
Smart Structures and Systems, Vol. 23, No. 3 (2019) 243-261 

DOI: https://doi.org/10.12989/sss.2019.23.3.243                                                                  243 

Copyright ©  2019 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sss&subpage=7                                      ISSN: 1738-1584 (Print), 1738-1991 (Online) 

 

1. Introduction 
 

To protect civil structures against earthquakes and wind 

loads, smart structural systems can be applied to absorb 

destructive energy, and subsequently reduce the response of 

the structure (Cheng et al. 2010). In recent years, passive, 

active, semi-active and hybrid control systems are used in a 

number of building structures and towers (Spencer Jr. and 

Sain 1997, Soong and Spencer Jr. 2000, Spencer Jr. and 

Nagarajaiah 2003, Morales-Beltran and Paul 2015). Each 

control system has its own advantages and disadvantages. 

Based on the type and performance of the supposed 

structure, many efficient actuators, dampers and other 

control devices are designed and manufactured (Symans 

and Constantinou 1999, Datta 2003, Fisco and Adeli 2011, 

Fisco and Adeli 2011). In active control systems, control 

forces are determined and simultaneously applied to the 

structure during dynamical loadings; however, a large 

amount of external power is required in comparison with 

other control systems. 

Various active control  algorithms have been 

investigated in the literature (Soong 1988, Korkmaz 2011). 

Linear quadratic regulator (LQR) (Gluck et al. 1996, 

Alavinasab et al. 2006, Reinhorn et al. 2009, Miyamoto et 

al. 2016), linear quadratic Gaussian (LQG) (Lu et al. 1998, 

Song et al. 2006), H2- and H∞-based (Chase and Smith 

1996, Yang et al. 2003, Li and Adeli 2016, Shukla et al. 

2016), fuzzy control (Bani-Hani and Ghaboussi 1998, Kim 

and Yun 2000, Park and Ok 2015, Braz-César and Barros 

2018), neural network-based (Chang et al. 2012), wavelet-

based (Amini et al. 2013, Wang and Adeli 2015, Hashemi 

et al. 2016), instantaneous optimal control (Akhiev et al.  
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2002, Bahar et al. 2003, Tarantino et al. 2004) and pole 

assignment (Lynch and Law 2002, Amini and Samani  

2014) are examples of control algorithms. On the other 

hand, the control scheme can be categorized in open-loop, 

closed-loop and closed-open-loop controls (Cheng et al. 

2010). In the open-loop scheme, the control force of 

actuators is determined by a feedback of external structural 

excitations (such as seismic ground motion), while the 

response of the structure specifies the control force in the 

closed-loop control. The closed-open-loop scheme is a 

combination of both open and closed-loop. The classical 

open-loop and closed-open-loop control algorithm are not 

applicable to structures subjected to seismic excitations, 

since the time history of ground motion is not known a 

priori (Aldemir and Bakioglu 2001, Bakioglu and Aldemir 

2001, Lee et al. 2008, Aldemir et al. 2012). This deficiency 

can be made up through applying advanced control methods 

(Aldemir et al. 2001, Yamada and Kobori 2001, Ma and 

Yang 2004, Aldemir 2009). 

The LQR method is widely used in structural control 

systems (Lynch and Law 2002, Alavinasab et al. 2006), and 

its efficiency in practical applications has been proven in 

comparison with other advanced control algorithms (Soong 

et al. 1991, Reinhorn et al. 1993, Reinhorn et al. 2009). In 

this method, a weighted balance between the structural 

responses and control forces is kept while the structure is 

excited by external forces. Based on the objectives defined 

in the design of structural control system, weighting 

matrices are chosen to obtain a better performance in the 

seismic behavior of the structure. Although researchers 

have made effort to develop a systematic approach in tuning 

the weighting matrices (Miller et al. 1988, Xing et al. 2000, 

Min et al. 2003), there is no general solution in this context 

(Bahar et al. 2003, Aldemir et al. 2012). Therefore, the 

weighting matrices are commonly estimated by trial and 

error procedures (Bahar et al. 2003). Recently, in 

engineering problems, the Bayesian optimization is applied 
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to find suitable weighting matrices through a Gaussian 

process (Marco et al. 2016, Miyamoto et al. 2018). This 

method is iterative and should be used for each problem, 

separately. Consequently, the mentioned control approach 

would not work properly for a structure under various and 

unknown dynamical loadings (e.g., winds and earthquakes). 

Depending on the capacity of applied active actuators 

and the intensity of expected excitations, the LQR method 

can be regulated. In the case of seismic excitations, the 

ground motion is not known in advance. Consequently, the 

required control force may exceed the actuator capacity 

while earthquakes happen. In this state, the active control 

force would remain constant at the maximum level that can 

be provided by the actuator, until the value of the required 

control force returns to the range of the actuator capacity 

(Miller et al. 1988, Xing et al. 2000, Min et al. 2003, 

Alavinasab et al. 2006). This process may excessively occur 

during a seismic excitation and can affect the performance 

of LQR method. The aim of this paper is to introduce an 

appropriate technique to improve the efficiency of LQR 

method for the active control of seismically excited 

structures. In this way, the uncontrolled responses of 395 

single degree of freedom (SDOF) structures (with various 

natural periods and damping ratios) under eight different 

earthquakes are obtained. Then, an active control system 

governed by the LQR method is added to the supposed 

structures. In order to adjust the relationship between the 

values of weighting matrices used in LQR, a regulating 

parameter is defined. For each active control system with 

different maximum control forces, the optimum regulating 

parameter is estimated by a trial and error procedure. Here, 

the ratio of the maximum controlled displacement to the 

uncontrolled one is chosen as the performance evaluation 

index. Over 700,000 analyses have been done for all SDOF 

structures. Afterwards, the authors provide a formula to 

estimate the regulating parameter as a function of the 

natural period, damping ratio and maximum control force. It 

will be shown that the error caused by this estimation is 

small and can be neglected. Additionally, the suggested 

approach is generalized for multiple degrees of freedom 

(MDOF) structures including one or more active actuators. 

For this purpose, the governing equations are transformed 

into a modal space. Then, a combination of regulating 

parameters relative to each single mode is proposed to 

adjust the LQR method for MDOF controlled structures. 

Numerical examples show the efficiency of the suggested 

approach for a wide range of seismically excited shear-type 

buildings. Note that some issues, such as considering the 

effect of time-delay (Chung et al. 1995, Guoping and Jinzhi 

2002, Pnevmatikos and Gantes 2011, Jang et al. 2014, Teng 

et al. 2016), structural nonlinearities (Wong and Hart 1997, 

Ohtori et al. 2004, Sajeeb et al. 2007, Materazzi and 

Ubertini 2012) and the existence of uncertainties in 

controlled structures (Mariani and Venini 1998, Wang 2003, 

Amini and Vahdani 2008), are beyond the scope of this 

research. 

