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1. Introduction 
 

SHM techniques have been increasingly applied in 

bridge engineering to ensure the safe and sustainable 

operation of bridges (Ko and Ni 2005). Lots of effort has 

been made to investigate the condition assessment or 

damage identification based on mining of data from the 

SHM systems (Li et al. 2012, Yi et al. 2016); however, 

studies on the precision or creditability of monitoring data 

have been rarely conducted (Hernandez-Garcia and Masri 

2013). In reality, sensor faults have become more frequent 

issues than structural damages owing to inefficient 

manufacture, harsh operation environment and performance 

degradation (Chang et al. 2017, Huang et al. 2015). 

Therefore, it is essential to study the diagnosis of sensor 

faults to provide high quality data for further data mining. 

The process of fault diagnosis usually includes fault 

detection, fault isolation and fault reconstruction (Yi et al. 

2017): (i) fault detection addresses determination of the 

presence of faults in a sensor system; (ii) fault isolation 

tends to locate the faulty component and identify the type of 

fault; and (iii) fault reconstruction aims to correct distorted 

signals of faulty sensors. Methods for sensor fault diagnosis 

generally take root in the redundancy of information and  
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can be categorized into model-based and data-driven types 

according to the sources of redundant information (Reppa et 

al. 2014). The former methods utilize the redundancy of 

information provided by mathematical models such as finite 

element models; while the latter relies on the monitoring 

data from remaining or extra sensors. The performance of 

the model-based methods is completely dependent on the 

accuracy of the established mathematical model. 

Unfortunately, the mathematical model can hardly capture 

the realistic behavior of the system in view of the effects 

from uncertainties of model parameters, complexity of 

system dynamics and modeling of damages occurring in the 

system (Reppa et al. 2014). This study focuses on the data-

driven methods for fault diagnosis of sensors. 

Data-driven methods then can be grouped into the 

physical redundancy-based and multivariate statistical 

methods (Yi et al. 2017, Reppa et al. 2014). The former 

requires a field test to be conducted using temporary co-

located sensors for measuring the same response quantity as 

done by the existing sensor, while the latter utilizes the 

valuable redundant information provided by the existing 

sensor network. The physical redundancy-based method 

was not widely used before due to the high installation cost, 

however, the evolution of micro-technology in recent 

decades has reduced the size and fabrication cost of sensors, 

thereby making the method become more promising in 

engineering practice. Considering a large number of sensors 

installed in bridge structures, it is still unacceptable to 

inspect all the sensors blindly using the physical 
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redundancy-based method. 

The multivariate statistical approach relies existing 

multiple heterogeneous sensors (which are not necessarily 

co-located) on collecting measurements having redundant 

information. Among these methods, the principle 

component analysis (PCA) is one of the most popular 

techniques for sensor fault diagnosis (Kerschen et al. 2004), 

including two mostly proposed indices: the D-statistic and 

Q-statistic. The D-statistic is a Mahalanobis-like measure of 

variations of measured variables in the latent-variable 

subspace, whereas Q-statistic measures the discrepancy 

between the measured variables and the latent-variable 

model (Alcala and Qin 2011). The PCA approach is 

effective in SHM field since measured structural responses 

from sensors follow a multivariate process and statistical 

correlations among these measurements can be easily 

modeled by PCA. Whereas, previous PCA models did not 

quantify the fault sensitivity to each principal direction 

when only the normal monitoring data are obtained, which 

may weaken the ability of fault detection. To overcome the 

limitations, the weighted principle component analysis was 

developed for statistical monitoring with improved fault-

detection capability using fault-sensitive index (Huang et al. 

2017). In addition, other methods, including the parity 

equation-based method, minimum mean square error 

estimation-based method and independent component 

analysis-based method, were also sought for sensor fault 

detection (Huang et al. 2016, Yi et al. 2017). 

These aforementioned methods were proven to be 

effective in detecting single-fault sensors; however, multi-

fault diagnosis models (which is a common issue in 

practice) are rarely investigated. A model based on a 

combination of PCA and neural networks was developed for 

multi-fault diagnosis of sensors (Zhu et al. 2009). 

Unfortunately, such method requires a large amount of data 

in training the model and is difficult to be implemented in 

practical applications. Moreover, the structure is usually 

assumed being damage-free in developing the scheme for 

sensor fault diagnosis, however, in reality there could be a 

scenario that both structural damages and sensor faults 

coincide and the response measurements by sensor failure 

are coupled with that resulting from the damages of 

structure. The sensor network is usually modelled as a 

Gauss process to distinguish between sensor fault and 

structural damage based on the fact that impact of sensor 

faults on structural responses is local while that by 

structural damage is global (Kullaa 2011). Nevertheless, 

such method has the constraint (and potential issues in 

practical application) that the number of sensors must be 

greater than the number of active modes of the structure. 

Thus, it is challenging to address the multi-fault diagnosis 

issue and distinguish the abnormity from structural damage 

and sensor fault. 

