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1. Introduction 
 

Monitoring moving train loads, especially the extreme 

values of train loads, is one of the most important aspects 

for determining fatigue deterioration (Gu et al. 2014, Mori 

et al. 2007) and predicting the remaining service life of 

railway bridges (Yang et al. 2004, Kim et al. 2012). With 

the rapid development of monitoring techniques (Ou et al. 

2010), numerous bridges are equipped with comprehensive 

structural health monitoring systems (SHMSs) worldwide 

(Wang et al. 2016, Xu et al. 2010, Ni et al. 2008), aiming to 

provide effective structural performance evaluation, damage 

detection, and safety assessment (Mao et al. 2017). For 

example, Spencer et al. (2015) used wireless smart sensors 

to develop a cost-effective and practical portable SHMS for 

railway bridges. Information offered by the SHMSs also 

enables characterization of the dynamic behaviors of the 

whole bridge and members (Zhao et al. 2016). Moreover, 

algorithms for early and fast warning of abnormal 

vibrations have also been developed based on the SHMSs, 

with the goal to ensure safe operation of these bridges (Ding 

et al. 2017, An et al. 2017). 

However, capturing the interaction forces between the 

wheels and tracks directly is challenging, because the  
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moving force varies in time and space simultaneously (Pan 

et al. 2018). Therefore, it would be beneficial to develop 

indirect identification methods based on the known 

dynamic properties of bridges and the measured dynamic 

responses under moving loading. The bridge weigh-in-

motion technology plays an important role in bridge health 

monitoring (Yu et al. 2007). Lydon et al. (2016) presented a 

general review on the BWIM theory and critical issues 

emerged in the current practices. Many methods have been 

proposed for moving force identification of bridges (Zhu 

and Law 2016, Yu et al. 2016). A method based on modal 

superposition was developed to identify the moving forces 

in the time domain using vibration responses caused by the 

forces (Law et al. 1997). Based on this technique, Law et 

al. (1999) proposed a time-frequency domain method, 

which is faster and provides results that are more accurate. 

Wu et al. (2010) proposed a moving force identification 

technique based on a statistical system model. Deng et al. 

(2010) proposed a moving force identification method for 

identifying the dynamic interaction forces using the 

superposition principle and the influence surface concept. 

Yu et al. (2017) proposed an identification method using 

wavelet analysis, which can accurately identify vehicle 

speed and axle spacing. Chan et al. (2001a, b) introduced 

four methods for determining dynamic axle loads from 

bridge responses. Numerical simulations and laboratory test 

results show that these methods are effective and accurate 

for identifying a set of moving loads. However, few of them 

are utilized to identify parameters of the moving train loads 
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with time-varying velocity based on field measurement. 

Based on the finite element method or modal 

decomposition, several methods have been proposed to 

identify the axle loads travelling with non-uniform speed, 

(Law et al. 2004, Zhu et al. 2003, Chan et al. 2001). 

However, these methods face challenges when identifying 

the parameters of the trains with dozens of axles, for the 

necessity of accurate bridge models and their high 

computational demand. 

Influence lines are a generally accepted method to 

describe the quasi-static properties of structures, which 

comprehensively reflect the boundary conditions, geometric 

properties, and material properties of a structure (Wang et 

al. 2014). Laboratory studies demonstrate that influence 

lines can be extracted if the bridge response, which is a 

function of vehicle location, axle spacing, and axle weight, 

is known (Catbas et al. 2011). Zaurin et al. (2009, 2011) 

demonstrated the integration of video images and sensor 

data as promising techniques to obtain unit influence line 

(UIL) as a bridge safety index. In addition, Sun et al. (2016) 

demonstrated strain influence lines can provide reasonable 

assessment of bridge health condition at least in the vicinity 

of strain monitoring points. Based on influence lines, 

several modified algorithms aiming to capture parameters 

of vehicles have been proposed (Zhao et al. 2013, Marques 

et al. 2016). Meanwhile, strain is one of the most 

commonly measured responses in structural monitoring 

(Doebling et al. 1998, Mao et al. 2018a, b). Deng et al. 

(2015) presented a case study on fatigue performance 

assessment of welded details based on long-term strain 

monitoring data. Ni et al. (2011) proposed a structural 

condition assessment method for the cable-stayed bridge 

deck of Tsing Ma Bridge based on long-term strain 

monitoring data. Therefore, combining strain monitoring 

data and the concept of influence lines, in this paper, an 

enhanced influence-line-based method aiming to identify 

the moving train load parameters is presented. 

In this study, an identification method of moving train 

load parameters is proposed based on the basic theories of 

strain influence line, which account for the effect of time-

varying train velocity. Then, numerical simulations are 

employed to verify the proposed method and investigate the 

effect of the sampling frequency on the identification 

accuracy. Subsequently, the proposed method is applied to a 

continuous steel truss railway bridge for extracting the 

moving train load parameters, using field measured train-

induced strain data. In addition, the identification results are 

compared with direct measurements. The proposed method 

does not require development of the bridge model or 

influence lines. The uniqueness of the proposed method is 

the non-intrusive calculation of train characteristics which 

requires only the strain measurements. The enhanced 

method is computationally more efficient, and easier to 

implement in field. 

