

that depend on the material and the environment, and they 

are measured by means of dynamic fatigue tests i.e. 

breaking tests in an aggressive environment at different 

loading speeds. In the case of glass, the values of v0 and n 

parameters are discussed by Haldimann (2006). The speed 

v0 can range from 30 μm/s (relative humidity 0.2%) to 0,02 

m/s in water and can be assumed equal to 0.01 mm/s in 

laboratory conditions and 6 mm/s in environmental 

condition. In order to achieve safety, the values of 0.0025 

[m/s] can be assumed for v0 and 16 for n (relative humidity 

100%), in any conditions.  

Assuming Eq. (4), using the stress intensity factor from 

Eq. (3) and supposing n to be constant, it is possible to 

obtain the time-dependent size of a single crack subjected 

to the crack opening stress σ(t) as 
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where ai is the initial crack depth i.e. ai = a(t =0). 

The same relation can be expressed in terms of the value 

σ with a static loading duration. It is possible to obtain the 
failure stress σf, knowing the failure loading duration tf (s) 

and assuming aci (m) corresponding to the initial critical 

flaw depth 
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For a short duration of the applied loads, the inert 

strength (i.e. the failure stress that represents the strength in 

a crack when no subcritical crack growth occurs) regulates 

structure failure, whereas with increases in the loading 

duration, when stress corrosion phenomenon occurs, Eq. (6) 

is used to determine the failure stress, hereinafter called the 

strength. The theoretical transition loading duration, 

between the inert condition and time-dependent condition, 

expressed by the parameter tref, can be determined from Eq. 

(7) which is obtained using Eqs. (3) and (6). If t>tref, the 

strength decreases following Eq. (6); if instead t<tref, the 

failure is assumed to follow the inert strength level. 

.
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2.2 Fracture surface analysis 
 
The fracture surface is an important source of 

information for studying structural element failure. In this 

regard, the fractographic examination can be used in 

fractured elements of brittle materials, obtaining 

quantitative information about the loading condition at 

failure and the fracture origin, i.e. the sources from which 

the brittle fracture begins. In general, this origin can be 

traced to irregularities and defects in the material, such as 

pores and microcracks which occur due to manufacturing. 

Fracture analysis is a powerful tool for the interpretation of 

fractures of brittle solids.  

Three different zones can be recognized around a crack 

on the fracture plane of the failure element: mirror, mist and 

hackle zones, along with crack branching shown in the Fig. 

1, which represents an image of the typical fracture pattern 

centered around a surface flaw. The mirror zone forms 

around the critical flaw at the cross-section of the failed 

specimen. It is a relatively smooth region around the origin 

point. In glass this surface is highly reflective. The initial 

flaw may grow stably up to size ac prior to unstable 

fracture, when the stress intensity reaches the value KIc. 

This region is characterized by a slow crack growth velocity 

and its size is inversely proportional to the square of the 

stress at fracture. In fact, under a failure stress, once the 

critical flaw starts to propagate, mirror boundary hackle 

lines are created after the radiating crack reaches terminal 

velocity. The mirror-mist radius is rm. The mist zone is a flat 

smooth area surrounding the mirror region that shows a 

slight change in surface texture and is a transition zone from 

slow to fast crack growth. The mist-hackle radius is rh. The 

outermost area, also called the deformation zone, includes 

hackles, striations and beach marks, and the texture of this 

area is directly related to the type of loading and the applied 

stress.  

 

 

Fig. 1 Image of a typical fracture mirror centered on a 

surface flaw 
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The analysis of this region is critical for determining the 

causes of failure. The branching distance from the origin is 

rb. The area of “a” radius is defined as the source of failure. 

The three zones are easily identifiable in glass; it is 

more difficult, however, in ceramic because there is an 

inherent roughness from the microstructure also in the area 

immediately surrounding the origin. In coarse-grained or 

porous ceramics, it may be difficult to identify a mirror 

boundary. In polycrystalline ceramics, a mirror-mist 

boundary cannot be easily detected, due to the inherent 

roughness created by the crack-microstructure interactions 

also within the mirror. 