This paper proposes a practical methodology for sensor 

fault diagnosis based on the fact that structural responses at 

symmetric locations should be quite similar with each other 

due to the symmetry of structure geometry and operational 

loadings for bridge structures. First, the similarity of 

symmetric structure responses is discussed using the real-

time monitoring data from the studied bridge. For one SHM 

system installed on a bridge, all the sensors are initially 

paired and each pair is usually composed of transverse 

symmetric sensors. The sensor faults will be detected pair 

by pair, by which multi-fault diagnosis of sensor systems 

could be addressed. Next, Dasarathy’s multi-sensor 

information fusion model is used for data fusion, feature 

fusion and decision fusion. The data fusion deals with 

preprocessing of the monitoring data in terms of data 

continuity and trend. The feature fusion is dedicated to 

evaluating the similarity of the monitoring data of the 

sensor pair with the similarity index determined by 

sensitivity analysis. To resolve the coupling response 

between structural damage and sensor fault, decision fusion 

is performed to distinguish the response abnormalities 

resulting from structural damage and sensor fault. If the 

sensor pair is determined to be the suspected pair, the 

physical redundancy-based approach can be applied to the 

sensor pair for isolating and reconstructing the faulty 

sensor. Finally, a case study is adopted to demonstrate the 

effectiveness of the proposed methodology by using the 

cable force and deflection monitoring data from a cable-

stayed bridge. 

 

 
2. Similarity analysis of symmetric responses 

 

Sensor fault diagnosis methods generally rely on the 

foundation of the redundancy of information. For bridge 

structures, the structure responses at the transverse 

symmetric locations tend to have the strongest redundant 

information due to the symmetry of both structure geometry 

and major loadings on the bridge, scilicet, the 

measurements from symmetric sensor pair are expected to 

be similar or highly correlated. However, some unbalance 

(asymmetric) loadings such as the traffic and environmental 

loadings (temperature, wind etc.) and measurement noise 

may impact the similarity between measurements collected 

from the symmetric sensor pair. Hence, it is critical to 

assess the similarity of symmetric responses prior to 

introducing the proposed methodology for sensor fault 

diagnosis. 

 

2.1 Influencing factors on similarity 
 

The monitoring data from sensors installed at the 

transverse symmetric locations are not identical due to 

various influencing factors: (i) the similarity will be 

affected by measurement noise which is unavoidable; (ii) 

the environmental loadings such as the transverse 

temperature difference across the girder, as well as the 

unbalance traffic loadings, will certainly result in the 

dissimilarities between symmetric responses, although the 

dead loading for a straight type bridge is usually 

symmetrical; and (iii) the symmetric responses could have a 

bias due to certain construction factors, for instance, cable 

force adjustment during the cable-stayed bridge 

construction period may lead to the differences in 

monitoring cable forces. 
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2.2 Similarity evaluation using field monitoring data 
 

To evaluate impact of the influencing factors (as 

discussed in Section 2.1) on the similarity of symmetric 

responses, the monitoring data from typical sensors (i.e., the 

anchor load cell for cable force, connected pipe for 

deflection, strain gauge for stress and acceleration for 

vibration) installed on the studied bridge are investigated. 

The detailed information on the studied bridge and its 

monitoring system will be illustrated in Section 4. 

The monitoring data during an earlier period (8:00 a.m. 

~ 9:00 a.m., January 03, 2007) are used for the correlation 

analysis since the sensors are in good condition at that time. 

Typical measurements in one-hour window are presented in 

Fig. 1 for four sensor types, in which the anchor load cell 

and connected pipe at location SJ09, strain gauge measuring 

girder stress at location SA17 (sensor No.1 and No.10 on 

Section B-B of Fig. 8(b)), and acceleration at location SJ10 

are selected. For the real-time monitoring absolute values, 

tiny difference survives in the deflection, stress and 

acceleration measurements owing to the above mentioned 

measurement noise, environmental and unbalance traffic 

loadings, whereas, an apparent bias is in the measurements 

of cable force as shown in Fig. 1(a) resulting from the cable 

force adjustment in the construction period. What’s more, 

for the variation trend of each variable that is without the 

effect of dead loadings and mainly dominated by vehicle 

loadings, similarity is remarkable for all the four types of 

sensors which can be visually seen from Fig. 1. The linear  

 

 

correlation coefficient (r) is used to assess the similarity 

between the symmetric monitoring data from different 

sensor types. As a result, 91.9% of the calculated linear 

correlation coefficients are greater than 0.8000 while the 

minimum is 0.7523. 

Following the above assessment, it can be concluded 

that the correlation between symmetric monitoring data 

from these four sensor types is strong. Considering limited 

types of sensors used in the studied bridge, other types of 

sensors were not discussed. When the proposed method is 

applied to other types of sensors, the similarity between the 

symmetric monitoring data from those sensors should be 

first assessed. 

 

 

3. The proposed methodology 
 

Based on the fact that measurements of most sensor 

types from symmetric locations have remarkable similarity 

features as being discussed in Section 2, the similarity of 

symmetric structure responses can be established as an 

alternative index for sensor fault diagnosis. A systematic 

sensitivity analysis has been conducted to assess the 

performance of the possible indices using the simulated 

sensor fault signals. Unsatisfactory similarity for 

measurements of sensors at transverse symmetric locations 

can be attributed to either structural damages or sensor 

faults. Among the entire sensor zones of the sensing 

network on the bridge, a sub-zone (termed as target zone,  

  
(a) Cable force from symmetric locations (SJ09) (b) Deflection from symmetric locations (SJ09) 

 
 

(c) Stress from symmetric locations (SA17) (d) Vibration data from symmetric locations (NJ10) 

Fig. 1 Correlation analysis for symmetric monitoring data from four typical sensor types 
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with an assembly of sensor pairs to be studied) will be 

determined and selected to study similarity between 

responses of sensor pair. Based on the rationale and 

assumption that structural damages will completely impact 

the similarity of all sensor responses within the target zone 

and the probability of a simultaneous failure of all the 

sensors is very low (Kullaa 2011), the similarity between 

responses of sensor pairs within the target zone can be 

evaluated for the purpose of sensor fault diagnosis. If the 

similarity level of the studied sensor pair is low while the 

similarity within the target zone is good, it means that at 

least one sensor in the pair becomes faulty. On the other 

hand, if the similarity levels for the studied pair and the 

target zone are both low, it is concluded that there are  

 

 

 

structural damages on the bridge. When the suspected 

sensor pair is detected, field test method may be required 

(depending on the necessity) for additional verification and 

confirmation of the faulty sensors. Fig. 2 presents the 

process of the proposed methodology for sensor fault 

diagnosis. 