 

 

2. Theoretical formulation for moving train loads 
identification 

 

This section illustrates the proposed method using the 

strain responses of a simply supported beam excited by a 

series of moving forces with fixed spacing. The proposed 

method considers the train speed in the axle weights 

calculation to eliminate the error caused by the time-varying 

train speed. The strain measurements of railway bridge 

members are utilized to determine train speed, axle spacing, 

gross train weight and axle weights with the proposed 

method. Note that the bridge model is not required. 

 
2.1 Influence line theory 
 

A series of moving forces with fixed spacing along a 

simply supported beam is used to represent the moving train 

loads on the bridge. The schematic, representing a single 

span bridge with a single axle load, is shown in Fig. 1. 

The equation of the strain response at the bottom of 

mid-span point, C, is given by (Long and Bao 2001) 

𝜀 =  {

𝑃𝑥𝑦

2𝐸𝐼
             0 ≤ 𝑥 ≤ 𝐿/2

𝑃𝐿𝑦

2𝐸𝐼
(1 −

𝑥

𝐿
)    𝐿/2 < 𝑥 ≤ 𝐿

 (1) 

where ε is the strain underneath point C, P is the magnitude 

of the point load, x is the distance from A to the location of 

the point load, y is the distance from the sensor location to 

the centroid of the cross-section, I is the moment of inertia 

of the cross-section, E is the modulus of elasticity, and L is 

the total length of the beam. 

If discrete samples of the strain are recorded at a 

distance interval ∆x, the second derivative of the strain data 

with respect to the distance, x, can be written as Eq. (2). 

Note that a series of pulses could be observed from the 

second derivative values when the axle load enters the span, 

crosses the middle of the span, and leaves the span. The 

positive peaks correspond to the entering and leaving time 

of the point load, respectively, while the negative peak 

corresponds to the time that the point load crosses the 

middle of the span. In addition, the negative peak of the 

second derivative is twice as large as the positive peak. 

𝑑2𝜀

𝑑𝑥2
=

{
 
 

 
 

𝑃𝑦

2𝐸𝐼∆𝑥
     𝑥 = 0 𝑜𝑟 𝐿

−
𝑃𝑦

𝐸𝐼∆𝑥
        𝑥 = 𝐿/2

 
0         𝑒𝑙𝑠𝑒𝑤h𝑒𝑟𝑒

 (2) 

However, the strain responses are recorded at a time 

interval, ∆t, rather than a distance interval, ∆x. The distance, 

x, can be converted into time, t, as ∆𝑥 = ∑𝑣(𝑡) ∙ ∆𝑡, in 

which v(t) is the moving speed of the point load. 

 

 

 

Fig. 1 Simply supported beam with a point load 
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The axle speed is considered constant for the short distance, 

∆x. Therefore, the equation, ∆𝑥 = ∑𝑣(𝑡) ∙ ∆𝑡 , could be 

written as ∆𝑥 = ∑𝑣 ∙ ∆𝑡, when the axle crosses the fixed 

point. The velocity variation is considered small enough to 

be neglected. Hence, the second derivative of the strain 

measurement can be written as Eq. (3), where te is the time 

that the point load leaves the span. The peak values of the 

second derivative with respect to time are closely related to 

the magnitude of the point load, P, the instantaneous speed, 

v(t), and sampling time interval, ∆t. 

𝑑2𝜀

𝑑𝑥2
(𝑡) =

{
 
 

 
 

𝑃𝑦𝑣2(𝑡)

2𝐸𝐼∆𝑡
               𝑡 = 0 𝑜𝑟 𝑡𝑒

−
𝑃𝑦𝑣2(𝑡)

𝐸𝐼∆𝑥
                      𝑡 = 𝑡𝑚

 
𝑎 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒         𝑒𝑙𝑠𝑒𝑤h𝑒𝑟𝑒

 (3) 

The strain and associated derivatives at any location 

along the length of the beam will take the same form as 

Eqs. (1)-(3), with reduced amplitudes. Superposition can be 

used to account for more than one axle. For a typical four-

car train running on a simply supported beam, the strain 

response and associated derivatives are shown in Fig. 2. 

The axle weights are identical and the train travels at a 

constant velocity. Fig. 3 illustrates the axle spacing. 

 

2.2 Train parameter identification 
 

According to the properties of the influence line, the 

train speed and axle spacing can be obtained based on the 

moments that the axles move through a set of fixed points. 

In addition, the integral area of the measured strain data 

reveals the gross train weight, while the second derivative 

peaks of the strain data reveal the relative amplitude of the 

axle weights. 