A study of fracture patterns was presented by Quinn et 

al. (1990), in which the fracture surface can identify the 

cause and the origin of the failure. It also can determine 

whether a material contains unusual flaws or if the glass 

was simply overloaded. It was extensively demonstrated 

(Johnson and Holloway 1966, Levengood 1958) that the 

failure stress σf, i.e. the maximum principal tensile stress at 

the fracture origin, is proportional to the reciprocal of the 

square root of the mirror radius (radius of the mirror/ mist 

boundary) rm 

,
2/1 Brmf   (8) 

where B is a fracture mirror constant (MPa m
1/2

) that 

depends on the material properties. Similar relations were 

demonstrated in soda-lime glass for radii determined by the 

onset of hackle rH and of crack branching rB  (Congleton 

and Petch 1967). Eq. (8) is considered valid in general for 

rm, rh, and rb to which correspond the fracture constants cm, 

ch and cb. However, limited information is available about 

the time-dependency of glass strength in relation to the 

mirror radius. The time-dependency in glass strength is not 

taken into consideration in the measurement of the mirror 

radius.  

Fracture mirrors reveal fractographic markings that 

surround a fracture origin in brittle materials. The fracture 

mirror size may be used to estimate the stress in a fractured 

component when the fracture mirror constants are known or, 

alternatively, the fracture mirror size may be used in 

conjunction with known stress in test specimens to calculate 

fracture mirror constants. 

Some studies have been carried out on the relationship 

between the speed of crack branching and fracture stress 

(Overend 2007). However, a direct relationship between 

crack velocity and crack branching was not available from 

experimental tests. A more recent hypothesis is that the 

branching stress is controlled by the strain energy release 

rate. The following relationship, called the crack branching 

equation, is an extension of Eq. (8), proposed for the failure 

stress vs. the mirror radius: 

,2/1 marf r  (9) 

 

 

Table 1 Parameters of the crack branching equation for 

annealed glass 

 
α [Mpa m1/2] σar [Mpa] 

Mirror 1.98 9.6 

Hackle 2.11 9.1 

Branch 2.18 10.7 

 

 

where σar is interpreted as being an apparent residual 

compressive surface stress and α is a constant value. Finally, 

the three branching constants αm, αh and αb, as well as the 

corresponding apparent residual stress σar, were determined 

in recent studies by Haldimann et al. (2010) and 

summarized in Table 1. Eq. (9) is valid for all points along 

the branching boundary. 

The crack branching equation provides the failure stress, 

having measured the mirror radius rm, the hackle radius rh 

and the half branching length rb. It is not always easy to 

apply because sometimes reading the fracture pattern 

becomes quite complex for the high stress values that 

produce the failure. 

 

2.3 Strain energy in linear elastic solids 
 

In a prismatic mono-dimensional structural element 

subjected to loads Fi acting in the plane containing the axis 

of symmetry of the cross section and the axis of the 

element, it is assumed that the transverse cross sections, 

which are perpendicular to the centroid axis, remain plane 

and perpendicular to the centroid axis of the beam. 

Indicating with Vi the displacement at the location and in 

the direction of the force, an increase in Fi gives a 

corresponding increase in the displacement, and 

consequently the work done by the load is 

𝑊𝑒𝑥𝑡 =  ∫ 𝐹ì ∙ 𝑑𝑣𝑖  

𝑉𝑖

0

=  
1

2
 𝐹𝑖 ∙ 𝑉𝑖 (10) 

In absence of any energy dissipation, this work is stored 

in the structure in the form of internal energy Uint done by 

the stress resultants in moving through the corresponding 

deformations; this is also called strain energy. For beams of 

span L, volume V, inertia bending moment Ix and material 

with elastic modulus E, the energy stored in the complete 

beam, subjected to a bending moment Mx and considering 

only the normal stress, may be obtained from Eq. (11) 

𝑈𝑖𝑛𝑡 =  ∫
𝜎𝑧

2

2𝐸𝑉

 𝑑𝑉 = ∫
𝑀𝑥

2

2𝐸 ∙ 𝐼𝑥𝐿

 𝑑𝑧 (11) 

In this context, thus we have Wext=Uint because the work 

performed by the elastic body is completely transformed 

into elastic strain bending energy, which constitutes the 

internal energy of the beam. This balance between external 

work and internal work implies that the external forces are 

applied statically, i.e. in such a way that dynamic effects can 

be excluded which, due to damping, would cause a 
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dissipation of energy. Work and energy are expressed in the 

same units, the joule (J), which is equal to one Newton 

metre (N·m).  