 

3.1 Sensor fault detection: multi-sensor information 
fusion 

 

Multi-sensor information fusion is used for combining 

sensor data into a common representational format with 

three different processing levels according to the stage at 

which the fusion takes place: signal level, feature level, and 

 

Fig. 2 Two stages of the proposed methodology for diagnosis of sensor fault 

 

Fig. 3 The Architecture of Dasarathy’s input/output information fusion model 
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decision level. Dasarathy’s model is one of the most widely 

used information fusion models (Dasarathy 1994), and it is 

determined to be more appreciate within the proposed 

methodology. Based on the Dasarathy’s fusion model, the 

architecture for sensor fault detection has been developed 

and presented in Fig. 3. 

 

3.1.1 Data fusion 
There are many factors that can affect data collection in 

long-term monitoring system, including the power system 

failure, noise, communication malfunctions etc. (Amiri and 

Jensen 2016). Specifically, the preprocessing techniques 

include gross error detection, missing data imputation and 

de-noising. Initially, the gross errors may occur suddenly in 

the measurement signals at a particular time. A variety of 

serial elimination strategies have been developed, such as 

the generalized likelihood ratio test, Bayesian test, and 

principal component test etc. (Narasimhan and Mah 1987, 

Tamhane et al. 1988, Tong and Crowe 1995).Three-sigma 

rule is adopted in this study to detect the gross errors owing 

to its effectiveness and practicality for processing of the 

real-time mass measurement data. The presence of missing 

data could dramatically degrade the interpretation results as 

drawn from the datasets. The methods for missing value 

imputation can be categorized in two different ways, by 

either the mathematical or statistical methods or machine 

learning methods (Amiri and Jensen 2016). Due to the 

simplicity of the algorithms, the cubic spline imputation 

technique has been used in this study. It is based on the 

fitting of cubic polynomials for a series of observed data. 

Actually, the measured structure responses through the 

SHM system always accompany with noise. Among many 

state-of-art de-noising methods such as the moving average 

and moving differential methods (Qin et al. 2012), the 

wavelet method is used in removing noise. 

 

3.1.2 Feature extraction and feature fusion 
The recorded data at transverse symmetric locations are 

always affected, and maybe greatly different, by various 

factors such as unbalance loadings, construction factors etc. 

However, the increments of the measurement responses 

over time will behave a better trend in describing the 

similarity of responses than that by the direct measurements. 

Therefore, the increment ( 1
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x x
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t t









, where xi is the i

th
 

monitoring datum in the series and ti denotes the sampling 

instant.) is determined as the feature for sensor fault 

detection. 

It is essential to develop an effective feature, which 

should be sensitive to the possible faults, to reveal the 

measurement response similarity. Typical sensor faults have 

been summarized and the faults include the bias, drift, 

precision degradation, gain, and complete failure (Yi et al. 

2017). Many indicators are able to represent the similarity, 

including the Euclidean distance, Pearson correlation, slope 

relational degree and cosine similarity. In this paper, the 

Euclidean distance is determined as the similarity index 

based on the sensitivity study in the following Section 3.2. 

 

 

3.1.3 Model recognition and decision fusion 
The value of the similarity index, calculated from the 

step of feature fusion, should be compared with the 

threshold value to evaluate the degree of similarity. This 

paper employs a statistical approach, i.e., the three-sigma 

rule, to define the threshold. Based on the three-sigma rule, 

the occurrence probability of an index value outside the 

threshold is 0.13% for the normal distribution. Aiming to 

avoid contingency, the detection rate 0

0

beN

N
   (where Nbe 

is the number of similarity index values outside the 

threshold and N0 represents the total number of similarity 

index values.) is proposed to assess the similarity. Assuming 

that both the structure and sensors are in good condition, the 

exceedance probability for a given detection rate η0 can be 

derived as 

      0

00

0

C 0.13% 1 0.13%
beN

i N ii

N

i

P  




     
   (1) 

where C  is a combination symbol. Based on Eq. (1), the 

probability density function of the detection rate is 

formulated. Once the detection rate η0 is determined, the 

cumulative distribution model  0P    is used to 

describe the probability of the case that the measurements 

of the symmetric locations are normal. 

If the calculated probability value of  0P    is very 

low, it means that the structure and sensor system must have 

some issues, and additionally, it is worthy of determining 

the cause of the issue, i.e., by the sensor fault or localized 

structural damage. Based on the rationale and assumption 

that structural damages will completely impact the 

similarity of all the sensor responses within the target zone 

and the probability of a simultaneous failure of all the 

sensors is very low (Kullaa 2011), the similarity between 

indices of probability of detection rate derived from the 

sensor pair (within the target zone) can be evaluated using 

for sensor fault diagnosis. Specifically, sensor pairs in the 

target zone are selected and the probability of detection rate 

for each pair is calculated. The evidential reasoning method 

is then used to combine each of the probability of detection 

rate into a comprehensive one to represent the similarity 

within the target zone (as introduced in Section 3.3). Finally, 

if the similarity of the studied pair is significantly different 

from that of the target zone, the sensor pair is judged to be 

the suspected pair with at least one faulty sensor. If the 

similarities of the studied sensor pair and target zone are 

both unsatisfactory, the structure is judged to be with some 

damages. 