 

 

 

 

2.2.1 Train speed 
The second derivative of the strain data exhibits pulses 

when axles enter the span, cross the middle of the span, and 

leave the span (Fig. 2). The train speed could be determined 

by the time duration when the axle passes two of these 

locations. Note that when axles pass over the middle of the 

span, the negative peaks of the second derivative are twice 

as large as the positive peaks (Fig. 2). Therefore, combining 

the moments in time when the axles pass mid-spans of two 

adjacent spans allows for speed calculation of the train 

crossing a continuous beam bridge. With the traveling time 

obtained from the difference between the two moments in 

time, the train speed can be calculated with the traveling 

distance l, namely, the axle speed as vn=l / Δtn, where vn is 

the speed of the n
th

 axle (m/s), l is the distance between the 

two fixed points (m) and  is the traveling time of the 

n
th

 axle (s). 

 

2.2.2 Axle spacing 
The second derivative of strain response (Fig. 2) 

provides the moments when the axles pass the mid-span of 

the bridge. The durations between these time points provide 

the axle spacing, TLn, in conjunction with the calculated 

instantaneous velocity, v(t). The axle spacing can be 

calculated as TLn=v(tn+1-tn), where TLn is the distance 

between the nth and (n+1)th axles, and tn is the time that the 

nth axle takes to reach the mid-span of the bridge after the 

first axle reaches the mid-span. 

 

2.2.3 Gross train weight 
The integral area of the strain response induced by a unit 

force moving on a bridge with a unit speed, can be written 

as 

Δ nt

 

Fig. 2 Strain response and associated derivatives for a typical four-car train 

 

Fig. 3 The train model 
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𝐼𝐿𝐴 =∑𝜀(𝑡)/𝑓 (4) 

where f is the sampling frequency of the strain data. 

Subsequently, the gross train weight of each train can be 

obtained by 

𝐺𝑇𝑊 =
𝐴𝑠

𝑣 ∙ 𝐼𝐿𝐴
 (5) 

where As represents the integral area of the measured strain 

data under the moving train load, v is the average velocity. 

The error induced by the slight variation of train velocity is 

ignored. Note that this method does not account for the 

dynamic amplification effect of the bridge response. 

 

2.2.4 Axle weights 
The point loads are assumed to be equivalent to the axle 

weights. According to Eq. (3), the point loads are 

determined by the gross train weight, the second derivative 

of the strain measurements and the axle speeds. The axle 

weights can be obtained as 

𝑃𝑛 =

[
 
 
 
𝑑2𝜀
𝑑𝑡2

(𝑛)
1

𝑣𝑛
2(𝑡)

∑
𝑑2𝜀
𝑑𝑡2

𝑁
𝑖=1 (𝑖)

1
𝑣𝑖
2(𝑡)]

 
 
 

× 𝐺𝑇𝑊 (6) 

where Pn is the weight of the n
th

 axle. The peak values of 

the second derivative of the strain are divided by axle 

speeds twice to handle time-varying velocity of the train. 

Subsequently, the gross train weight is distributed by the 

corrected peak values. Therefore, the identification 

accuracy of axle weights is affected by the calculation 

accuracy of gross train weight, axle speeds and peak values 

of second derivative. 

 

 

3. Numerical simulations 
 

A simply supported beam subject to a series of moving 

forces is used to represent the generic train-bridge system, 

aiming to: (a) investigate the characteristics of the vibration 

induced by moving trains, (b) verify the proposed method 

and investigate the effect of the sampling frequency on 

identification accuracy, and (c) select the cut-off frequency 

of the low-pass Butterworth filter to remove the dynamic 

components. 

However, the limitations of numerical model of bridge 

in ideal condition would affect the results of simulations: 

(a) the static deflection caused by the bridge self-weight is 

not considered in the simulation analysis, (b) the numerical 

modeling of bridge does not account for the dynamic 

response induced by vehicle-bridge coupled vibration, and 

(c) the requirements of superposition are coordinated well 

with the numerical model. Hence, the identification 

accuracy of numerical model would be better than that of 

real bridges. 

 

3.1 Bridge model and vehicle model 
 

A simply-supported steel bridge, which has a uniform 

cross-section, is adopted for the simulation. The design span 

and cross-section are shown in Fig. 1, in which the bridge 

span is 30 m, and the beam is 1.0 m in height and 0.5 m in 

width. The mass per unit length of the bridge is 3925 kg/m, 

the moment of inertia of the cross-section is 4.17×10
-2

 m
4
, 

and the modulus of elasticity is 2.06×10
11

Pa. Meanwhile, 

the multiple carriages are modeled by a series of moving 

force with fixed spacing. Fig. 3 illustrates schematically the 

generic train model. The train is composed of 10 carriages 

with 20 bogies and 40 wheel-sets in total, the static axle 

loads for the carriages are around 16t, and the design train 

speed is 6m/s. Carriage geometry is described using the 

carriage length (l3=25 m), bogie spacing (l2-l1=14 m) and 

axle spacing (l1=2 m). 