If experimental load-displacement diagrams are 

available that describe the mechanical behavior of the 

structures, the total work done by the applied loads can be 

evaluated measuring the area enclosed by the load-

displacement curve. 

 

2.4 Statistical interpretation of brittle material strength 

 
The statistical Weibull distribution is normally used to 

predict the strength of brittle materials, in which their 

intrinsic strength is sensible to material defectiveness. This 

distribution is based on the weakest-link-in-the-chain 

concept, in which the failure occurs when a part of material 

fails whose mechanical behavior is independent from that of 

the other parts of the material. The Weibull probability law 

is able to describe the variability of the strength of the 

material, and the failure risk dB is expressed in general as 

(Weibull 1939) 

𝑑𝐵 =  − log(1 − 𝑃𝑓,0)𝑑𝑉 (12) 

where Pf,0 is the probability of failure of a small volume 

element dv.  

The failure risk dB is a function of the stress  and can 

be expressed by means of the characteristic function of the 

material n()0 which is a function of the applied stress 

𝑑𝐵 = 𝑛(𝜎)𝑑𝑣 (13) 

and for a generic stress distribution the failure risk is 

𝐵 =  ∫ 𝑛(𝜎) 𝑑𝑣
𝑉

 (14) 

In those brittle materials in which fractures occur starting 

from the surface (e.g., with the defectiveness being due to 
the use and method of finishing), the volume integral can be 

replaced by a surface integral extended over the surface A 

of a layer of a small thickness and the failure risk can be 

expressed as 

𝐵 =  ∫ 𝑛(𝜎) 𝑑𝑎
𝐴

 (15) 

Studies of Freudenthal (1968) showed how to correlate the 

flaw distribution to the Weibull distribution allowing to 

assert that the following characteristic function of the 

material n(𝜎) can be assumed 

𝑛(σ) = (
𝜎

𝜂0
)

𝑚
 (16) 

defined in [0, +∞) and where m and 0 are the shape and 

scale parameters, respectively. Assuming the material 

function in Eq. (16), the probability of failure of the two-

parameter Weibull distribution is expressed as 

𝑃𝐹𝐴𝐼𝐿 = 1 − exp ⌊− ∫ (
𝜎

𝜂0

)
𝑚

𝐴

𝑑𝑎⌋ (17) 

 

The 2PW distribution is considered a reliable statistical 

model for the strength characterization of brittle materials, 

and of glass in particular, and it is appreciated because its 

formulation is mathematically simple. The two parameters 

m and 0 cannot be measured directly, but are assessed for 

each group of samples. Indeed, m represents the data 

dispersion: the higher the m value, the lower the data 

dispersion, while 0 is considered the stress that 

corresponds to the 63% breakage probability. The 

cumulative probability of failure of this distribution is 

expressed by 

𝐹(𝜎) = 1 − exp ⌊− (
𝜎

𝜂0

)
𝑚

⌋ (18) 

In the technical literature there are other kinds of 

Weibull distributions, such as the three-parameter 

distribution, in which the material function n() is defined 

when 0 and 0 is the third parameter that describes the 

lower bound of the strength. Han, Tang et al. (2009) suggest 

the use of the 3PW distribution for ceramic and high-

strength glass. An accurate statistical interpretation of glass 

strength has been written by Pisano and Royer (2015) and 

an interesting review of the statistical distributions to be 

used to model the strength of float glass is in Ballarini et al. 

(2016). 

 

 

3. Experimental procedure and results 
 

In this experiment, five sets of small glass mono-

dimensional elements having rectangular cross section were 

built using soda-lime silica float glass. The geometric 

characteristics, the edge finishing and the number of 

samples are indicated in Table 2. The specimens of sets A, 

B, C and D have the same cross section, while the length is 

greater for C and D. The set E samples have the biggest 

size. The five sets differed in their edge finishing, which 

was ground (further finishing after the cut) for sets A, C and 

E and simply cut (primary edge finishing) for sets B and D. 

The ratio between height (h) and length (l) of the elements 

in the various sets is almost constant, as is the ratio between 

the load span, sl, and the support span, ls. All specimens 

were furnished by the same manufacturers and were 

subjected to the same treatment (annealing) and working 

process (edge finishing) to obtain a similar level of surface 

defectiveness. A total of 107 specimens were tested. 