 

3.2 Similarity index 
 

Assuming that the feature vectors of a sensor pair are  

 A
n

AA k,...k,k 21
A K  and  B

n
BB k,...k,k 21

B K , respectively. 

A number of existing indicators can be used to evaluate the 

similarity between these two feature vectors, namely, 
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(i) Euclidean distance: 

       
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(ii) Pearson correlation: 
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(iii) Slope relational degree: 
1
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(iv) Cosine similarity: 

 
   

2 2
cos ,

A B

i i

A B

i i

k k

k k




 

A B
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For the above four similarity indexes, if two vectors are 

extremely similar, values of Euclidean distance tend to 

approach null while values for Pearson correlation, slope 

relational degree and cosine similarity are close to unity. 

A total of seven typical sensor faults have been 

summarized, which include the bias, drift, gain, precision 

degradation, constant, constant with noise, and bottom 

noise. Let *

ix  represent the true value of the measured 

quantity and 
iw  be the measurement noise, the 

measurement datum by a healthy sensor can be expressed as 
*

i i ix x w  . Then, the mathematical models for the seven 

typical sensor faults can be derived and listed in Table 1, 

where C, D and G are parameters controlling the magnitude 

of sensor faults and is  is the parameter for Gaussian 

random process with zero mean and unknown standard 

deviation. 

Since the real-time monitoring data covering all the 

sensor fault types are usually not available from the SHM 

system, simulated signals are constructed and used for 

sensitivity analysis of similarity. However, the baseline 

signal  0 0 0

1 2, , , nx x x0
X K , which is the real-time cable  

 

 

 

force monitoring data from a fault-free sensor in the studied 

bridge as shown in Fig. 4, is used in the sensitivity analysis. 

Additional signals from faulty sensors are simulated on top 

of the baseline signal 
0

X  based on the mathematical fault 

models in Table 1. 
0

X has a total of 1000 samples with a 

frequency of 10Hz and the reliability of 
0

X  in 

representing the outputs of fault-free sensor has been 

validated. For instance, the simulated signal for sensor drift 

fault, as shown in Fig. 4, is generated based on the 

aforementioned baseline signal and its mathematical 

expression with parameters of C = 200 and D = 0.20. 

Among the seven types of sensor faults, the feature is 

the same for the measurements from fault-free sensors and 

that from the sensors with bias based on the mathematical 

model of bias. Hence, the sensor fault of bias cannot be 

detected by the proposed feature. However, sensors with the 

fault of bias are still able to precisely measure the 

increments of the response quantity, which sometimes are 

more important than the absolute values.  

 

 

 

Fig. 4 Signal construction for sensitivity analysis of 

similarity indexes 

 

 

 

Table 1 Mathematical measurement models for seven typical sensor faults 

Sensor fault type Mathematical expression Description 

Bias 
*

i i ix x w C    
Outputs differ from the measurements of the healthy 

sensor with a constant difference 

Drift 
*

i i ix x w C D i      
Differences between the outputs and measurements 

of the healthy sensor vary linearly with time 

Gain  *

i i ix G x w   
Outputs are proportional to the measurements of the 

healthy sensor 

Precision degradation 
*

i i i ix x w s    
Outputs are added with a random noise on top of the 

measurements of the healthy sensor 

Complete failure 1: 

constant ix C  Outputs remain constant with time 

Complete failure 2: 

constant with noise i ix C s   Outputs are combination of the constant and noise 

Complete failure 3: 

bottom noise i ix s  Outputs are noise only 
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Furthermore, the bias usually does not come alone in bridge 

health monitoring system but follows the drift fault. In 

addition, there are three types of the complete failure fault, 

namely the constant, constant + noise, and noise. Only the 

fault of constant + noise is detected in this study since faults 

of the constant and noise can be visually detected in a 

straightforward way. As a result, a total of four types of 

sensor faults, including the drift, gain, precision degradation 

and constant + noise, are included in the following 

sensitivity studies. These sensor faults are simulated with 

six different magnitude levels as listed in Table 2, in which 

parameter   represents the standard deviation of the 

noise. Based on the baseline signal of Fig. 4 and parameter 

values in Table 2, a total of 24 groups of simulated signals 

are generated for sensitivity analysis of similarity indexes. 

To save computation time, all the signals are resampled 

by a new frequency of 1Hz (the original sampling 

frequency is 10Hz) before calculating the similarity index. 

The values of similarity indexes are calculated based on the  

 

 

 

 

fault-free sensor data and the data with specific sensor fault 

and fault magnitude. The sensitivity analysis results for the 

similarity indexes under various sensor faults are shown in 

Fig. 5 (Cosine similarity and slope relational degree refer to 

the right “Pearson correlation coefficient” coordinate axis). 

According to Fig. 5, the indexes of Pearson correlation 

coefficient, cosine similarity and slope relational degree 

(especially the Pearson correlation coefficient and cosine 

similarity) are sensitive to those sensor faults with 

uncertainties such as precision degradation and complete 

failure 2. The values of these indexes decrease significantly 

with a small value of the standard deviation, then remain in 

a relatively stable level. However, they have a poor 

sensitivity to those sensor faults such as drift and gain. On 

the other hand, the index of Euclidean distance has a strong 

stable sensitivity to all the types of sensor faults, and 

therefore was used as the similarity index in this proposed 

methodology. 