A brief outline of the paper is as follows: Section 2 

describes the LQR method. In addition, the equation of 

motion and the quadratic performance measure are 

investigated. In Section 3, the proposed method is 

introduced. For this purpose, first, the optimal weighting 

matrices for SDOF controlled systems under seismic 

excitations are obtained by a trial and error procedure. 

Then, the method is generalized for MDOF structures. 

Furthermore, the computational steps of the suggested 

control approach are explained. Numerical examples in 

Section 4 illustrate the robustness of the proposed method 

in optimizing LQR control approach. Finally, concluding 

remarks are given in Section 5. 

 

 

2. LQR control method 
 

The equation of motion for a seismically excited shear-

type building with n  degrees of freedom controlled by r   

active actuators can be written as follows 

( ) ( ) ( ) ( ) ( )gt t t t x t   MX CX K X ΓU Mδ
 (1) 

Here, ( )tX  is the ( 1)n   relative displacement vector, 

and ( )tU  denotes the ( 1)r   control force vector. M , 

C  and K , respectively, represent the ( )n n  mass, 

damping and stiffness matrices. ( )gx t  is the one-

dimensional ground acceleration of the earthquake. In this 

equation, Γ  and δ  are the ( )n r  location matrix of 

r  controllers and the ( 1)n   location vector of the 

excitation, respectively. The equation of motion can be 

rewritten in a form of first-order state-space system 

( ) ( ) ( ) ( )gt t t x t  Z AZ BU D  (2) 

where,  ( ) ( ) ( )
T

t t tZ X X  is the (2 1)n   state vector. 

The matrices and vectors given in Eq. (2) are as follows 

1 1 1
, ,

  

     
       

       

0 I 0 0
A B D

M K M C M Γ δ
 (3) 

In the procedure of LQR algorithm, a quadratic 

performance measure is defined 

 
0

1
2

2

ft T T TJ dt   Z QZ U R U Z N U  (4) 

In this equation, 
ft  represents a duration longer than that 

of the external excitation. Q , R  and N  are weighting 

matrices regulating the relationship between structural 

responses and control forces. Another parameter which can 

be of interest to researchers is the decrease in the absolute 

acceleration vector (
gxX δ ). This issue is implicitly 

considered in Eq. (4), since the equation of motion (1), 

which should be satisfied throughout the procedure, keeps 

the relationship between the absolute acceleration and the 

parameters X , X  and U . 
The weighting matrices Q and R  are semi-positive 

definite and positive definite, respectively. The optimal 

control force can be obtained by minimizing J  under the 

constraint (2) in the following closed-loop control form 
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( ) ( ) ( )t t tU G Z  (5) 

where, the control gain matrix ( )tG is 

 1( ) ( )T Tt t  G R B P N  (6) 

Here, since the external excitation is treated as a white noise 

(Aldemir et al. 2001, Aldemir 2009, Aldemir et al. 2012, Fu 

and Johnson 2017), the term ( )gx t  is not considered in 

the determination of ( )tU . The matrix ( )tP  is the 

solution of the matrix Riccati differential equation 

   1 ,

( )

T T T

ft

      



P A P P A PB N R B P N Q 0

P 0
 (7) 

This nonlinear matrix differential equation can be solved by 

numerical methods (Davison and Maki 1973, Choi 1990, 

Assimakis et al. 1997). Note that the magnitude of 
ft  is 

not known in advance for seismic excitations. Moreover, it 

can be proven that the Riccati matrix ( )tP  is almost 

constant in practical structural control (de Souza 2006, 

Nguyen and Bestle 2007, Cheng et al. 2010, Aldemir et al. 

2012). Consequently, the matrix differential Eq. (7) changes 

into an algebraic Riccati equation 

   1T T T     A P P A PB N R B P N Q 0  (8) 

Once the weighting matrices Q , R  and N  are 

assigned based on the structural characteristics, the Riccati 

matrix P  can be determined through a numerical solution 

of Eq. (8) (Xu et al. 2002, Barbosa and Battista 2007), and 

subsequently, the constant control gain matrix G  is 

achieved. 

 

 
3. Proposed method 

 

Finding the optimal weighting matrices in LQR control 

method has been of interest to researchers. In this way, 

several types of weighting matrices are proposed and 

investigated in the literature (Wong and Yang 2001, Bahar 

et al. 2003, Alavinasab et al. 2006). In this paper, the 

following forms for the matrices Q , R  and N  are 

chosen 

1, 10 ,T  
   
 

K 0
Q R Γ K Γ N 0

0 M
 (9) 

Here,   is the regulating parameter adjusting the 

relationship between the structural responses and active 

control forces. By applying the matrices given in Eq. (9), 

the quadratic performance measure J displays a type of 

total energy. According to Eqs. (5), (6) and (9), the 

uncontrolled structural responses is obtained when 

  . Conversely, great control forces are required 

when the parameter   is increased. 

In practical active control systems, the capacity of 

actuators is limited. Depending on the characteristics of 

applied actuators, the maximum control forces may be 

varied and equal to a fraction of the total structural weight 

max,

1

, 1, ,
n

j j i

i

u m g j r


 
  

 
  (10) 

where, 
max, ju  and 

j  are the maximum force level of the 

j th actuator and its ratio to the total weight, respectively. 

im  represents the mass of the i th story, and g  is the 

gravitational acceleration. When the capacity ratios (
j  

for 1, ,j r ) are set to zero, the uncontrolled structural 

responses are achieved. During seismic excitations, the 

magnitude of required control forces may exceed the 

capacity of actuators. In this state, the active control force 

would remain constant at the maximum level (Miller et al. 

1988, Min et al. 2003, Hashemi et al. 2016). Accordingly, 

the control force of actuators is determined as follows 

, max, , max,

, , max,

sgn( ) if ( )
( ) , 1, ,

( ) if ( )

R j j R j j

j

R j R j j

u u u t u
u t j r

u t u t u

 
 



 (11) 

In this equation, 
, ( )R ju t  is the required control force for 

the j th actuator. It is noteworthy that the closed-loop 

control systems are quite stable in comparison with other 

systems (Anderson and Moore 1989), and as will be 

explained in the following subsections, nonlinearities such 

as Eq. (11) make no impression on the stability of the 

suggested method. 

The objective of this paper is to propose an appropriate 

approach to improve the efficiency of LQR method for 

actively controlled structures under seismic excitations. In 

the following, an estimation of optimal regulating parameter 

is introduced for SDOF structures. Then, the proposed 

method is generalized for MDOF structures including one 

or more active actuators. 