 

3.1 Bending tests 
 

All the specimens were subjected to in-plane four-point 

bending tests in accordance with the UNI EN 1288-3 (2000) 

standard. Sets A, B, C and D were tested using a universal 

UTS testing machine (see Fig. 2(b)) following the test setup 

illustrated in Fig. 2(a). Due to their greater length, the set E 

specimens were tested following the same test setup and 

using another testing machine (with an electronic hydraulic 

jack for loading) capable of testing larger specimens than 

previous sets. 
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The specimens were equipped with LVDT (Linear 

Variable Displacement Transformer) inductive transducers 

in order to record the vertical displacement (Loktinov 2016). 

The load was statically applied at a stress rate of 0.75 MPa/s 

± 0.15 MPa/s until the collapse. The laboratory temperature 

was 22°C and the relative humidity was 44%. Testing 

conditions were within the limits of standard 

recommendations for four-point bending tests [EN 1288-3, 

2000], i.e., in the range of 23±5°C for temperature and 40-

70% for relative humidity. The failure load Pf, the time at 

failure tf and the maximum displacement in the midspan wf 

[mm] were automatically recorded by a data acquisition 

system. 

The mean results for each set are shown in Table 3. As a 

first result of the bending tests, it can be observed that the 

mean failure load Pf of the set A is greater than that of set B. 

In set C and D, the Pf for the set of cut edge beams is 

slightly smaller than for the ground edge beams. The failure 

occurred always inside the load span: cracks spread from 

the tensile edge towards the compressed edge with several 

branchings. The load displacement diagram of each tests 

showed linear behavior from zero to limit load (see Fig. 3). 

Once Pf was known, the bending moments of each 

specimen were calculated at the failure and the failure stress 

f was computed by means of the following equation 

,
3

6

2

22 bh

dP

h
b

d
P

f
f

f

















  (19) 

where d [mm] is the distance between the load point and the 

support, and b [mm] and h [mm] are the width and the 

height of the cross section, respectively. It is obvious that 

bending tests generated variable tensile stress that is 

maximum at the intrados of the specimen and decrease 

towards the compressed area. Table 3 also gives the vertical 

displacement measured in the midspan at failure. In 

addition, the last two columns of this table show the energy 

values: the first is the elastic strain energy released upon 

initial failure and evaluated by measuring the area closed 

from the load-displacement curve in the experimental 

bending diagram; the second is the external work computed 

with reference to the failure values of the load and the 

displacement.  

 

 

 

 

 

During testing, it was observed that there were 
significant differences in the failure mode among the 

specimens. Specimens that reached a high load showed 

more cracks than specimens that failed at a low load. 

Branched cracking patterns occurred in specimens in which 

more elastic energy was stored. The set A specimens 

showed multiple fracture branches compared to the B set 

specimens, which supported lower loads. In this regard, it is 

pointed out that the set A specimens supplied greater 

strength and energy than the set B specimens. 

 

 

 

 
(a) 

 
(b) 

Fig. 2 Test set-up used for in-plane four point bending 

 

 

 

Table 2 Geometrical characteristics and edge finishing of glass elements and test stress rate 

SET 
b 

[mm] 

h 

[mm] 

l 

[mm] 

Edge 

finishing 

Number of 

samples 

ls  

[mm] 
ss [mm] h/l ss/ls 

Stress rate 

[MPa/s] 

A 8 50 400 Ground  25 360 120 0.12 0.33 0.59 

B 8 50 400 Cut  25 360 120 0.12 0.33 0.59 

C 8 50 550 Ground  19 500 160 0.09 0.32 0.85 

D 8 50 550 Cut  18 500 160 0.09 0.32 0.87 

E 8 100 1100 Ground  20 1000 300 0.09 0.30 0.73 
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Fig. 3 Load-displacement diagram type 

 

 

3.2 Analysis of the specimens fracture 

 

3.2.1 Fracture analysis 

Given that the specimens were tested in flexure, each of 

them failed at the intrados of the glass element in mode I, 

which is normal-opening according to linear elastic fracture 

mechanics (LEFM) theory, i.e., subjected to tensile stress 

perpendicular to the crack plane. After the failure of the 

glass elements, the fractured section of each specimen was 

examined according the ASTM C1678 (2010) standard, 

using an optical microscope with polarized light, Hund mod. 

