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1. Introduction 
 

FGMs are new types of advanced composite materials in 

which the properties of the material are varying 

continuously or exponentially through a direction. 

Undoubtedly, in the process of making this category of 

materials, porosities are occurred inside the materials. The 

researchers have been shown the importance of considering 

the porosities in the mechanical analysis of FGMs. Hence, a 

great deal of studies have been conducted to investigate 

mechanical challenges of these type of materials (see some 

of the in Refs. (Barati et al. 2016, She et al. 2018a, She et 

al. 2019, She et al. 2018c, Yu et al. 2004, Adpakpang et al. 

2016, Mechab et al. 2016, She et al. 2018b, Karami and 

Janghorban 2019, Karami et al. 2019b, Karami et al.,2018i, 

Shahsavari et al. 2018a, Shahsavari et al. 2018c, Shahsavari 

et al. 2018e, Karami et al. 2018l, Karami et al. 2018k, 

Ebrahimi et al. 2017, Karami et al. 2019c)). FGMs also 

possess amazing features and applications for working in 

different environmental conditions such as thermal and 

hygrothermal environments (Lee and Kim 2013, Sobhy 

2016). Hence, FGMs have been used in the various 

engineering fields, notably in high-temperature fields such 

as thermo-mechanical loading structures, spacecraft, and 

aircraft, and in nano-electro-mechanical systems (NEMSs) 

(Li et al. 2008, Kar and Panda 2015, Lü et al. 2009, Sedighi 

et al. 2015b, Sedighi et al. 2015a, Atmane et al. 2015, 

Ghadiri et al. 2017, Xiong and Tian 2017, Shafiei and She  
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2018, She et al. 2017, Karami et al. 2018c, Karami et al. 

2018g, Karami et al. 2018f, Karami and Karami 2019, 

Hadji 2017, Saadatfar and Aghaie-Khafri 2015, Zhang and 

Shi 2010, Barati 2017b, Ghayesh et al. 2017c, Ghayesh and 

Farokhi 2017, Ghayesh et al. 2017a, Ghayesh et al. 2017b). 

Classical theories have increasingly used to study size-

independent mechanics of structures in open literature. But, 

unfortunately, this type of continuum theories is not able to 

predict the size-dependent behavior of nanostructures. So, 

to overcome this issue some methods such as molecular 

dynamic simulation and non-classical continuum theories 

have been presented so far. (Eringen and Edelen 1972) 

proposed a model in which small size effects are considered 

by introducing an additional scale parameter. Therefore, 

Eringen nonlocal model has been applied to analyze the 

mechanics of nanoscale structures (Rahmani et al. 2017, 

Bounouara et al. 2016, Belkorissat et al. 2015, Chaht et al. 

2015, Ebrahimi and Salari 2017, Bouafia et al. 2017, Nejad 

et al. 2016, Nejad and Hadi 2016). Thermal buckling 

analysis of FG nanosize plates based on trigonometric shear 

deformation theory is conducted by (Khetir et al. 2017). 

Based on Timoshenko beam theory, (Ebrahimi and Daman 

2017) examined dynamic behavior of curved 

inhomogeneous structures with porosities exposed to 

thermal environment. Application of nonlocal elasticity 

theory (NET) in Hygro-thermo-mechanical vibration and 

buckling analysis of exponentially graded nanoplates 

resting on elastic foundation was investigated by (Sobhy 

2017) based on a refined plate theory. Based on the zeroth-

order shear deformation theory, (Bellifa et al. 2017) 

analyzed the nonlinear post-buckling behavior of nanoscale 

beams using NET of Eringen. Application of two-variable 

plate theory in forced vibration analysis of single-layer 
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graphene sheet under moving load was examined by 

(Shahsavari and Janghorban 2017). In another work, 

(Shahsavari et al. 2017) proposed a refined four-variable 

plate model for dynamic analysis of viscoelastic nanoplates 

under moving load embedded within visco-Pasternak 

substrate and hygrothermal environment. Free vibration 

analysis of a piezoelectric nanobeam using NET was carried 

out by (Kaghazian et al. 2017). (Jandaghian and Rahmani, 

2017) performed analysis of FG nanobeams based on third-

order shear deformation theory under various boundary 

conditions. Guided wave propagation analysis of fully 

clamped FG nanoplates with porosities was examined by 

(Karami et al., 2018a) for the first time. (Karami et al. 