 

3.1 LQR adjustment for SDOF structures 
 

In this subsection, the behavior of SDOF controlled 

systems subjected to earthquake excitations is investigated. 

For this purpose, 395 SDOF structures with various natural 

periods (T ) and damping ratios ( ) are analyzed. Here, the 

relationship between natural period and frequency is 

defined as 2T   . The values of T  and   are, 

respectively, chosen from the ranges of 0.1s 4.0 sT   

and 0.01 0.09   on a regular basis. In addition, each 

structure is equipped with an active actuator. The magnitude 

of the capacity ratio   is assumed to be varied from 0.0  

(uncontrolled) to 0.1 (which means max 0.1u m g ). 

In this paper, since the failure of structural elements 

(such as columns and shear-walls) is caused by the relative 

displacement, the performance evaluation index 1J  is 

chosen as the ratio of the maximum controlled displacement 

to the uncontrolled one 

max,

1
eight

max,earthquakes

Mean
C

UC

x
J

x

  
  

  

 (12) 

245



 

Behrang Moghaddasie and Ali Jalaeefar 

 

 

 

 

 

where, the subscripts C  and UC  denote controlled and 

uncontrolled cases, respectively. Each SDOF system is 

separately excited by eight ground motions listed on Table 

1. In order to investigate the behavior of structures under 

different types of earthquakes, both near- and far-field 

ground motions including a wide range of PGA (peak 

ground acceleration) are chosen. In addition, the earthquake 

records (ground acceleration) are illustrated in Fig. 1. The 

main frequency (
mf ) of earthquakes, which is obtained 

from the Fourier transform of the corresponding 

accelerogram, is given in Table 1. 

 

 

 

 

 

 

To obtain the optimal regulating parameter for a SDOF 

controlled system with specific T ,   and  , a trial and 

error procedure is applied. For this purpose, twenty-one 

values of the regulating parameter   are chosen from the 

range of 4.0 6.0    on a regular basis, the algebraic 

Riccati Eq. (8) is solved, and the performance evaluation 

index 1J  is calculated, separately. 

The optimal regulating parameter 
opt  for the 

supposed controlled system is the one giving the minimum 

value of performance evaluation index denoted by 
1 minJ .  

Table 1 The list of recorded ground motions used in the analysis of SDOF controlled systems 

Name Date Station Type PGA (g) mf (Hz) 

El Centro 

Hachinohe 

Kobe 

Loma Prieta 

Northridge 

Parkfield 

San Fernando 

Taft 

05/19/1940 

05/16/1968 

01/16/1995 

10/18/1989 

01/17/1994 

06/28/1966 

02/09/1971 

07/21/1952 

Imperial Valley Irrigation District (NS) 

Hachinohe City (NS) 

Kobe Japanese Meteorological Agency (NS) 

Corralitos (EW) 

Sylmar County Hospital Parking Lot (NS) 

Temblor (N65E) 

Pacoima Dam (N76W) 

Taft Lincoln School (N21E) 

Far-field 

Far-field 

Near-field 

Near-field 

Near-field 

Near-field 

Near-field 

Far-field 

0.348 

0.229 

0.834 

0.483 

0.843 

0.357 

1.238 

0.159 

1.46 

0.37 

2.91 

1.34 

0.64 

2.63 

2.33 

1.36 

 

Fig. 1 Time history of ground acceleration for (a) El Centro, (b) Hachinohe, (c) Kobe, (d) Loma Prieta, (e) Northridge, (f) 

Parkfield, (g) San Fernando and (h) Taft earthquakes 
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For all SDOF systems, which their specifications were 

described previously, this procedure has been done 

(including 729,960 analyses) without any instability issue. 

In this way, the fourth order Runge-Kutta method with a 

constant time step size 0.005 st   is used. Fig. 2 shows 

the value of 
opt  relative to the parameters T  and   

for five different  . 

 

 

 

 

 

As it can be seen, 
opt  surfaces are smooth in most 

parts, while some perturbations are observed especially in 

short period structures with higher values of  . As 

previously explained, the magnitude of 
opt  is obtained 

from a trial and error procedure resulting the minimum 

value of performance evaluation index. The authors’ 

experience, which is derived from the investigation of  

 

Fig. 2 Optimal regulating parameter for SDOF controlled structures with (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.07 and (e) 0.09 

damping ratios 

 

Fig. 3 Relationship between the regulating parameter and the performance evaluation index for (a) smooth and (b) 

perturbed parts 
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structural responses, shows that two types of diagrams can 

describe the relationship between   and 
1J . The former, 

which is typically observed in the smooth part, draws an 

obvious optimum value for  , while in the latter type, 

there is no distinct optimum value. Fig. 3 shows examples 

of both mentioned types. 

In Fig. 3(a), the optimal regulating parameter 

corresponding to the minimum performance evaluation 

index can be easily recognized; conversely, the diagram in 

Fig. 3(b) shows a flat minimum region for a wide range of 

 . In this state, if the structural properties (such as T ,   

and  ) slightly change, a large variation in 
opt  can be 

observed. This would lead to perturbations in some parts of 

opt  surfaces. On the other hand, by considering the 

existence of the described flat region in perturbed parts, the 

value of 
1 minJ  is not sensitive to 

opt . Consequently, 

variations in 
1 minJ  are not significant in the vicinity of 

perturbed parts. Fig. 4 illustrates the minimum performance 

evaluation index relative to the parameters T  and   for 

five different  . As expected, smooth surfaces are obtained 

for 
1 minJ . Additionally, by increasing the natural period 

and capacity ratio, a reduction in the magnitude of 
1 minJ  

can be seen. 

 

 

As it was previously explained, the perturbation in the 

value of 
opt  has no considerable effect on 

1 minJ . 

Accordingly, the authors propose an estimation of optimum 

  by applying an ordinary least squares regression. In this 

way, a linear form for the estimated regulating parameter is 

assumed (
0est ( , , ) TA A T A AT        ). Then, the 

constants 
iA  are calculated by minimizing the distance 

between 
opt  and 

est  ( 2

opt estMin ( )k k

k

  ): 

est 1.32459 0.0504187

5.35127 27.461

)

4

( , , TT 







   




 (13) 

This equation shows the relationship between the 

estimated regulating parameter and system characteristics. 

Using 
est  obtained from Eq. (13) for SDOF controlled 

systems which is formerly described, can cause an error in 

the calculation of 
1 minJ . Table 2 provides an error analysis 

of 
est  and the corresponding minimum performance 

evaluation index 
1 estJ . As it is observed, the maximum 

deviation and standard error between 
1 estJ  and 

1 minJ  are, 

respectively, equal to 0.03 and 0.000097, while these values 

are substantially greater when 
est  and  are compared.  