H600. Important information was collected on flaw sizes, 

fracture origin and fracture mirror sizes. Fig. 4 shows some 

significant microscope images of the fracture surface. Fig. 

4(a) shows the intrados of the beam with beveled edges and 

the way to identify the flaw and the mirror zone. Figs. 4(b) 

and 4(c) are the microscope images of the fractures in 

which is easy to spot the origin of the fracture (white stain 

on the edge of the glass beam). The first image shows the 

whole fracture surface, and the fracture mirror zone can 

clearly be seen to be semi-circular, being of surface origin 

in tensile specimens. The second image (see Fig. 4(c)) 

shows a fracture mirror that is a quarter circle, since this 

forms from a corner origin. The mirror boundary is partial, 

probably because the crack did not achieve sufficient 

velocity within the edges of the specimen. Furthermore, 

separate mirror, mist and hackle regions and the apparent 

boundaries between them can be identified. Each has a 

corresponding mirror constant according Eq. (8). The 

mirror-mist boundary is most commonly referred to as the  

inner mirror boundary, and its mirror constant is determined.  

 

 

 

The failure strength σf(tf) has been calculated for each 

sample using Eq. (6), knowing the flaw depth a, the time at 

failure tf and the critical value of KIc. In this analysis it was 

assumed that the flaw depth a does not change during 

loading. The values of v0 and n are assumed to be 0.01 

mm/s (for laboratory condition) and 16, respectively. The 

geometric factor Y assumes a constant value for each edge 

crack configuration. This value was chosen by Haldimann 

(2006) observing each crack pattern (e.g., Y is 0.722 for a 

quarter-circle crack on glass edges, and is 1.12 for a long, 

straight-fronted plane edge crack in a semi-infinite 

specimen).  

The results of the post-fracture analysis are summarized 

in Table 4 for each set. The table shows the results of the 

microscopic analysis in the first three columns on the left: 

i.e., the mean values of the mirror radius rm and the flaw 

depth a, microscopically measured, and the mean value of 

the ratio rm/a. It is possible to observe that the ratio between 

the mirror radius rm and the flaw depth a is almost constant 

in the 9-10 range.  

The three columns on the right in Table 4 give the mean 

values of the time reference tref (derived from Eq. (7)), the 

strength σf(tf) and the inert strength σf(tref) (both calculated 

using Eq. (6) knowing the flaw depth a, the time failure and 

the critical value of KIc). Stress at the failure time tf takes 

into account the effect of the stress corrosion, due to the 

duration of loading (Table 3) in which humidity and 

temperature produce a decrease in the strength of the glass, 

causing a subcritical growth of the flaw. If the loading 

duration is very short, the effect of the stress corrosion 

could be neglected, and the strength of the glass 

corresponds to the inert strength. 

 

Table 4 Mean values of the microscopic analysis and of the 

strength 

Mean values of  

the microscopic analysis 

Mean values of  

the strength 

SET 

rm 

[mm] 

 

a 

[μm] 

 

rm/a 

 

σf(tf) 

[MPa] 

tref 

[s] 

σf(tref) 

[MPa] 

A 2.50 292.4 9.0 52.91 4.18 54.03 

B 3.89 456.1 9.3 45.43 6.52 46.50 

C 2.14 324.5 10.3 52.34 4.64 52.09 

D 2.46 258.4 9.6 48.10 3.69 48.12 

E 2.56 271.5 10.0 55.01 3.88 54.91 

0

1000

2000

3000

4000

0 5 10

Set E

Displacement [mm] 

L
o

ad
 

Table 3 Mean values at failure for each set 

 
Experimental 

values 

Theoretical 

values 

SET Pf [N] tf [s] Mf [Nmm] f [Mpa] wf [mm] E [J] E [J] 

A 2290.14 75.54 148859 41.22 2.52 2.9 2.9 

B 1864.60 66.56 121199 33.56 2.22 2.1 2.1 

C 1741.98 51.10 148067 42.81 2.12 1.8 1.8 

D 1710.18 49.85 145365 41.26 1.66 1.5 1.5 

E 3446.28 59.88 603098 40.82 2.00 5.3 4.8 
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3.2.2 Statistical analysis 

Glass strength was analyzed by a statistical study using 

the two-parameter Weibull distribution fitting the failure 

stress data. The shape parameter m and the scale parameter 

0 were calculated through a regression of the data adopting 

the least-square method for each set (Table 5).  