2019d) presented a nonlocal second-order shear 

deformation plate theory for thermal stability of sandwich 

piezoelectric nanoplates with FG core.  

As mentioned in pioneer studies, Eringen nonlocal 

model has only considered stiffness-softening mechanisms 

of nanostructure systems. Although NET of Eringen is a 

suitable theory for analyzing of nanostructure, it has some 

shortcomings due to neglecting stiffness-hardening effect 

reported in experimental works and strain gradient elasticity 

(Lam et al. 2003). Using nonlocal strain gradient theory 

(NSGT), (Karami et al. 2018h) performed the wave 

propagation analysis of nanoplates where the results were 

compared with experimental date for wave frequencies and 

phase velocities of graphene sheet. They observed that 

NSGT is more accurate for modeling the nanostructures by 

considering both stiffness reduction and enhancement 

effects. In additaion, a large number of studies are 

performed based on NSGT to analyze the mechanical 

behavior of nanostructures (Karami and Janghorban 2016, 

Li and Hu 2015, Şimşek 2016, Shahsavari et al. 2018d, 

Karami et al. 2018e, Karami et al. 2018j, Karami et al. 

2018d, Karami et al. 2018b, Shahsavari et al. 2018b, 

Karami et al. 2019a, She et al. 2018d, Nami and 

Janghorban 2014, Barati 2017a, Barati 2017c, Karami et al. 

2017, Farajpour et al. 2018). 

Thermal stability analysis of a sandwich nanoplates 

integrated with piezoelectric layers is investigated here 

using nonlocal strain gradient refined plate model for the 

first time. The core of the sandwich plate is considered as 

an FGMs in which the porosities effects is also studied. The 

porosity-dependent material properties of such structure are 

modeled via a modified power-law rule. The governing 

equations of motion as well as classical and non-classical 

boundary conditions related are obtained through a virtual 

work of the Hamiltonian principles where the Galerkin 

procedure is performed to solve the stability phenomena of 

a simply supported nanoplates. The influences of material 

composition, porosities, external voltage, temperature and 

humidity differences, small-scale parameter, geometrical 

parameters and elastic Kerr foundation on thermal stability 

characteristics of nanoplate is presented afterward in a 

parametric study. 

 

 

2. Nonlocal strain gradient nanoplate model 
 

Nonlocal strain gradient elasticity (Lim et al. 2015) 

enumerates the stress for both nonlocal stress and strain 

fields. Therefore, the stress can be expressed by 

(0) (1)

ij ij ij     (1) 

in which σij
(0)

 and σij
(1)

 are related to strain εij and strain 

gradient ij , respectively and are defined as 

(0)

0 0

0

( , , ) ( )

L

ij ijkl klC x x e a x dx        (2) 

(1) 2

1 1

0

( , , ) ( )

L

ij ijkl kll C x x e a x dx      
 

(3) 

where Cijkl are the elastic constants and e0a and e1a consider 

the influence of nonlocal stress field and l is the strain 

gradient parameter which defines the effects of higher order 

strain gradient stress field. When the nonlocal functions 

0 0( , , )x x e a   and 
0 1( , , )x x e a   satisfy the developed 

conditions by Eringen, the constitutive relation of NSGT 

has the following form 

2 2 2 2
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1 0

1 ( ) 1 ( )

1 ( ) 1 ( )

ij

ijkl kl ijkl kl

e a e a

C e a C l e a



 

         

            

 (4) 

where 2  is Laplacian operator in Cartesian coordinates. 

Supposing e1=e0=e and discarding terms of order 
2( )O  , 

the general constitutive relation in Eq. (4) can be rewritten 

as (Lim et al. 2015) 

2 2 2 21 ( ) 1ij ijkl klea C l             (5) 

The following equation can be used to include the 

influences of hygro-thermal loading and piezoelectric layers 

in the Eq. (5). 