 
Fig. 4 Minimum performance evaluation index for SDOF controlled structures with (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.07 

and (e) 0.09 damping ratios 
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Table 2 Error analysis of estimated regulating parameter 

and evaluation performance index 

Parameter 
Maximum 

deviation 

Standard 

deviation 
Standard error 

ρ opt – ρ est 

J1 min – J1 est 

6.44 

0.03 

0.9561 

0.0061 

0.015212 

0.000097 

 

 

This error analysis denotes the efficiency of the proposed 

estimation for the structural response of SDOF controlled 

systems. 

 

3.2 Modal formulation for MDOF controlled 
structures 

 
Transforming the equation of motion into a modal space 

can be advantageous to have a better understanding of 

structural behavior, especially in MDOF controlled systems 

(Wang et al. 1999, Cao and Li 2004, Lee et al. 2004, Park 

and Ok 2015). In the previous subsection, the authors 

present an estimation of the regulating parameter. This 

estimation is proposed for SDOF structures. In the 

following, a new modal formulation is introduced to use the 

suggested 
est  for MDOF controlled structures. For this 

purpose, the displacement vector is expressed as a linear 

combination of the first p  modes 

1

( ) ( )
p

k k

k

q tt


X φ  (14) 

Here, ( )kq t  and 
kφ  represent the k th modal 

coordinate and mode shape, respectively. The mode shape 

vectors can be normalized through Eq. (15) 

1

min
p

k

k 

 δ φ  (15) 

In this equation, .  denotes the magnitude of the 

supposed vector, and δ  is the location vector of the 

excitation. If all modes of a MDOF structure are considered 

(the number of applied modes is equal to the number of 

DOF p n ), Eq. (15) becomes 

1

n

k

k 

φ δ  (16) 

By considering Eqs. (14) and (16), the equation of 

motion (1) can be rewritten in the modal space 

* * *

* *

1

( ) ( ) ( )

( ) ( ), 1, ,

k k k k k k

r

j k j k g

j

m q t c q t k q t

u t m x t k p


  

  
 (17) 

where 

* * *, , ,

1, ,

T T T

k k k k k k k k km c k

k p

  



φ M φ φ Cφ φ K φ
 (18) 

 

 

* , 1, , , 1, ,T

jk k j j r k p   φ Γ  (19) 

The vector 
jΓ  is the j th column of the controllers’ 

location matrix Γ . For each modal coordinate, the authors 
suggest a separate quadratic performance measure which is 

similar to Eq. (4) 

 * * * *

0

1
2 ,

2

1, ,

ft T T T

k k k k k k kJ dt

k p

  



 y Q y U R U y N U
 (20) 

Here,  
T

k k kq qy . In order to benefit from the 

outcome of Subsection 3.1, which is corresponding to 

SDOF controlled structures, the weighting matrices given in 

Eq. (20) are chosen as follows 

 1

*

*

*

* * 2 * * 2 *

1

*

0
,

0

diag 10 , ,10 ,

,

1, ,

rkk

k

k

k

k k k rk k

k

k

m

k k

k p

 

 
  
 

  





Q

R

N 0

 (21) 

Furthermore, the optimum value of the regulating 

parameters in *

kR  can be estimated through Eq. (13) 

* *

est

1

( , , ),

1, , , 1, ,

n

j k k k j k k

i

j iT m m

j r k p

  


 

 


 (22) 

In this equation, 
kT  and 

k  are, respectively, the k th 

modal natural period and damping ratio. 

Eq. (20) illustrates the quadratic performance measure 

for each mode, separately. The summation of all *

kJ  gives 

the performance measure for MDOF controlled systems in 

the modal space 

 * * * *

0
1

1

2

f
p

t
T T

k

k

J J dt


    Y Q Y U R U  (23) 

where,  ( ) ( ) ( )
T

t t tY q q , and the modal weighting 

matrices are 

*

* * *

*
1

,
p

k

k 

 
  
 


K 0

Q R R
0 M

 (24) 

Here, ( )tq  is the vector of modal coordinate. Moreover, 
*

K  and *
M  represent the modal stiffness and mass 

matrices, respectively. By using the LQR algorithm, the 

optimal control force is obtained 

*( ) ( )t tU G Y  (25) 

The calculation process of the modal control gain matrix 
*

G  is similar to the procedure explained in Section 2. As it 

is previously mentioned, the magnitude of control forces 

cannot exceed the capacity of applied actuators described in 
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Eqs. (10) and (11). In addition, it can be concluded that the 

stability of SDOF control systems (discussed in the 

previous subsection) is sufficient to guarantee the stability 

of the suggested method for MDOF problems. 

 
3.3. Computational steps of proposed control 

technique 
 
The suggested method is formulized based on a closed-

loop control scheme. Consequently, the calculation of the 

optimum control gain matrix is the main part of the control 

design procedure. It is worth mentioning that the 

international system of units (SI) should be used along the 

calculation. The following computational steps are 

proposed to obtain the optimum control gain matrix used in 

the suggested algorithm: 

1- Computation of the first p  natural periods 
kT  and 

mode shapes 
kφ  of the structure: Based on the number of 

sensors and the intended level of accuracy of the problem, 

the value of p  is chosen. To obtain 
kT  and 

kφ , 

standard numerical methods (e.g., Rayleigh quotient 

iteration, Lanczos algorithm or inverse power method) can 

be applied. 

2- Calculation of modal structural characteristics *

km , 

*

kc , *

kk  and *

j k  from Eqs. (18) and (19). 

3- Estimating the optimum value of regulating 

parameters 
j k  for each mode by considering Eqs. (13) 

and (22). 

4- Determination of weighting matrices *

kQ  and *

kR  

for each mode from Eq. (21). 

5- Obtaining modal weighting matrices 
*

Q  and *
R  

from Eq. (24). 

6- Transforming the modal equation of motion into a 

form of first-order state-space system: Similar to the 

procedure described in Section 2, the vectors and matrices 
*

A , *
B  and *

D   can be obtained. 

7- Solution of algebraic Riccati Eq. (8) by considering 
* N 0 . 

8- Calculation of modal control gain matrix 
*

G  

according to Eq. (6). 

Finally, when the structure is subjected to earthquake 

excitations, the optimal control force can be computed by 

using Eq. (25). 

 

 
4. Numerical examples 

 
In order to illustrate the performance of the proposed 

control method, five seismically excited shear-type 

buildings equipped with active control devices are 

investigated. These buildings were previously studied by 

researchers (Soong 1988, Schmitendorf et al. 1994, Singh et 

al. 1997, Lu et al. 1998, Min et al. 2003, Alavinasab et al. 