 

3.2 Natural frequencies 
 

3.2.1 Natural frequencies of bridge 
The mass and span of the bridge determine the vertical 

and lateral natural frequencies of the bridge. The equation 

can be written as (Milne et al. 2017) 

𝑓𝑖 =
𝑛2𝜋

2𝐿2
√
𝐸𝐼

𝜌𝐴
 (7) 

where fi is the ith mode natural frequency of the structure, ρA 

is the mass per unit length. 

 

3.2.2 Driving frequencies 
Moving trains produce significant vibrations of bridges, 

thus, many studies have been conducted on the 

characteristics of the dominant vibration induced by moving 

trains (Ju et al. 2009, Lu et al. 2012, Milne et al. 2017) and 

the resonant vibration characteristics of vehicle-bridge 

system when trains pass bridges (Ju et al. 2003, Xia et al. 

2006). The load function P(t) represents a sequence of axle 

loads, which can be obtained as 

𝑃(𝑡) = ∑𝑃𝑛𝛿(𝑡 − 𝑡𝑛) (8) 

where δ is the Dirac delta function, the Fourier transform of 

Eq. (8) describes the frequency content of the loads. The 

load spectrum depends on the geometry of the train, the 

relative amplitudes of the wheel loads and the train speed. It 

is challenging to describe the vibration characteristics 

induced by trains with time-varying velocities using the 

formulas. An infinitely long train that consists of identical 

repeating vehicles, moving with constant velocity, v, is 

considered. The train load function can be written as a 

Fourier series 

𝑃(𝑡) = ∑ 𝑈𝑁𝑒
−𝑖2𝜋𝑁𝑣𝑡/𝑙3

∞

𝑁=−∞

 (9) 

where the Fourier series coefficients depend on the vehicle 

geometry and wheel load, P. 

𝑈𝑁 = 4𝑃
𝑣

𝑙3
𝑐𝑜𝑠 (

𝜋𝑁𝑙1
𝑙3

) 𝑐𝑜𝑠 (
𝜋𝑁𝑙2
𝑙3

) (10) 
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Note that the frequencies of loading only exist at integer 

multiples of the vehicle passing frequency. The amplitudes 

of these discrete frequencies are the Fourier series 

coefficients, UN, evaluated over one period of the train, l3/v. 
 
3.2.3 Natural frequencies of train-bridge system 
When a train moves on a bridge, the frequencies of the 

bridge will be affected due to the effects of train mass 

coupled with the bridge through the suspension systems. 

The natural frequencies of the bridge during the passage of 

a train may be established based on the dynamic equation 

for the bridge coupled with the moving train, as follows (Lu 

et al. 2012) 

𝜌𝐴
𝜕2𝑧

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑧

𝜕𝑥4
+ 𝑐

𝜕𝑧

𝜕𝑥
= 𝑃(𝑥, 𝑡) (11) 

where c is the damping coefficient of the bridge, z is the 

bridge vertical displacement, and P(x,t) is the contact force 

between the carriage and the bridge. For a simply supported 

bridge, the numerical integration method can be employed 

to obtain the bridge natural frequencies at each time step. 

 

3.3 Simulation results 
 

The strain response at the bottom of mid-span point, C, 

is shown in Fig. 5, which is consist of all the frequencies 

and white noise. The white noise level is 5% of the root 

mean square (RMS) of the dynamic strain response induced 

by the 10-carriage train, and the frequency band is 0.1Hz ~ 

100Hz. Note that the static deflection caused by the bridge 

self-weight is not considered in the analysis. 

The proposed method is based on structural static 

responses induced by moving train loads. Therefore, the 

dynamic components need to be removed from the response 

measurements in advance. A low-pass Butterworth filter is  

 

 

 

 

applied to eliminate the dynamic strain and noise. When the 

cut-off frequency is selected as six to eight times of the 

fundamental frequency of the train load, the peaks of the 

second derivative of strain measurements can be clearly 

identified. The second derivatives of strain data with 

different cut-off frequencies are shown in Fig. 4. The static 

strain component is distorted seriously during the filtering 

when a lower cut-off frequency is selected. Furthermore, 

the dynamic components and white noise can not be 

removed effectively when a higher cut-off frequency is 

selected. The peaks of the second derivative, which are 

induced by axle loads, can be identified from Fig. 4(b). 

However, that can not be obtained from Fig. 4(a) and (c). 

The raw strain and the filtered data based on a proper cut-

off frequency are compared in Fig. 5. 

 

3.4 Effect of sampling frequency 
 

The large errors could occur due to the relatively low 

sampling frequency. To investigate the effect of sampling 

frequency on the identification accuracy, three sampling 

frequencies, i.e., 100Hz, 250Hz and 500Hz, are used to 

record the strain response. 