The diagram in Fig. 5 shows the cumulative probability 

function for each set, and the minimum, maximum and 

mean values of the failure strength σf(tf) are given in Table 

6. The stress values vary from 16.24 MPa to 97.35 MPa, 

while the mean stress values vary from 45.43 MPa to 55.01 

MPa. 

 

Table 5 Values of the parameter 0  and m of the 2PW 

distribution 

 

 

Table 6 Mean, maximum and minimum strength of each 

distribution 

SET σf(tf)  

[Mpa] 

σf(tf)MIN  

[Mpa] 

σf(tf)MAX  

[Mpa] 

Standard  

deviation 

A 52.91 40.45 91.82 11.93 

B 45.43 35.49 57.41 5.48 

C 52.34 16.24 74.28 12.54 

D 48.10 37.62 67.23 7.22 

E 55.01 37.87 97.35 16.43 

 

 

 

Variations were observed between different edge finishes: 

standard deviation values of the sets considered vary in the 

range of 5.5-16.4. Observing the standard deviation values, 

it can be noted that sets A, C and E with ground finishing 

are subject to a greater dispersion of stress values compared 

to sets B and D, whose edges have been simply cut. On the 

contrary, the latter show values lower than the average 

stress compared to the specimens with a ground finish. 

 

 

4. Analysis of the results and discussion 
 
As regards the tests performed, the experimental results 

were compared with the LEFM theory, and the glass 

strength was analyzed with a statistical study using the two-

parameter Weibull distribution that best fit the failure stress 

data.  

 
4.1 Analysis of the fracture surface 
 
In order to compare the LEFM theory and the fracture 

surface analysis, the parameters for the crack branching 

equation, α and σar, were determined by a linear regression 

in the diagram of the failure stress and the mirror length 

(see Fig. 6). The mirror lengths were measured together 

with the flaw depth in the post failure microscopic analysis, 

and were used to assess the branching constants in the 

branching equation.  

For each set it was possible to plot the strength f versus 

the measured mirror length rm(m)
1/2

, as for set A in Fig. 6. 

The best-fit straight line of the plotted points represents the 

equation branching line where α is the slope of the line and 

σar is the failure stress-intercept. In all the sets, σar was a 

non–zero value; this was due to the presence of a 

compressive surface residual stress. Like with the other sets, 

parameters  and σar obtained with a linear regression in  

 

  
(a) (b) (c) 

Fig. 4 (a) scheme of the fracture mirror, (b) and (c) microscope images of the fracture mirrors 

SET m 0 

A 4.16 59.55 

B 9.24 48.01 

C 4.84 55.16 

D 2.49 68.99 

E 3.17 63.73 
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Table 7 Parameters of the crack branching equation 

SET  ar 

A 1.76 12.18 

B 1.43 13.71 

C 1.96 13.42 

D 1.66 13.23 

E 1.88 11.63 

 

 

accordance with the crack branching equation are shown in 

Table 7. The measured values are in accordance with those 

proposed in the literature. The obtained values of σar are 

slightly higher than those proposed in Table 1 by Overend 

et al. (2007), while the values of α are a little bit lower. The  

 

 

 

 

values are similar for all sets of samples. The differences 

could be caused by the dispersion of the failure strength 

values measured on the glass beams.  

 

4.2 Linear Elastic Fracture Mechanics – LEFM 
 
As explained by this theory, in general the inert strength 

σf(tref) is greater than the strength σf(tf) where stress 

corrosion is considered. The results of this study given in 

Table 4 confirm this trend. These differences are little 

because the loading durations is small. The stress corrosion 

law was obtained from the mean values of each set of 

beams and was plotted in a strength-loading duration 

diagram, in which the values of the mean strength for each 

lot of specimens are also drawn (see Fig. 7). Each curve  

 

Fig. 5 Cumulative probability function for each set 

 
Fig. 6 Diagram of set A: the strength σf(tf) vs. the mirror length (rm (m))
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Table 8 Mean values of the strength from fracture surface 

analysis (FSA), strength σf(tf) and inert strength σf(tref) from 

LEFM 

 

 

consists of two lines: the horizontal one that represents the 

level of inert strength and another line that identifies the 

time-dependent strength. This diagram confirms that the 

time-dependent strength is smaller than the inert strength.  