 

Table 2 Different simulated fault magnitudes for the four sensor faults 

Fault type Parameter Fault magnitude 

Drift D 0.00 0.20 0.50 1.00 2.00 5.00 

Gain G 1.00 1.01 1.05 1.10 1.20 1.30 

Precision degradation   1.00 5.00 15.00 20.00 25.00 30.00 

Complete failure 2: 

constant + noise 
  1.00 5.00 15.00 20.00 25.00 30.00 

  
(a) Sensitivity of the four indexes to D in the drift (b) Sensitivity of the four indexes to G in the gain 

 
 

(c) Sensitivity of the four indexes to σ in the precision 

degradation 

(d) Sensitivity of the four indexes to σ in the complete 

failure 2: constant + noise 

Fig. 5 Sensitivity analysis results for the similarity indexes under various sensor faults 
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3.3 Decision fusion level: evidential reasoning 
 

As discussed in Section 3.1.3, the comprehensive 

similarity index for the target zone is needed to distinguish 

the dissimilarity owing to sensor fault or localized structural 

damage. The comprehensive similarity index should be 

derived from the similarity indices from sensor pairs within 

the zone. The occurrence probability of detection rate of 

each sensor pair can be treated as a piece of evidence that 

supports the similarity of the target zone. These pieces of 

evidence can be used to derive the comprehensive similarity 

index, while it is common that conflicts also exist among 

these pieces of evidence. For instance, the similarities of 

some pairs in the target zone could be unsatisfactory due to 

the sensor faults and it is possible that the damage does not 

impact the similarity of a certain sensor pair in the target 

zone. It is thus difficult for decision makers to make a 

correct decisions relying on several conflicting pieces of the 

evidence. To address the conflict problem, evidential 

reasoning method is adopted to combine these pieces of 

evidence into a comprehensive similarity index. 

 

3.3.1 Fundamental concept of evidential reasoning 
Evidential reasoning theory, as introduced by Dempster 

and extended later by Shafer, is concerned with the question 

of belief in a proposition and systems of propositions (Yang 

and Xu 2002). Let   be a finite non-null set of mutually 

exclusive alternatives and   is defined as the 

identification framework 

 nF,...,F,F 21  (2) 

where Fi is called the single subset of  . The basic 

probability assignment (BPA), which is critical in evidential 

reasoning, reflects the degree of belief in a hypothesis and 

satisfies the following relation 

 

 

 

: 2 0,1

1

=0.

A

m

m A

m











  (3) 

in which BPA reflects the degree of evidence supports for 

the proposition of A, namely  m A  and   represents an 

empty set. The rule of combination (also referred as the 

orthogonal sum of evidence) is used to aggregate multiple 

sources information. The typical Dempster’s rule of 

combination is defined as 
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






 (4) 

where k is a normalization constant and termed as the 

conflict coefficient for measuring the degree of conflict 

between 
1m  and 

2m . 

 

3.3.2 Evidential reasoning in decision level 
Considering that the Dempster-Shafer evidence theory 

cannot handle the data conflicts effectively, an evidence 

combination method based on the evidence similarity is 

used to handle evidence with strong conflicts (Bi et al. 

2017). In particular, if a body of evidence is supported by 

other bodies of evidence greatly, its credibility degree is 

higher and the subjective evidence has more impact on the 

final combination results. On the contrary, if a piece of 

evidence is always conflicting with the other evidence with 

high degree, its credibility degree is lower and this evidence 

should have less effect on the final combination results. The 

steps of evidence similarity-based method for evidential 

reasoning in decision level are presented in Fig. 6. 

 

Step 1: Define the hypothesis 

The framework of identification in this case is set as 

 1 2= ,F F  (5) 

where 
1F  is a hypothesis that the similarity of the target 

zone is satisfactory while 
2F  denotes as a hypothesis that 

the similarity of the target zone is not satisfactory. 

 

Step 2: Deliver the BPA function 

The BPA function  m A  describes the proportion of 

all relevant and available evidence in support of the claim 

that an element of   belongs to the set A . In this case, 

A  can be the hypothesis 
1F  indicating the similarity of 

the target zone.  m A  is the occurrence probability of the 

detection rate and it describes the similarities of sensor pairs 

distributed in the target zone. Assuming that there are a total 

of n  adjacent sensor pairs selected into the analysis, there 

exists n  pieces of evidence for the similarity of the target 

zone, namely 

     )A(m:E;...)A(m:E;)A(m:E nn2211  (6) 

 

 

Fig. 6 Steps of the evidence similarity-based method for evidential reasoning in decision level 
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where 
iE  is the evidence i and  im A  is the occurrence 

probability of its detection rate. 