  

2 2(1 ) (1 ) TΔ HΔij ijkl kl ij ijC

e E

             


 (6) 

in which 2l   and 2( )ea  ; [e] is the piezoelectric 

constants matrix;  E  is the electric field intensity vector; 

ij  is thermal coefficient; 
ij  is moisture coefficient. The 

equivalent form of Eq. (6) is presented as 

  ΔT ΔHij ijkl kl ijl ijC e E        L L  (7) 

where the linear operators are defined as 

2 2(1 ), (1 )l       L L  (8) 

The stiffness e31, e32, e24, e25 can be considered as the 

following forms with respect to dielectric constants d31, d32, 

d24, d15 and elastic stiffness Cij of piezoelectric actuator 

layers (Karami et al. 2019d). 

31 31 11 32 12 32 31 12 32 22

24 24 44 15 15 55

,

,

a a a a

a a

e d C d C e d C d C

e d C e d C

   

 
 (9) 
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Fig. 1 Geometry of Kerr elastic substrate with piezoelectric 

layers at top and bottom surfaces 

 

 

Note: in the current study to applying the external 

voltage on the mechanics of the sandwich plate, the 

following relation is assumed 

, 0z p p x yE V h E E    (10) 

in which Vp denotes the voltage applied to the actuators in 

the thickness direction. 

 

 

3. Theory and formulation 
 

A sandwich piezoelectric nanoplate with FG core as 

shown in Fig. 1 according to coordinate system (x, y, z) that 

a is length, b is width is assumed. The thickness of elastic 

core is 2h and thickness of each piezoelectric layer is hp. 
 

3.1 Displacement and strain 
 

With regard to the plate theories, the four variable refined 

model initially proposed by Shimpi (Shimpi 2002) is widely 

considered as a reliable theory in which no shear correction 

factor is required. In Shimpi's theory, the displacement field is 

defined as 

0( , , , ) ( , , ) ( )b sw w
u x y z t u x y t z f z

x x

 
  

 
 (11) 

0( , , , ) ( , , ) ( )b sw w
v x y z t v x y t z f z

y y

 
  

   
(12) 

( , , , ) ( , , ) ( , , )b sw x y z t w x y t w x y t 

 

(13) 

in which u0 and v0 denote in-plane displacments and wb and ws 

denote the bending and shear transverse displacement, 

respectively. The shape function of transverse shear deformation 

is considered as 

3 2( ) 4 5 3f z z z h    (14) 

According to the displacement field which is presented 

in Eqs. (11)-(13), the following nonzero strain expressions 

can be obtained as 
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(15) 

 

 

Fig. 2 Porosity model of FGM. 
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(16) 

 

3.2 Constitutive equations 
 

In the present work, FGMs with varying material properties 

along the thickness direction as well as an even type of porosity 

distribution effect are considred. To estimate the prosity-

dependent material propetries, a modefied power-law rule is 

used sa follows (Wattanasakulpong and Ungbhakorn 2014) 

1
( , ) ( )( ) ( )

2 2 2

n

B T B T B

z
P z P P P P P

h


        (17) 

in which n indicates the power-law index; PT and PB denote, 

respectively, the material properties of the top and the 

bottom faces of the graded structures; ( 0)    is the 

porosity coefficient (volume fraction of porosities). The 

distribution of the even porosity distribution is shown in Fig. 

2. The material properties such as Young's modulus E, 

Poisson's ratio ν, thermal and moisture expansion 

coefficients (α and β), shear modulus G, and mass density ρ 

are estimated through the Eq. (17). 