2006, Park and Ok 2015). In this section, the structural 

responses obtained by the suggested method are compared 

with the results of other control techniques for the same 

seismic excitations given by the mentioned references. This 

comparison shows the robustness of the authors’ method. 

Note that all modes are considered to have a better analogy, 

although the proposed technique is capable of using fewer 

mode shapes. As it is previously mentioned, the 

international system of units (SI) is used along the control 

design procedure. Fig. 5 demonstrates the schematics of the 

supposed buildings. As it can be seen, all examples are 

MDOF structures with one or more active actuators. Here, 

the applied control devices are active mass damper, active 

tendons and active bracing. To have a better understanding 

of structural behavior, graphical representations and 

tabulated data with additional information are provided. 

 
4.1 Ten-story building with AMD placed on the 
rooftop 

 

Fig. 5(a) illustrates a ten-story shear-type building 

equipped with one active mass damper (AMD) on the 

rooftop (Min et al. 2003). The mass of each floor is 50 ton

, and the stiffness of each story is 41.5 10 kN/mik    for 

1, ,4i  , 41.05 10 kN/mik    for 5,6,7i   and 

37.35 10 kN/mik    for 8,9,10i  . The value of 

damping ratio for all modes is assumed to be 0.02  . 

The maximum control force that AMD can provide is 

max 84.16 kNu  . The weighting matrices *
Q  and *

R  

can be estimated by the proposed method as follows 

 6 6 6

6 6 6

5 5 6

5 5 4

4 3 3

3 3 3

3

* 2.269 10 ,2.422 10 ,2.198 10 ,

1.452 10 ,1.894 10 ,1.264 10 ,

7.591 10 ,8.740 10 ,1.291 10 ,

5.771 10 ,3.996 10 ,5.958 10 ,

2.029 10 ,6.871 10 ,5.936 10 ,

2.872 10 ,1.445 10 ,1.267 10 ,

1.577 1

dia

0 5.3

g

,

  

  

  

  

  





 



Q

2

* 6

27 10 ,

1.575 10



  R

 (26) 

The building is subjected to the ground acceleration of 

El Centro earthquake (1940, Imperial Valley Irrigation 

District NS) in both controlled and uncontrolled cases. The 

AMD generates the control force based on the proposed 

control law. In Fig. 6. the relative displacement ( )x t , 

relative velocity ( )x t  and absolute acceleration ( )ax t  of 

the top floor are shown. Here, the black curves are 

corresponding to the controlled structural responses. These 

carves indicate a considerable reduction in responses. The 

ratios of maximum controlled responses to the uncontrolled 

ones are 0.48 , 0.60  and 0.74  for ( )x t , ( )x t  and 

( )ax t , respectively, while the control technique which is 

provided in (Min et al. 2003) obtains greater values ( 0.51 

for the relative displacement and 0.79  for the absolute 

acceleration of the top floor). This comparison demonstrates 

the superiority of the suggested method. 
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Fig. 5 Schematics of shear-type buildings investigated in numerical examples 

 

Fig. 6 Time history of top floor (a) relative displacement, (b) relative velocity and (c) absolute acceleration 

251



 

Behrang Moghaddasie and Ali Jalaeefar 

 

 

The control force and structural energy are displayed in 

Fig. 7. As it is observed, the magnitude of the generated 

control force remains constant when the required control 

force ( )Ru t , which is calculated by the LQR method, is 

greater than the maximum level 
maxu  

The structural energy ( )E t  consists of potential energy 

and kinetic energy (Wong and Yang 2001, Alavinasab et al. 

2006) 

( ) ( ) ( )TE t t t Z QZ  (27) 

Fig. 7(b) illustrates the structural energy in both controlled 

(black) and uncontrolled (gray) cases. This figure shows a 

69.9%  reduction in the maximum value of structural 

energy. 

 
4.2 Ten-story building with active tendons on the first 

floor 
 
Here, a ten-story building equipped with active tendons 

on the first floor is investigated. The schematic of this 

shear-type building is displayed in Fig. 5(b). Each story has 

the same structural characteristics ( 357.24 tonim  , 

36.15 10 kN.s/mic    and 56.5498 10 kN/mik    for 

1, ,10i  ). The controlled and uncontrolled structural 

responses of the building related to four different seismic 

excitations were previously studied in (Singh et al. 1997). 

The supposed ground acceleration records are El Centro 

(1940, Imperial Valley Irrigation District NS), San 

Fernando (1971, Pacoima Dam N76W), Loma Prieta (1989, 

Corralitos NS) and Kern County (1952, Hollywood 

Basement Site NS). In this example, all records are scaled 

uniformly to a PGA of 0.3 g . The magnitude of 
maxu , 

which is normalized by a floor weight, is assumed to be 

3.52 , 2.39 , 2.65  and 5.36  for the mentioned 

earthquakes, respectively. These values are chosen from 

(Singh et al. 1997). The suggested method proposes the 

following weighting matrices 
*

Q  and *
R  

 

 
 

 8 8 8

7 7 7

7 7 7

6 6 5

5 4 4

4 3 3

3

* 1.241 10 ,1.186 10 ,1.081 10 ,

9.357 10 ,7.626 10 ,5.772 10 ,

3.959 10 ,2.349 10 ,1.084 10 ,

2.771 10 ,3.029 10 ,3.265 10 ,

1.104 10 ,5.103 10 ,2.675 10 ,

1.465 10 ,7.908 10 ,3.945 10 ,

1.619 1

dia

0 3.8

g

,

  

  

  

  

  





 



Q

2

11*

65 10

2.607 10 



 R

 (28) 

The top floor relative displacement ( )x t , base shear 

( )xV t  and control force ( )u t  for the ten-story building 

subjected to the scaled ground acceleration of El Centro are 

given in Fig. 8. The structural responses are shown in both 

controlled (black) and uncontrolled (gray) cases. The 

proposed control law regulates the control force generated 

by active tendons. This figure illustrates a notable reduction 

in the top floor relative displacement and base shear. The 

comparison between the maximum controlled responses and 

the uncontrolled ones indicates 65.3%  and 61.4%  

reduction in ( )x t  and ( )xV t , respectively, while these 

values obtained from the control technique provided in 

(Singh et al. 1997) are  60.0%  and 26.2% . Note that the 

difference in the maximum of base shear is significant. 

The proposed control analysis is separately done for the 

ten-story building under four scaled earthquakes. Maximum 

relative displacements are calculated and displayed in Fig. 