 

Step 3: Calculate the similarity  ,i jsim m m  

The existing algorithms were reviewed in measuring the 

degree of conflict between two pieces of evidence and 

proposed a new algorithm for evidence conflict 

measurement (Qin et al. 2012). The similarity between two 

pieces of evidence is expressed as 

 
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1 2

1

1 2
2 2

1 2 1 2

1 1 1

,

m

i i

i

m m m

i i i i

i i i
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m F m F m F m F



  





  



  

 
(7) 

The value of evidence similarity of Eq. (7) is between 0 and 

1. The bigger this value is, the higher the similarity is. 

 

Step 4: Build a similarity matrix 

After obtaining the similarities between each two pieces 

of evidence, the n n  similarity matrix SIM  can be 

established 





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









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1

1
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...)m,m(sim)m,m(sim

)m,m(sim...)m,m(sim

)m,m(sim...)m,m(sim
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nn

n

n


 (8) 

 

Step 5: Determine the degree of support and credibility 

The degree of support  iSup m  that all the other 

evidence gives to the evidence i can be expressed as 

   
1

,
n

i i j

j
j i

Sup m Sim m m



  (9) 

The credibility of evidence can be obtained after 

normalization of the degree of support. The credibility of 

the evidence i, 
iCred , can be expressed as 

 

 
1
max

i

i

i
i n

Sup m
Cred

Sup m
 


  

 (10) 

 

Step 6: Modify the evidence 

The credibility parameter of 
iCred  is used as the 

weight of evidence for a weighted correction to the BPA 

function (i.e., the occurrence probability of the detection 

rate in this paper). The modified occurrence probability of 

the detection rate )A(m~i  can be rewritten as 

)A(mCred)A(m~ iiiii   (11) 

Step 7: Determine the distribution weight of each focal 

element 

The relative credibility iCcred  for the evidence i is 

 

 

 
1

i

i n

i

i

Sup m
Ccred

Sup m






 
(12) 

The distribution weight  m~,A  of the focal element 

A  is 

)A(m~Ccred)m~,A( i

n

i

i 
1

  (13) 

 
Step 8: Evidence combination 

The comprehensive index for the similarity of the target 

zone can be derived by combining all the evidence through 

the following Eq. (13) 

)A(m~K

)m~,A(K)A(m~)A(m

ij

njA

ij

njAA

i

i




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





1

1

 

 





 (14) 

 
3.4 Field test approach 

 

Once the suspected sensor pair, which has at least one 

faulty sensor, is located, the field test can follow to isolate 

and reconstruct sensor fault if needed. The aforementioned 

seven types of faults can be grouped into two categories: the 

first includes with clear math expressions such as the bias, 

drift and gain, and the second is affected by uncertainties 

such as the precision degradation, complete failure 2 etc. 

For the former, fault-free data are able to be reconstructed if 

the mathematical expressions are known. Whereas for the 

latter, it is impossible to obtain fault-free signals through 

reconstruction since the true values are mixed with the 

noise or even lost. As a result, sensor replacement is the 

only option for sensors with the second type of faults. 

In the field test, additional sensors need to be installed 

on the co-located locations of the faulty sensors to measure 

the same response quantity at the same time instants. The 

measurements from the additional sensors can be treated as 

the fault-free outputs. According to the mathematical 

expressions for the sensor faults of Table 1, a 

comprehensive expression can be formed as 

y C G x D i     , where y  is the monitoring data, x  

the field test data, and i the corresponding number of time 

series. Based on the reliability of parameters C, D and G, 

the specific sensor fault is able to be isolated. Moreover, 

once these parameters are available, the fault-free outputs 

can be reconstructed as 

y C D i
x

G

  
  

Specifically, when there is only one reliable parameter 

of G = 1, it indicates that the sensor is fault-free. When 

reliable parameters are all unavailable after regression 

analysis, it means that the monitoring data are strongly 

influenced by uncertainties or unstable values of parameters 

(C, D and G), preventing sensor fault reconstruction. In this 

case, sensor replacement measure is supposed to be  
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implemented if needed. The flow chart of the field test 

method is shown in Fig. 7. 

 

 
4. Case study 

 

The 3
rd

 Nanjing Yangtze River Bridge in China is 

employed as an example to demonstrate the proposed 

methodology for diagnosis of sensor faults. The cable-stayed 

bridge is a vital transportation link crossing the middle and 

lower Yangtze River and connecting Nanjing City and its 

Liuhe District. It is a cable-stayed bridge with a main span of 

648m and two steel towers, as shown in Fig. 8(a). The 

superstructure deck has a depth of 3.2 m and the orthotropic  

 

 

 

 

steel box girder has a width of 37.5 m to accommodate three 

traffic lanes in each direction. The deck is supported by a total 

of 168 stay cables and each cable consists of 109 to 241 wires 

having a diameter of 7 mm. 

A sophisticated long-term monitoring system was 

devised and implemented to monitor the structura l 

condition in the second year after completion of 

construction. The goal of the structural health monitoring 

system was to monitor the structural behavior in conditions 

of extreme traffic, high temperature, humidity or wind. In 

order to achieve this goal, the following sensor applications 

were selected: anchor load cells for cable forces, connected 

pipes for vertical deflections, strain gages, thermometers etc. 

The detailed sensor layout is presented in Fig. 8(b). The  

 

Fig. 7 Flow chart of the field test method 

 

Fig. 8 Layout of the studied bridge and sensor network 
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load cells are installed in the anchors of stay cables, which 

measure cable force directly. The total 168 stay cables are 

all equipped with anchor load cells with a relative error of 

±1%. The sample frequency of the anchor load cell is 10 Hz. 

The pair of the transverse symmetric sensors highlighted in 

Fig. 8(b) (which are the anchor load cells installed in cables 

SA16-E and SA16-W), was selected as the target pair in 

demonstrating the proposed sensor fault diagnosis approach. 

Aiming to determine whether the sensor faults or structural 

damages impact the similarity, sensor pairs located near the 

studied sensor pair are taken into consideration (which are 

anchor load cells in locations of SA18, SA17, SA15, SA14, 

and connected pipes near location SA15 as shown in Fig. 9). 