Based on the time durations of the pulses extracted from 

the second derivative of the structural strain response, the 

carriage geometries, including axle spacing, bogie spacing 

and carriage length, could be obtained, which are shown in 

Fig. 6. The ―Standard‖ means the exact value. The 

identification results of the axle spacing under the bogie are 

larger than the exact values. Meanwhile, the identification 

results of the bogie length and carriage length match well 

with the exact values. Namely, it is hard to identify the 

moments precisely when two close axles cross the fixed 

point, since the static strain component is distorted during 

the filtering, as shown in Fig. 5. In addition, the errors  

   
(a) 5 times (b) 6 times (c) 9 times 

Fig. 4 The calculation results based on different cut-off frequencies 

 

Fig. 5 Comparison between the raw and filtered strain 
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decrease with the increase of axle spacing. 

The identification results using strain data recorded by 

the sampling frequency 500 Hz are more accurate than the 

others, namely, the sampling frequency of the data 

acquisition system has influence on the identification 

accuracy. The accuracy of the moment when the axle 

crosses the fixed point is affected by the sampling 

frequency. Specifically, the accuracy of the identification 

results of axle speed and carriage geometries increase with 

the increase of sampling frequency. However, the accuracy 

does not keep increasing after the sampling frequency 

exceeded a particular value. 

The axle weights and peak values of the second 

derivatives of the strain data recorded by the sampling 

frequencies 100Hz, 250Hz and 500Hz are shown in Fig. 7. 

It can be seen that the peaks corresponding to outer axles 

and inner axles show different linear relationship with the 

axle weights, due to the filtering process. However, the ratio 

of peak values of inner axles to peak values of outer axles is 

a constant, which is related to sampling frequency. Hence, 

the peak values of inner axles or outer axles should be 

corrected to eliminate the difference induced by the filtering 

process. In addition, the sampling frequency of the data 

acquisition system has significant influence on the 

identification accuracy, the higher sampling frequency 

increases the identification accuracy. 

 

 

 

 

 

4. Case study 
 

The proposed methodology is applied to field 

measurement data on a continuous steel truss railway 

bridge. The complexity of real bridge situation may create 

challenges in train load identification. 

 

4.1 Engineering background 
 

4.1.1 Description of the railway bridge 
The Xiangtan Bridge (Fig. 8) investigated in this study 

is a linkage connecting the cities of Kunming and Shanghai 

(Fig. 9), which is about 844.15 m long and consists of 11 

simply supported bridge spans. As illustrated in Fig. 7, 

these bridge spans are arranged as 49.86 m+72.8 m+3×75 

m+ 6×72.8 m+35 m+12.8 m. Among the 11 bridge spans, 

ten of them are steel truss bridges and the other is steel-

plate girder bridge. As shown in Fig. 10, the spans named as 

G1 and G5 to G10 are truss bridges with the railway at the 

top chord (deck truss). The lengths of these spans are 72.8 

m, and the trusses are 9.5 m in height and 3 m in width. The 

spans G2, G3, and G4 are navigable spans, therefore, these 

truss bridges have the railway at the bottom chord. The 

lengths, heights and widths of these spans are 75.0 m, 10.0 

m and 5.8 m, respectively. The span G11 consists of a steel-

plate girder bridge with two main girders connected by 

cross frames. The height of this girder bridge is 3.28 m and 

the width is 2.0 m. 

   
(a) Axle spacing (b) Bogie spacing (c) Carriage length 

Fig. 6 The carriage geometries 

   
(a) 100 Hz (b) 250 Hz (c) 500 Hz 

Fig. 7 The second derivative values corresponding to axle weights 
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4.1.2 Description of the SHMS 
To ensure the safety, durability, and serviceability of the 

Xiangtan Bridge under long-term heavy train loads, a 

comprehensive SHMS has been installed for performance 

assessment. Both structural responses and operational 

conditions, including displacement, acceleration, strain, 

temperature and traffic loads, are monitored. The SHMS 

was installed on March 2016 and has been operating since 

then. A large amount of data under service conditions has 

been collected. The monitoring data used in this study is 

mainly collected by sensors installed on spans G1 and G2. 

Fig. 11 presents the sensor layout. Typical sensor 

installations are shown in Fig. 12, including accelerometer, 

displacement sensor, strain gauge and temperature meter. 

The strain gauge specifications are shown in Table 1. In 

addition, a pair of wheel-force monitoring sensors, as 

shown in Figs. 10 and 13, is symmetrically installed on the 

tracks at the connection of G1 and G2. The sensor is 

developed by China Academy of Railway Sciences and can 

accurately record the contact forces between the track and  

 

 

 

 

train wheels. Meanwhile, the train velocities, corresponding 

to the first carriage crossing the connection of G1 and G2, 

are recorded (Tao et al.). During the measurement, the 

sampling frequencies of all the sensors are set to 205Hz. 

The duration of the measurements depends on the train type 

and the time when sensors are triggered to take data. 