9. The gray curves represent uncontrolled responses, and 

the maximum displacements obtained by the suggested 

procedure and the method introduced in (Singh et al. 1997) 

are demonstrated by black solid and black dashed curves, 

respectively. 

As it is observed, the authors’ method shows a better 

performance in the maximum displacement of the rooftop 

for all earthquake records. Moreover, this superiority can be 

seen on average for 85.0%  of floor levels, especially in  

 

Fig. 7 Time history of (a) control force and (b) structural energy 
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middle and top stories of the structure. The formation of 

curves drawn in Fig. 9 is approximately similar (except for 

Loma Prieta earthquake). In the El Centro case, the 

proposed method is more efficient and comparable with 

other records. It is worth mentioning that the maximum 

displacement of the first floor calculated by the suggested 

procedure for Loma Prieta earthquake is greater than the 

uncontrolled state. Conversely, the best performance in the 

reduction of structural response is observed at middle levels 

for this record. 

The maximum values of interstory displacement and 

absolute acceleration are shown in Figs. 10 and 11, 

respectively. As it can be seen, the maximum interstory 

displacements decrease at all levels when the active control 

system is used (black curves), while the maximum absolute  

accelerations corresponding to the levels close to active 

tendons increase. 

 
 

 
 
4.3 Three-story building with active tendon systems 
 
A three-story shear-type building equipped with two 

active control systems is shown in Fig. 5(c). The actuators 

are placed in the first and third stories. This structure was 

previously studied by researchers (Gluck et al. 1996, 

Alavinasab et al. 2006). The mass, damping and stiffness 

matrices are as follows 
200.40 0 0

0 200.40 0 kg

0 0 178.00

264.99 78.09 16.08

78.09 246.89 92.15 N.s/m

16.08 92.15 162.02

238.932 119.466 0

119.466 238.932 119.466 kN/m

0 119.466 119.466

 
 


 
  

  
 

  
 
   

 
 

  
 
  

M

C

K

 

(29) 

 

Fig. 8 Time history of (a) top floor relative displacement, (b) base shear and (c) control force 

 

Fig. 9 Maximum relative displacements with respect to (a) El Centro, (b) San Fernando, (c) Loma Prieta and (d) Kern 

County earthquakes 
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The maximum control force that active tendons can provide 

is 
max, 1000 Nju   for 1,2j  . The weighting matrices 

*
Q  and *

R  estimated by the proposed method are as 

follows 





 

4 4 4

2 1 0

* 8 7

* 6.664 10 ,4.102 10 ,1.181 10 ,

5.304 10 ,4.242 10 ,6.015 1

diag

diag

0

8.210 10 ,7.503 10 





  

  

 

Q

R

 (30) 

This building is subjected to three seismic excitations. 

The supposed ground acceleration records are El Centro 

(1940, Imperial Valley Irrigation District NS), Hachinohe 

(1968, Hachinohe City NS) and Taft (1952, Taft Lincoln 

School S69E). The proposed control law regulates the 

control force generated by tendons. Fig. 12 illustrates the 

relative displacement and velocity of the rooftop in both 

controlled (black) and uncontrolled (gray) cases for the El 

Centro earthquake. The ratios of maximum controlled  

 

 

 

displacement and velocity to the uncontrolled ones are 

0.29  and 0.27 , respectively. 

The time history of active control forces is given in Fig. 13, 

As it is observed, the magnitude of control forces provided 

by the actuator placed on the first floor on average is greater 

than the other actuator. 

In order to evaluate the performance of the proposed 

method in the estimation of weighting matrices for MDOF 

structures with multiple active actuators, the seismic 

structural responses obtained by the authors’ control method 

is compared with the responses given by an LQR technique 

which is optimized through a trial and error procedure. To 

have a better analogy, the LQR method is applied in the 

modal space. Additionally, the modal weighting matrix 
*

Q  

is chosen from Eq. (30). The matrix *
R  is assumed to be 

diagonal and its entries are obtained by trial and error. In 

this way, a large number of diagonal entries are chosen to 

achieve the greatest decrease in the maximum displacement 

of the rooftop. This procedure is done for each earthquake 

record, separately 

 

Fig. 12 Time history of top floor relative displacement and velocity 

 

Fig. 13 Time history of active control forces of actuators located on (a) the first and (b) the third floors 
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 

 

 

*

El Centro

*

Hachinohe

*

Taf

7 8

8 8

t

9 7

1.277 10 ,8.439 10

1.299 10 ,9.745 1

diag

0

7.308 10 ,1.285 1

diag

diag 0

 

 

 

 

 





 

R

R

R

 (31) 

As it is seen, the magnitude of optimum matrix *
R  is 

varied for each earthquake record. 

Table 3 presents the structural responses in uncontrolled, 

LQR and proposed cases. In this table, the maximum 

relative displacement, maximum interstory displacement 

and root mean square (RMS) of control forces are given for 

all floors. As it is observed, the maximum relative and 

interstory displacements computed through LQR are 

slightly smaller than the displacements obtained by the 

suggested control method. This comparison reveals the 

efficiency of the proposed technique. Note that, since there 

is no active tendon system on the second floor, the 

controlled interstory displacements at this level are greater 

than the other floors for all records. In addition, the RMS of 

control force generated by active tendons on the first floor 

is remarkably larger than the other in both controlled cases. 

 
4.4 Six-story building with active bracing systems 
 
The schematic of a six-story building is displayed in 

Fig. 5(d). This structure is equipped with two active bracing 

systems, which are installed on the first and third floors. 

Each story has the same structural properties as follows: 

345.6 tonim  , 32.937 10 kN.s/mic    and 

53.404 10 kN/mik    for 1, ,6i  . The controlled and 

uncontrolled structural responses of the building 

corresponding to the ground acceleration of El Centro 

earthquake (1940, Imperial Valley Irrigation District NS) 

were previously studied in (Schmitendorf et al. 1994, Lu et 

al. 1998). 

In order to evaluate the efficiency of the suggested 

method, the maximum control forces provided by active 

bracing systems are chosen from (Schmitendorf et al. 