 

4.1 Sensor fault detection 
 

The recorded data (e.g., the recorded cable force data at 

8:00 a.m. April 30
th

, 2007 from the target sensor pair are 

shown in Fig. 10(a)) are affected by the gross error, missing 

data as well as noise. Based on the three-sigma rule, the 

threshold values (i.e., 3   and 3  ) are used to 

detect gross errors. Then, cubic spline imputation method is 

implemented to achieve a continuous data source (Junninen 

et al. 2004). Finally, the dB8 wavelet basis with six 

decomposition levels is selected as the de-nosing method 

for data from bridge monitoring system (Xing et al. 2012). 

After the above three preprocessing steps, the quality of 

data is improved and shown in Fig. 10(b). 

 

 

 

 

The preprocessing one-hour monitoring data from the 

target sensor pair during May 13
th

, 2016 are shown in Fig. 

11. Bias between these two groups of data may result from 

the sensor fault, cable force adjustment, structural damage 

or unbalance loadings. It is difficult to visually judge 

whether some sensor faults occurred. Due to the unbalance 

loading and noise, the similarity of the sensor pair features 

could be different from each other even for the healthy 

sensor and structure. Therefore, it is vital to determine the 

threshold values of the Euclidean distance of the feature for 

healthy sensors. It is assumed herein that all the sensors in 

the network as well as the structure are in the healthy state 

at the earlier stage of bridge operation. Thus, the early year 

monitoring data between January and March, 2007 of the 

sensor pair located in SA16 are taken as the testing data, 

aiming to develop the threshold of Euclidean distance. A 

total of 6888 values of Euclidean distance are calculated 

from these monitoring data of the sensor pair and are used 

for the distribution analysis. A Gauss distribution with a 

mean of 8.86   and standard deviation of 2.44   is 

employed for the data fitting and is shown in Fig. 12. 

According to the three-sigma rule, the threshold value is 

calculated as 16.18. 

The detection rate of the target sensor pair is calculated 

as 83.700% and given in Fig. 13(c). Based on the detection 

rate of 83.700%, we have almost 100% confidence to 

conclude that there are either structural damages or faults in 

the sensor pair located in SA16. 

 

Fig. 9 The sensor pairs in the target zone 

  
(a) Original monitoring data (b) Data after preprocessing 

Fig. 10 Monitoring data preprocessing procedure 
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Similar to the data processing of sensor at location 

SA16, the early year monitoring data between January and 

March, 2007 of the other six sensor pairs as shown in Fig. 9 

are taken as the testing data for threshold determination. 

Similar to the sensor pair in location SA16, the detection 

rates for all the other six sensor pairs are obtained and 

shown in Fig. 13. It can be seen from Fig. 13 that the anchor 

load cell pairs in the locations SA14 and SA 16 have a high 

detection rates of 33.533% and 83.700%, respectively, 

while the detection rates for the other sensor pairs are quite 

similar. Based on the values of the detection rates, the 

corresponding occurrence probabilities are calculated and 

listed in Table 3. For instance, the probability of  

 

 

 

 

 

 

 

 0 46.71%P     for deflection of SA15 means that we 

have 46.71% confidence to conclude that the symmetric 

response measurements are normal. According to the 

method developed in Section 3.3, the comprehensive 

similarity of the target zone is evaluated and listed in Table 

3. 

Based on the above analysis, we have a confidence of 

82.02% to conclude that the similarity of the target zone is 

satisfactory. However, the studied anchor load cell pair in 

location SA16 in the target zone is determined to be faulty with 

a 100% confidence. 

 

 

Table 3 Evaluation process of comprehensive evidence for similarity of target zone 

Items 0  (%)  0P    (%) iCred   ,A m  K Comprehensive evidence 

SA14 cable force 33.533 0.00 0.0000 

0.8202 1 82.02% 

SA15 cable force 0.067 100.00 1.0000 

SA17 cable force 0.033 100.00 1.0000 

SA18 cable force 0.000 100.00 1.0000 

SA15 deflection 0.133 46.71 0.3627 

 

Fig. 11 Monitoring data of symmetric sensors 

 

Fig. 12 Gauss distribution of Euclidean distance 
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4.2 Sensor fault isolation and reconstruction 
 

Aiming to isolate and reconstruct the sensor faults, field 

test has been implemented to measure the force of the 

studied stay cables. A wireless acceleration transducer (HCF 

400) is used for cable force field test, which has a resolution 

of 0.25 mg. The ambient vibration method is employed to 

estimate the cable force in this study. It is known that the 

estimation error of the method bound of 3% generally due 

to the uncertainty of the two parameter free length of 

vibration and bending stiffness. Chen et al. (2013) 

developed a new concept of combining the modal 

frequencies and mode shape ratios to obtain more accurate 

values of length of vibration and bending stiffness. 

Moreover, in order to control the vibration of stay cables, 

damping devices are usually attached to the cable, which  

 

 

will influence the vibration behavior of the stay cable. Sun 

et al. (2014) presented a five-parameter fractional derivative 

model to portray a general linear viscoelastic damper for a 

taut cable. Zhou et al. (2014) derived a frequency equation 

of the cable-damper-spring system for free vibration of taut 

cable. In practical applications, effective vibration length is 

updated to model the influence of the damper to cable force. 

To improve the accuracy of the ambient vibration method, 

some actions are taken as 

1) In view of the sensor fixed close to the anchor 

construction of the cable in terms of technical and economic 

reasons (accessibility, installation time, etc.), the signal 

collected by the sensor is much more affected by the higher-

order frequency than fundamental frequency. Thus, the 

average value of high-order frequencies is employed for the 

calculation of cable force. 