 
4.2 Recorded structural responses 
 

The bridge is subject to a wide range of external loads 

during its lifetime, including temperature, wind, traffic 

loads, earthquake, and impact loads, which induce both 

static and dynamic responses of the bridge. The proposed 

method, however, is based on structural static responses 

induced by moving train loads. Therefore, the dynamic 

components need to be removed from the response 

measurements in advance. Fig. 14 presents typical vibration 

responses induced by the moving train loads. It can be 

observed that the strain and acceleration responses of the 

bridge significantly increase at the beginning and the  

 

Fig. 8 A photo of the Xiangtan railway bridge 

 

Fig. 9 An aerial view of the bridge 

 

Fig. 10 A schematic view of Xiangtan bridge (Unit: m) 
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locomotive is heavier than the carriage. The power spectral 

densities (PSDs) of the recorded strain and acceleration data 

are shown in Fig. 15. The strain components at low 

frequency are dominant according to the energy 

distribution. Meanwhile, there are observable peaks at 

higher frequencies corresponding to the structural vibration 

modes, which can be confirmed with reference to the PSD 

of the acceleration. Moreover, noise components can be 

observed across all frequencies. 

 

 

 

 

 

Ambient temperature and wind load usually have 

significant effects on structural static strain. The baselines  

of sensors were calibrated to remove the temperature effect 

before the data was recorded. On the other hand, the wind 

speed at the bridge site is less than 3 m/s. Therefore, the 

wind effects are considered small enough to be neglected. 

To extract the static strain from the raw strain measurement, 

a low-pass filter is applied to eliminate the dynamic strain 

as well as noise. The comparison between the raw strain 

and the filtered data is shown in Fig. 16. 

 

Fig. 11 Sensors layout of the SHMS 

   
(a) Accelerometer (b) Displacement sensor (c) Temperature meter 

 
(d) Strain gauge 

Fig. 12 Typical sensors 
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Table 1 Strain sensor specifications 

Range Working Temperature Resolution Temperature Drift 

0~2000 με -20~65℃ 0.2 με -0.019 με/℃ 

 

Fig. 13 The wheel-force monitoring sensor 

  
(a) Recorded strain data at measurement point 1-2 (b) Vertical acceleration at the mid-span of G1 

Fig. 14 Recorded structural responses under moving train loads 

 

Fig. 15 PSDs of strain and acceleration data 
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4.3 Identification of train parameters 
 

About 110 trains pass over the bridge every day. Several 

of them were randomly selected to verify the proposed 

method. The detailed information of these train events is 

shown in Table 2. The ―Train speed‖ represents the 

instantaneous velocities recorded by the SHMS. The train 

events 4, 5 and 6 were selected as standard train events, 

while the other train events were used to validate the 

proposed method by comparing the calculated moving train 

load parameters with the measured values. The structural 

properties of Xiangtan Bridge would not change in several 

months obviously. Hence, the standard train events were 

selected randomly, aiming to: (a) calculate the integral area 

of the strain response induced by a unit force moving on the 

bridge with a unit speed, ILA, which is necessary for the 

gross train weight calculation, as described in section 2.2.3, 

and (b) calculate the correction ratio of inner axles or outer 

axles, as shown in Fig. 7, which is used to eliminate the 

differences induced by the filtering process. 

The strain data of the measurement points 1-1 and 2-1 

(Fig. 11) are selected to identify the moving train load 

parameters, which are subsequently validated by the 

recorded train speed, gross train weight and axle weights. 

The approximate values of the train speed and carriage 

length could be obtained based on the proposed method 

with the raw strain data. Then, the raw strain data is filtered 

according to the estimated train speed and carriage length, 

to extract the strain of the bridge members induced by the  

 

 

 

 

moving train loads. Afterwards, the 5% of the maximum 

strain data is selected as the threshold to extract effective 

data as shown in Fig. 16. The processed data is selected to 

identify the moving train load parameters. 

 

4.3.1 Train speed 
The second derivatives of the measured strain data from 

the two selected measurement points are shown in Fig. 17. 

SDF and SDS represent the second derivatives of the strain 

data from measurement points 1-1 and 2-1, respectively. PF 

and PS represent the peaks of the second derivatives of the 

strain data from measurement points 1-1 and 2-1, 

respectively. 

The axle speed of all the selected train events could be 

calculated based on the time duration when the axle passes 

the two locations. For example, the duration for the first 

axle and last axle are 16.81s and 9.08s, respectively. The 

distance between the two measurement points is 44.78 m, 

hence the velocity of the first and the last axle are 2.66m/s 

and 4.93 m/s, respectively. Subsequently, the axle speeds of 

the selected train events are shown in Fig. 18. All the speeds 

are increasing slightly when trains move on the bridge. As 

shown in Fig. 9, the trains are bound from Xiangtandong 

Station to Xiangtan Station. There are several curve lines 

between Xiangtandong Station and Xiangtan Bridge. 