The crack branching equation (Eq. (9)) makes it possible 

to compute σf , knowing , ar and rm. The strength values, 

σf, are summarized in Table 8, together with the strengths 

σf(tf) and σf(tref) obtained from LEFM. The decrease in σf(tf) 

computed by LEFM was estimated at 2% to 7% compared 

to σf calculated by the fracture surface analysis, for all the 

specimens.  

 

4.3 Energy release 
 
During the four point bending tests it was observed that 

there were significant differences among the specimens in 

the breaking mode. Specimens that reached a high load 

showed more cracks than specimens that failed under a 

lesser load. A branched cracking pattern occurred in 

specimens in which more elastic energy was stored. For 

example, the set A specimens showed multiple fracture 

branches compared to the set B specimens, which supported 

lesser loads. In this respect, it is emphasized that set A 

specimens supplied greater strength and energy than set B 

specimens. These findings confirm that the failure mode  

 

 

depends on the amount of elastic energy stored before 

failure and, consequently, on the elastic strain energy 

release. These results are in accordance with experiments 

on other brittle materials and also in hybrid structures as for 

example in glass reinforced with tensile resistant materials 

(Corradi and Speranzini 2019). 

 

4.4 Size effect 
 
Due to the size effect, the dimension of the loading area 

has an influence on the failure stress. Indeed, an increase in 

the dimension of a structural element causes a decrease of 

the strength. This effect can be explained with the Weibull 

theory referring to the fact that a larger panel is more likely 

to have a large flaw in a high stress region than small panel. 

Weibull effective volumes and surfaces can be used to scale 

brittle materials strengths from one component size to 

another or from one loading configuration to another, as 

explained in Quinn 2003. Davies (1973) and Fisher et al. 

(2002) proposed a model based on the effective volume Veff 

or effective surface Seff to obtain a strength which is 

independent of both structural element size and the load 

configuration that causes the breakage. The size effect is 

given as 

,
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(20b) 

where σ1 and σ2 are the strength for two elements of 

different sizes. Veff.1 and Veff.2 are the respective statistical 

size of the volumes which are effectively subjected to 

tensile stress and m is the Weibull modulus of the set  

 

Fig. 7 Stress-corrosion law for each set of specimens 

SET 
σf [MPa] 

FSA 

σf(tf) [MPa] 

LEFM 

σf(tref) [MPa] 

LEFM 

A 54.00 52.91 54.03 

B 45.42 45.43 46.50 

C 53.86 52.34 52.09 

D 51.81 48.10 48.12 

E 50.78 55.01 54.91 
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defining the population of the volume defects (Eq. 20(a)). 

To use this relationship, a unimodal flaw population related 

to the volume and a Weibull two-parameter distribution 

must be assumed. If the surface defects are responsible for 

the failure the size effect is expressed by (Eq. 20(b)), in 

which Seff replaces Veff and β is the Weibull modulus of the 

set defining the population of the surface defects. 

For the four-point bending tests executed, the strength and 

the geometrical dimensions are taken into account to verify 

the relation (20a) and are summarized in Table 9. It should 

be noted that the low Weibull modulus of the investigated 

glass material lowers the reliability of the strength results 

because of the large scatter of the strength values, as in sets 

D and E. These are usual values for glass material. 

The results obtained with Eq. (20) are shown in Table 

10. Consider sets A and C (ground edge specimens) for the 

analysis on the size effect. The value σf(tf) of set A is higher 

than that of set C, while the effective volume of A is lower 

than that of set C. In this case, smaller samples show higher 

stress, which is what we expect from the theory, and the 

results are in accordance with (Eq. 20(a)). The results from 

ratios σA/σE and σC/σE are not equal to the corresponding 

(Veff,E/ Veff,A)
1/m

 and (Veff,E/ Veff,C)
1/m

. 

If instead the analysis is performed in terms of effective 

surface Seff, the results (Table 10) show effective surfaces 

ratios closer to those of the stress ratio. In this case, the 

surface size effect characterizes the defect population of the 

specimen better than the volume size effect. 