  
(a) Detection rate of cable force in position SA14 (b) Detection rate of cable force in position SA15 

  

(c) Detection rate of cable force in position SA16 (d) Detection rate of cable force in position SA17 

  
(e) Detection rate of cable force in position SA18 (f) Detection rate of deflection near position SA15 

Fig. 13 Detection rates for each pair of the symmetric sensors 
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2) Aiming to improve the accuracy of the estimation, 

bending stiffness is taken into account by using 
2 2 2

2

2
4 nf n

T mL EI
n L

 
  

 
, where T, m, L, fn, and EI 

denote cable tension, mass density, free length of vibration, 

n
th

 natural frequency, and bending stiffness respectively. 

3) The theoretical derivation is based on the assumption 

that the cable is supported by hinges. The realistic dynamic 

behavior of a stay cable is between the borderline cases of 

an infinitely flexible string supported by hinges and a stiff 

cable with clamped boundary conditions. The free length of 

vibration is used to model the boundary condition. 

4) Optimization is used to determine the optimal values 

of the uncertain variables (i.e., free length of vibration and 

bending stiffness). The target function is the error of the 

estimated cable force and the measured cable force by the 

anchor load cell. It is assumed that the anchor load cells 

work well at their early age (during the stage near the 

instant of completion of monitoring system). Therefore, the 

monitoring data at the early stage are used for optimization 

to determine the uncertain parameters (i.e., free length of 

vibration and bending stiffness). 

By conducting the aforementioned strategies, accuracy 

in the range of 0.3% may be achieved. Forces of stay cables 

in the location SA16-E and SA16-W are measured by the 

acceleration transducer. The 3-min monitoring and field test 

data of the sensor pair in SA16 are shown in Fig. 14. 

The monitoring and field test data of the cable force in 

SA16-W are almost identical, while there is large bias 

between the monitoring and field test data for SA16-E. The 

sensor located in SA16-E is determined to be affected by 

faults, while the one located in SA16-W is determined to be 

healthy. 

Regression analysis of both the monitoring and field test 

data and the estimated parameters for the two regression 

models are listed in Table 4, in which models 1 and 2 are 

established by using the monitoring and field test data of 

cables SA16-W and SA16-E, respectively, and the p value 

is an index to evaluate the reliability of the regression 

model. If 0.05p  , the regression model is judged to be 

reliable. 

 

 

 

Table 4 Estimated values of the parameters 

Model C D G p 

Model 1 11.8546 33.5000 10  0.9969 0 

Model 2 -1537.4 44.8331 10   1.3957 0 

 

 

In model 1, parameter of C = 11.8546 is relatively 

smaller compared to the magnitude of the cable force in 

Fig. 14. The parameter of D = 33.5000 10  is almost zero 

and parameter of G is 0.9969. These estimated parameters 

all indicate that the sensor in SA16-W is in good condition. 

Moreover, the p value of model 1 is 0 indicating a reliable 

regression model 1. In model 2, the estimated value of 

parameter D in the drift expression approaches to zero, 

meaning that drift is not the fault for the target sensor. The 

estimated values of parameter C and G are -1537.4 and 

1.3957, respectively, which indicates that both the bias and 

gain faults accompany with the sensor simultaneously. The 

monitoring signals of the sensor in SA16-E can have a 

satisfactory quality by reconstruction using the equation of 

1537.4

1.3957

y
x


 . 

 
 

5. Conclusions 
 

A data-driven methodology based on the similarity of 

symmetric structure responses has been proposed and 

applied to sensor fault diagnosis for the bridge SHM system. 

The multi-sensor information fusion approach is used for 

sensor fault detection. The suspected sensors are then 

isolated and reconstructed by means of field test approach. 

The following conclusions can be drawn from this research: 

(i) Based on the rationale that structure responses at 

the transverse symmetric locations tend to be quite similar 

with each other due to the symmetry of both structure 

geometry and loadings, a data-driven sensor fault detection 

method was proposed. Dasarathy’s information fusion 

model is adopted for multi-sensor information fusion, 

including data fusion, feature extraction, feature fusion, 

  
(a) Monitoring and test data of stay cable SA16-E (b) Monitoring and test data of stay cable SA16-W 

Fig. 14 Comparison of the monitoring data and the field test data of the sensor pair 
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model recognition, and decision fusion. 

(ii) According to the seven typical sensor faults and 

the sensitivity comparison, Euclidean distance is selected as 

the index to assess the similarity among the other similarity 

indexes such as Pearson correlation, slope relational degree, 

and cosine similarity. 

(iii) Based on the rationale and assumption that 

structural damages will completely impact the similarity of 

all sensor responses within the target zone and the 

probability of a simultaneous failure of all the sensors is 

very low, a method was presented to evaluate the similarity 

of the target zone by using the evidential reasoning theory. 

Case study was carried out to validate and demonstrate the 

effectiveness of the proposed sensor fault diagnosis 

approach in practical engineering application. Sensors 

installed in a cable-stayed bridge in China are employed as 

the study example and sensor fault in the studied sensor pair 

of SA16 was detected, isolated, and reconstructed by the 

proposed approach. The study proposed a practical 

technique for sensor fault diagnosis of SHM system using 

the cable force and deflection measurements; however, 

when the proposed method applies to other sensor types or 

structures, similarity between symmetric responses should 

be assessed first. 
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