Hence, the trains pass the region with low velocities. Then, 

the trains move forward with normal velocities. 

 

 

 

Fig. 16 Comparison between the raw and filtered strain 

 

Fig. 17 The second derivatives of the strain measurements 
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4.3.2 Axle spacing 
Fig. 19 illustrates the second derivatives of the strain 

data from the measurement point 1-1. There are three axles 

under the bogies of locomotive and two axles under the 

bogies of carriages. Both the locomotive and carriage are 

supported by two bogies. Hence, the first six peaks are 

induced by the axles under the locomotive, whereas other 

peaks are induced by the axles under carriages. 

The axle spacing and carriage length can be obtained 

based on the calculated axle speeds and the durations of the 

axles passing the fixed location. As shown in Fig. 19, the  

 

 

 

 

 

axle spacing under the same bogie can be obtained based on 

the time durations of the close peaks. For example, the time 

duration for the first two axles, which are under the front 

bogie of the first carriage, is 0.66s, and the speed of the first 

axle is 2.82 m/s. Hence, the axle spacing is calculated as 

1.86 m. Meanwhile, the carriage length can be obtained on 

basis of the time durations of the peaks induced by the axles 

at the same position of the adjacent carriages. For example, 

the time duration for the first axles under the first and 

second carriages is 8.14s, and the speed of the first axle 

under the first carriage is 2.82 m/s. Hence, the carriage  

Table 2 Information of train events 

Train events Time Carriages number Axle number Train weight (t) 
Train speed 

(km/h) 

1 2016-03-24 10:30:38 16 70 971.19 19 

2 2016-04-03 06:21:40 16 70 1035.08 10 

3 2016-04-06 00:29:19 18 78 1050.57 15 

4 2016-04-18 07:06:11 18 78 1149.28 18 

5 2016-05-07 00:16:19 15 66 980.70 10 

6 2016-05-11 00:40:51 18 78 1072.07 10 

7 2016-05-20 01:10:43 12 54 737.26 8 

8 2016-05-26 21:31:06 12 54 749.00 10 

9 2016-09-02 08:18:18 19 82 1183.52 10 

 

Fig. 18 The speeds of all axles 

 

Fig. 19 Calculation of carriage geometries 
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length is calculated as 22.95 m. The identified carriage 

parameters, including axle spacing under the same bogie 

and carriage length, are shown in Fig. 20. The axle spacing 

under the same bogie is about 1.8m, and the carriage length 

is around 22.7 m. Both of the identification results match 

well with the actual values. 

 

4.3.3 Train weight 
Fig. 21 illustrates the effective strain data from the 

measurement point 2-1, which was induced by the train 

event 8. Based on the information of the standard train 

events, the integral areas of the strain data from the 

measurement points 1-1 and 2-1, which are both induced by 

a unit force crossing the bridge at a unit speed, are 1.3924 

με·t and 3.6011 με·t, respectively. As a result, the 

summation of the integral areas of the strain data, which is  

 

 

 

 

 

shown in Fig. 21, is 689.10 με·t. Since the average speed of 

the train event 8 is 4.06 m/s, according to Eq. (5), the gross 

train weight is calculated as 776.92t. As a reference, the 

direct measurement of the gross train weight is 749.00t. 

Table 3 lists the identification results of the selected train 

events along with the direct measurements. In Table 3, 

Integral area 1 and Integral area 2 represent the integral area 

of the strain data from measurement points 1-1 and 2-1, 

respectively. Identified train weight 1 and Identified train 

weight 2 represent the calculation results based on Integral 

area 1 and Integral area 2, respectively. Note that the 

identification results match well with the direct 

measurements. In other words, the error induced by the 

slight time-varying train velocity is negligible. 

 

 

 

Fig. 20 The axle spacing and carriage length 

 

Fig. 21 Effective strain data induced by train event 8 

Table 3 Calculation of train weights 

Train  

events 

Integral 

area 1 (με·t) 

Integral 

area 2 (με·t) 

Average 

speed (m/s) 

Identified train 

weight 1 (t) 

Identified train 

weight 2 (t) 

Directly measured 

train weight (t) 

1 209.00 591.89 6.12 918.64 1005.90 971.20 

2 362.25 886.33 4.09 1064.10 1006.66 1035.08 

3 260.56 698.96 5.21 974.98 1011.24 1050.56 

7 281.14 720.41 3.68 743.06 736.20 737.26 

8 267.10 689.10 4.06 778.84 776.92 749.00 

9 421.08 1044.16 3.93 1188.52 1139.52 1183.52 
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4.3.4 Axle weights 
The trains in this study are supported by two tracks. As 

shown in Fig. 22, there is a linear relationship between the 

left axle weight and the right axle weight. Hence, the tilt 

effect is neglected in this study. The calculated axle weight 

is equal to the sum of the left axle weight and the right axle 

weight. 

The axle weights are identified according to Eq. (6). Fig. 