1994). Here, two cases are investigated. In Case A, the 

magnitudes of maximum control forces of actuators placed 

on the first and third floors are 
max, 1 7706 kNu   and 

max, 2 3035 kNu  , respectively. These values are chosen 

 

 

max, 1 1760 kNu   and 
max, 2 1010 kNu   in Case B. The 

proposed weighting matrices *
Q  and *

R  for both cases 

are as follows 





 

8 7*

C

7

7 7 6

6 5 4

4 3 3

12 10

ases A & B

*

Case A

*

C

9

ase B

1.032 10 ,9.157 10 ,7.094 10 ,

4.606 10 ,2.262 10 ,5.999 10 ,

1.803 10 ,1.848 10 ,5.580 10 ,

2.087 10 ,7.323 10 ,1.615 10

2.694 10 ,5.13

diag

diag

diag

7 10

1.696 10 ,3.1

 



  

  

  

  













Q

R

R  997 10

 

(32) 

The controlled and uncontrolled structural responses are 

obtained for both cases. To have a better comparison 

between the proposed control procedure and the method 

given by (Schmitendorf et al. 1994), the following 

performance evaluation indexes are defined and separately 

calculated for each floor 

max,

2

max,

C

UC

x
J

x





 (33) 

max,

3

max,

a C

a UC

x
J

x


 

(34) 

where, x denotes the interstory displacement, and 
ax  is 

the absolute acceleration of the supposed floor. The 

subscripts C  and UC  represent controlled and 

uncontrolled cases, respectively. Table 4 shows the values 

of indexes 
2J  and 

3J  obtained by both controlled 

methods for all floors in Cases A and B. In this example, the 

structure is subjected to the ground acceleration of El 

Centro earthquake. 

As it is observed, the proposed procedure gives the 

interstory displacements less than or equal to the values 

computed by (Schmitendorf et al. 1994) in both Cases A 

and B. Additionally, the magnitudes of 
3J  obtained by the 

authors’ method are greater only for the two first floors. 

This issue demonstrates the superiority of the suggested 

control technique. 

 

Table 3 Structural responses of the three-story building 

Earthquake Floor 

Uncontrolled  LQR with trial and error  Proposed method 

Max. x 

(cm) 

Max. ∆x 

(cm) 
 

Max. x 

(cm) 

Max. ∆x 

(cm) 

RMS u 

(N) 
 

Max. x 

(cm) 

Max. ∆x 

(cm) 

RMS u 

(N) 

El Centro 

1st 

2nd 

3rd 

4.94 

8.91 

11.1 

4.94 

3.99 

2.17 

 

1.52 

3.01 

3.15 

1.52 

1.68 

0.81 

256.3 

– 

130.2 

 

1.57 

3.06 

3.25 

1.57 

1.71 

0.79 

258.7 

– 

121.4 

Hachinohe 

1st 

2nd 

3rd 

1.92 

3.46 

4.27 

1.92 

1.55 

0.90 

 

0.52 

1.02 

1.18 

0.52 

0.78 

0.27 

236.3 

– 

93.5 

 

0.54 

1.05 

1.23 

0.54 

0.78 

0.27 

234.9 

– 

90.7 

Taft 

1st 

2nd 

3rd 

1.91 

3.26 

3.93 

1.91 

1.35 

0.78 

 

0.43 

0.81 

0.95 

0.43 

0.64 

0.23 

156.9 

– 

63.9 

 

0.44 

0.85 

1.00 

0.44 

0.65 

0.23 

156.3 

– 

62.7 
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4.5 Ten-story building with active tendon systems 
 
In this example, the structural behavior of a ten-story 

shear-type building equipped with active tendons is 

investigated. In each story, an active tendon system is 

installed. This building is shown in Fig. 5(e). The mass of 

floors is 350.0 tonim   for 1,2i   and 

280.0 tonim   for 3, ,10i  . The story stiffness is 

3506.0 10 kN/mik    for 1,2i   and 

3458.7 10 kN/mik    for 3, ,10i  . The damping 

matrix is calculated by Rayleigh approach, and the damping 

ratio for the first and second modes is assumed to be 1.0% . 

The structural behavior of the building was previously 

studied in (Park and Ok 2015) for three scenarios. First, the 

structural responses under the normal condition are 

obtained (Case A). In Case B, it is assumed that the active 

devices in the first, third and eighth stories break down 

during excitations. For the third scenario (Case C), a 

perturbation in the stiffness matrix of the structure is 

considered 

(1 )SV NC K K  (35) 

where, the subscripts NC  and SV  denote ―Normal 

Condition‖ and ―Stiffness Variation‖ cases, respectively.   

is the perturbation ratio and assumed to be 20% . 
The building is subjected to two seismic excitations. The 

ground acceleration records are El Centro (1940, Imperial 

Valley Irrigation District NS) and Northridge (1994, Sylmar 

County Hospital Parking Lot NS). For three described 

scenarios, the maximum control forces which can be 

provided by active tendons are separately listed in Table 5 

for two earthquake records. These values are chosen from 

(Park and Ok 2015). 

The proposed control method and the modal-space 

reference-model-tracking fuzzy control (MRFC) approach 

introduced by (Park and Ok 2015) are separately applied for 

the ten-story building under El Centro and Northridge 

earthquakes. In the suggested control design procedure, 

since it is assumed that the structural characteristics remain 

constant during seismic excitations, the modal gain matrix 

is calculated once for all scenarios based on the capacity of 

active actuators under ―Normal Condition‖ (the values 

given in Case A). In this way, the weighting matrices 
*

Q  

and *
R  are obtained as follows 

 
 

 7 8 7

7 7 7

7 7 6

5 6 5

5 4

*

El Centro &

4

4

 Northrid e

3

g

9.115 10 ,1.027 10 ,9.667 10 ,

6.901 10 ,5.127 10 , 4.750 10 ,

3.447 10 ,1.082 10 , 2.125 10 ,
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1.159 10 , 4.424 10 , 2.074 10 ,

1.384 10 ,8.051
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




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3

2 1

9 9 9

9 9 9

9 10 10

10

10 10

ridge

.129 10 ,

3.642 10 , 4.875 10

1.246 10 ,1.281 10 ,1.263 10 ,

1.361 10 ,1.455 10 ,1.440 10 ,

1.287 10 ,9.816 10 ,7.210 10 ,

7.920 10

diag
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1.803 10 , 2.844 10 ,3.718 10 ,
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  
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



  

  
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(36) 

Subsequently, the design gain matrix 
*

G  is calculated 

prior to applying any seismic excitation. This matrix will 

remain unchanged for all cases. 

On the other hand, in order to have a better analogy, the 

maximum control forces along seismic excitations are 

chosen from Table 5 for both control methods. Fig. 14 

shows the maximum interstory displacements given by the 

authors’ technique (black solid curves), MRFC approach 

(black dashed curves) and uncontrolled case (gray curves) 
for the El Centro earthquake. As it can be seen, the 

proposed method obtains a greater value only for the 

rooftop in the normal condition. In Case B, the maximum 

interstory displacements increase in the stories that the 

breakdown of actuators is considered; conversely, the 

suggested control technique obtains smaller values at other 

floor levels in comparison with the interstory displacements 

calculated by the MRFC approach. Both control algorithms 

give similar structural responses in Case C at most levels. 