 

 

5. Conclusions 
 

In this work the relationship between flaws, cracks and 

strength in brittle materials subjected to tensile stress was  

 

 

 

 

analyzed by means of observations and measurements of 

the cracks after the collapse. The flaws cause stress 

concentrations that may lead to underestimation or 

overestimation of strength, and for this reason the tensile 

strength of brittle materials cannot be considered a material 

constant. An accurate approach requires knowledge of 

fracture mechanics properties such as fracture toughness 

and slow crack growth, which are able to account for flaws 

and stress concentrations. 

This study starts from the results of 107 specimens 

subjected to in-plane four point bending tests. To this end it 

was decided to use specimens of annealed float glass 

because the results were expected to be more significant 

than with other brittle materials. The specimen sets differed 

from one another by size and edge finishing. All the 

specimens failed at the intrados of the glass element in 

mode I, which is normal-opening according to LEFM 

theory. The structural response was studied in terms of 

failure loads and dissipated energy. During testing, it was 

observed that there were significant differences in the 

failure mode among the specimens. Specimens that reached 

a high load showed more cracks than specimens that failed 

at a low load. Branched cracking patterns occurred in 

specimens in which more elastic energy was stored. For 

example specimens with ground edges showed multiple 

fracture branches compared to specimens with simply cut 

edges, which supported lower loads. 

The fracture surface of the specimen fragments was 

analyzed by means of a fractographic examination, 

obtaining quantitative information about the loading 

condition, fracture origin and flaw size. Failure stress can 

be computed after having measured the mirror radius rm, the 

hackle radius rh and the half branching length rb. The 

analysis and measurements performed show the relation 

Table 9 Mean values of Weibull shape parameter, strength, effective volume and geometrical dimensions, for each set 

 

SET 

 

b 

[mm] 

h 

[mm] 

ls 

[mm] 
m 

σf(tf) 

[MPa] 

Veff 

[mm3] 

A 7.95 50.38 360 4.16 52.91 66675 

B 7.84 50.45 360 9.24 45.43 56745 

C 7.85 51.08 500 4.84 50.74 89706 

D 7.83 51.87 500 2.49 50.14 106490 

E 7.94 105.05 1000 3.17 55.01 411538 

Table 10 Size effect analysis (effective volume and surface) for each set 

 
σB /σD σA /σC σA /σE σC /σE 

Stress ratio 0.91 1.04 0.96 0.92 

 

(Veff,D /Veff,B)1/m (Veff,C /Veff,A)1/m (Veff,E  /Veff,A)1/m (Veff,E /Veff,C)1/m 

Effective volume ratio 1.11 1.06 1.54 1.37 

     σB/ σD      σA/ σC     σA/ σE       σC/ σE 

Stress ratio 0.91 1.04 0.96 0.92 

 (Seff,D /Seff,B)1/β (Seff,C /Seff,A)1/β (Seff,E  /Seff,A)1/β (Seff,E /Seff,C)1/β 

Effective surface ratio 1.00 1.08 1.24 1.12 
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between flaw size and glass strength and confirms that the 

larger is the critical flaw at the beginning of the failure, the 

lower is the strength. An equivalent relation was found for 

the mirror radius: the larger the mirror radius, the lower the 

strength. Failure stress was higher for glass specimens 

having ground edge finishing than those simply cut; indeed, 

this glass edge processing reduces the maximum depth of 

the flaw and increases the strength.  

For each specimen, the values for inert strength and time 

dependent strength, taking into account the effect of the 

stress corrosion due to the duration of loading, were 

computed using the LEFM formulations, knowing the 

parameters measured on the crack plane.  

Lastly, the experimental data agreed with the theoretical 

results obtained from the fracture mechanics analysis. Size 

effect analysis shows that the surface size effect 

characterizes the defect population of the glass specimen 

better than the volume size effect. Furthermore, the results 

of this study show the applicability of Weibull statistics to 

explain the differences in the results of 4-point bending 

tests when different sizes are used.  

Therefore, this survey proves the possibility of 

determining the stress of brittle materials at the time of 

breaking directly on the fragments by means of analyses 

and measurements performed on the plane containing the 

fracture surface. 
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