23 illustrates the correcting process of the peak values of 

the second derivative from the measurement point 2-2, 

which were induced by the train event 9. In Fig. 23, RV  

 

 

 

 

 

 

represents the peak values of the second derivatives, FCV 

and SCV represent the first corrected values and second 

corrected values, respectively. 

The train speeds, which are shown in Fig. 17, were 

increasing when trains were passing across the bridge. 

According to Eq. (3), the parameter, y/EIΔt, is constant 

during the train parameters calculation. Thus, there is a 

direct linear relationship between the axle loads and the 

parameter, . The , which is calculated 

based on the velocity of the first axle, is a constant value.  

 

( )2 2 2

ndε dt v× 2

1v

 

Fig. 22 Axle weight of trains 

 

Fig. 23 The peak values of second derivative and corrected values 

 

Fig. 24 The FCV corresponding to axle weights 
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Accordingly, the second derivate is multiplied by  to 

obtain the first corrected value (FCV), in which the effect of 

time-varying velocity is eliminated. Subsequently, according to 

Fig. 7, the peak values of inner axles or outer axles were 

corrected again to eliminate the difference induced by the 

filtering process. Based on the standard train events, the 

relationship between the FCV and the axle weights is shown 

in Fig. 24. The corrected parameter, IF, of the peak values 

of inner axles is obtained by the Eq. (12). 

𝐼𝐹 =
1

𝑛
(∑

𝐴𝑊𝐼𝑖
𝐹𝐶𝑉𝐼𝑖

∙
𝐹𝐶𝑉𝑂𝑖
𝐴𝑊𝑂𝑖

) (12) 

where n represents the amount of bogies under the standard 

trains. AWI and AWO represent the recorded axle weights of 

inner axles and outer axles, respectively. FCVI and FCVO 

represent the FCV of inner axles and outer axles, 

respectively. The IF of inner axles is 0.8252 herein. 

As shown in Table 3. The calculation result of train 

weight from the measurement point 2-1 is 1139.52t. The 

identified train weight was distributed by the second 

corrected peak values. The calculation results from the 

measurement points 1-1 and 2-1 are shown in Fig. 25 

compared with the direct measurements. 

Finally, the axle weights of all the selected train events 

are calculated. In addition, the errors of the calculated axle  

 

 

 

 

weights are shown in Fig. 25, which are obtained by 

𝐸𝑟𝑟𝑜𝑟 =
(𝑉𝑊𝑐 − 𝑉𝑊𝑚)

𝑉𝑊𝑚
× 100% (13) 

where VWc and VWm represent the identification results and 

the direct measurements of axle weights, respectively. 

As shown in Fig. 26, the most of relative errors of axle 

weights were less than 20%. There are several possible 

reasons: 1) the wheel-force monitoring sensor and the strain 

gauge are installed at different locations, the dynamic 

amplification factor of axle weights is changing along the 

bridge; 2) the average velocities of the axles, instead of 

instantaneous velocities were used during the correction 

process of peak values; 3) the static strain components were 

distorted during the filtering process, as shown in Fig. 5, 

which may affect the accuracy of the identification results; 

and 4) according to Eq. (6), axle weights were obtained by 

distributing the gross train weight, hence, the errors of the 

calculation results of the gross train weight distributed in 

axle weights. 

 

 

5. Conclusions 
 

Accurate identification of moving train loads could 

2 2

1 nv v

 

Fig. 25 The identification results and direct measurements of axle weights 

 

Fig. 26 The errors of the calculation results of axle weights 
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provide reliable information for bridge management and 

maintenance. In this paper, a classic moving force 

identification method has been enhanced to handle time-

varying velocity of the moving train. The moving train load 

parameters, including train speed, axle spacing, gross train 

weight and axle weights, have been identified based on the 

integral area and the second derivative of the structural 

strain response. Numerical simulations and measurement 

results have demonstrated the efficiency and accuracy of the 

method. 

• The proposed method is effective in identifying 

the moving train load parameters based on the responses of 

the bridge, and accurate results can be obtained for the train 

speed, axle spacing and gross train weight. However, the 

identified axle weights have some errors. 

• The most of relative errors of axle weights were 

less than 20%, which were induced by several possible 

reasons: 1) the wheel-force monitoring sensor and the strain 

gauge are installed at different locations; 2) the average 

velocities of axles were used during the correction process 

of peak values; 3) the static strain components were 

distorted during the filtering process; and 4) the errors of 

the calculation results of the gross train weight distributed 

in axle weights. 

• The time-varying velocities of trains have 

significant influence on the identification accuracy. In 

addition, train speeds are increasing slightly when trains 

pass across the bridge, more attentions should be paid in the 

analysis. 

• Pre-processing procedures are required before the 

method can work effectively. However, the static strain 

components are distorted during the process, the peak 

values of the second derivatives of the strain should be 

corrected before axle weights calculation. 
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