Table 4 Performance evaluation indexes calculated for the six-story building 

Floor 

Case A  Case B 

Ref. (Schmitendorf  

et al. 1994) 
 Proposed  

Ref. (Schmitendorf  

et al. 1994) 
 Proposed 

J2 J3  J2 J3  J2 J3  J2 J3 

1st 

2nd 

3rd 

4th 

5th 

6th 

0.37 

0.59 

0.63 

0.52 

0.69 

0.69 

1.25 

0.87 

0.79 

0.62 

0.68 

0.70 

 

0.28 

0.48 

0.38 

0.52 

0.56 

0.61 

3.48 

0.90 

0.49 

0.52 

0.53 

0.61 

 

0.61 

0.65 

0.69 

0.71 

0.74 

0.77 

0.87 

0.76 

0.70 

0.69 

0.73 

0.78 

 

0.58 

0.62 

0.59 

0.70 

0.74 

0.77 

1.22 

1.01 

0.64 

0.64 

0.72 

0.77 
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The maximum relative displacements are given in Fig. 

15 for both controlled (black) and uncontrolled (gray) cases. 

The decrease in this parameter is significant at higher 

levels. In addition, the maximum absolute accelerations 

become almost invariant at all levels (Fig. 16). 
Fig .  17  i l l us t r a t e s  the  maximu m in ter s to r y 

displacements for both controlled and uncontrolled cases  

 

 

 

 

with respect to the Northridge earthquake. The formation of 

curves in Case A reveals a better performance of the 

proposed method in the seismic behavior of the building for 

all stories. In the case of actuator failures (Case B), the 

structural responses obtained by the suggested technique is 

slightly greater than the values computed through the 

MRFC approach at the first, third, fourth and eighth floors.  

Table 5 Maximum control forces of actuators placed in the ten-story building (kN) 

Floor 

El Centro  Northridge 

Case A: 

Normal 

condition 

Case B: 

Breakdown of 

actuators 

Case C: 

-20% stiffness 

variation 

 

Case A: 

Normal 

condition 

Case B: 

Breakdown of 

actuators 

Case C: 

-20% stiffness 

variation 

1st 

2nd 

3rd 

4th 

5th 

6th 

7th 

8th 

9th 

10th 

3235.9 

3151.1 

3231.5 

2987.0 

2671.8 

2311.4 

1917.6 

1474.3 

985.9 

499.1 

– 

6229.0 

– 

4906.6 

4087.0 

3301.1 

3063.8 

– 

1845.7 

965.9 

3192.4 

3090.9 

3123.9 

2835.1 

2525.1 

2298.6 

2015.2 

1639.6 

1170.0 

605.4 

 

7615.5 

7542.9 

7953.7 

7428.4 

6611.9 

6075.7 

5679.8 

4923.9 

3667.8 

1959.2 

– 

15641.9 

– 

13349.3 

10835.4 

9313.4 

8159.6 

– 

4995.9 

2658.8 

15398.2 

15245.4 

15152.8 

14099.9 

12556.3 

10705.3 

8699.8 

6603.3 

4436.1 

2225.4 

 

Fig. 14 Maximum interstory displacements with respect to El Centro earthquake in (a) Case A, (b) Case B and (c) Case C 

 

Fig. 15 Maximum relative displacements with respect to El Centro earthquake in (a) Case A, (b) Case B and (c) Case C 
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A similar phenomenon was observed for the El Centro 

record. Fig. 17(c) shows a considerable decrease in 

structural responses given by the authors’ control algorithm 

in the case of 20%  stiffness variation. This issue 

demonstrates that the magnitudes of maximum control  

 

 

 

 

forces assumed by (Park and Ok 2015) are excessively 

large. 

Generally, although the suggested control design 

procedure is done according to ―Normal Condition‖, 

71.7%  of maximum interstory displacements obtained by  

 

Fig. 16 Maximum absolute accelerations with respect to El Centro earthquake in (a) Case A, (b) Case B and (c) Case C 

 

Fig. 17 Maximum interstory displacements with respect to Northridge earthquake in (a) Case A, (b) Case B and (c) Case 

C 

 

Fig. 18 Maximum relative displacements with respect to Northridge earthquake in (a) Case A, (b) Case B and (c) Case C 

258



 

Optimization of LQR method for the active control of seismically excited structures 

 

 

the proposed method is smaller than the values calculated 

through the MRFC approach for all scenarios. 

Similar to the previous ground motion, a considerable 

decrease in the maximum relative displacements is 

observed (Fig. 18), while a particular pattern for the 

maximum absolute accelerations cannot be derived (Fig. 

19). 

 
 

5. Conclusions 
 

The seismic response of structures can be remarkably 

reduced through using active control systems adjusted by an 

LQR algorithm. The weighting matrices in LQR play an 

important role in keeping a balance between the structural 

responses and control forces while the building is excited 

by external forces. 

In this paper, a new formulation is introduced to regulate 

the control LQR approach for seismically excited shear-

type buildings equipped with active devices, such as AMD, 

active tendons and active bracing. For this purpose, first, the 

seismic behavior of 395 SDOF systems with various natural 

periods and damping ratios is investigated. In this way, 

eight earthquake records are used as ground accelerations, 

and the corresponding maximum relative displacements are 

obtained in both controlled and uncontrolled cases. The 

maximum control force provided by the active actuator is 

assumed to be varied from zero (uncontrolled) to ten 

percent of the total weight. Here, the LQR method is 

applied as the control algorithm, and an energy-type 

quadratic performance measure including a regulating 

parameter is chosen. Additionally, the performance 

evaluation index is assumed to be the ratio of the maximum 

controlled displacement to the uncontrolled one. For each 

SDOF system with specific structural characteristics and 

maximum control force, the optimal regulating parameter is 

calculated through a trial and error procedure. In this state, 

over 700,000 analyses have been done. The study of results 

shows smooth changes in the performance evaluation index, 

although variations in the optimal regulating parameter can 

be significant. By considering this issue, the authors provide 

an estimation of optimal regulating parameter for SDOF  

 

 

systems. The presented error analysis illustrates the 

efficiency of the proposed estimation. 

For MDOF controlled structures, the suggested method 

is generalized by transforming the governing equations into 

a modal space. In this regard, a new formulation for the 

weighting matrices is provided based on a combination of 

optimal regulating parameters relative to each single mode. 

The numerical examples show the robustness of the 

proposed method for a variety of controlled shear-type 

buildings. In all cases, by applying the authors’ control 

algorithm, a considerable decrease in structural responses is 

observed in comparison with other techniques. 
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