 

3.3 Governing equations 
 

The extended Hamilton principle express that 

0
( ) 0

t

U V dt    (18) 

where U is strain energy and V is work done by external 

(applied) forces. The first variation of strain energy can be 

concluded as 
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The first variation of work done by applied forces can 

be stated as 

0 0
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where Nx
0
, Ny

0
 and Nxy

0
 are in-plane applied loads 

(buckling loads); the external forces N
T
 and N

H
 

according to the changes of temperature and moisture 

in core are expressed as 
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
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in which 
0T T T    and 

0H H H    where T0 

and H0 can be introduced as the reference temperature and 

moisture, respectively. The external transverse forces qKerr 

caused by elastic medium are represented in terms of 

displacements as (Kneifati 1985) 
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in which kl, ku and ks are the stiffness of upper and lower 

springs and shear layer, respectively. The following Euler–

Lagrange equations are obtained by inserting Eqs. (19) and 

(20) in Eq. (18) when the coefficients of 
0 0, , bu v w    

and 
sw are equal to zero 
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where N, M, and Q are the stress resultants and can be 

defined as follows 
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The classical and non-classical boundary conditions can 

be obtained in the derivation process when using the 

integrations by parts. Thus, we obtain classical boundary 

conditions at x=0 or a and y=0 or b as (Barati 2018) 
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in which
() () ()

x yn n
n x y

  
 

  
; nx and ny denote the x and 

y-components of the unit normal vector on the nanoplate 

boundaries, respectively and the non-classical boundary 

conditions are 
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3.3 Equations of motion in terms of displacements 
 

On the basis of the nonlocal strain gradient theory, the 

constitutive relations of presented nanoplate can be stated as 

11 12

12 22

44

55

66

31

32

24

15

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

0 0

0 0

x x

y y

xzx lz

yzyz

xyxy

x

y

z

C C

C C

C

C

C

e
E

e
E

e
E

e

T H





  















   
   
   
    
   
   
   

   

 
  
    



 
 
 
     
 


  
 


 


 
 



L L

 
(33) 

in which ( , , , , )x y yz xz xy      and ( , , , , )x y yz xz xy      

denote the stress and strain components, respectively. 

Elastic constants of FGM layer can be defined as 
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(34) 

Using Eqs. (24)-(27), and also with consideration Eq. 

(33) the nonlocal strain gradient equations of motion can be 

expressed in terms of displacements as 
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4. Solution procure 
 

The Galerkin method is an efficient semi-analytical-

numerical tool for solving the partial differential equations. 

In present solution technique, the displacement field can be 

deliberated as (Barati 2018) 
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(43) 

where (Umn, Vmn, Wbmn, Wsmn) are the unknown coefficients 

and the functions; Xm and Yn satisfies the boundary 

conditions. The function Xm for simply-supported boundary 

conditions is defined by 
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 (44) 

The classical and non-classical boundary condition based 

on the present plate model are (Barati 2018) 
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(45) 

By substituting Eqs. (40)-(43) into Eqs. (35)-(38), one 

can write these four equations in matrix format to find the 

critical buckling temperature. In this paper, uniform type of 

temperature distributions is considered. It is assumed that 

the FG nanoplate is under constant temperature and then the 

FG nanoplate is exposed to a constant temperature rise such 

that the FG nanoplate buckles. By solving the above 

equations, the results for the thermal stability of sandwich 

porous nanoplates subjected to uniform temperature 

distribution can be obtained. 
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5. Numerical results 

 
In this paper, the nonlocal strain gradient response of 

thermal stability of sandwich piezoelectric nanoplates with 

porous core embedded on an elastic medium under 

hygrothermal environment effects is investigated using a 

refined higher-order plate theory with presenting the 

Galerkin solution for the first time. The porosity-dependent 

material properties of FG nanoplate are assumed to vary 

gradually along the thickness through the modified power-

law rule. The sandwich piezoelectric nanoplate is composed 

of Aluminum Eb=70GPa, νb=0.3
6 -1

2=23 10 1/ K, 0.44 (wt.%H O)b b    and Alumina 

Et=380GPa, νt=0.3, 
6 -1

2=7 10 1/ K, 0.001 (wt.%H O)t t  

for the FGM substrate, and G-1195 N for the piezoelectric 

layers. Thickness of actuator layer is 
122 10 mah    and 

properties of G-1195 N are
9

11 22 63 10 paE E    

13

31 32 1 10 m/Vd d    . A three parameters elastic 

foundation including the upper and lower linear springs 

along with the shear layer is in contact with the plate. In this 

study, various non-dimensional parameters are used as 

follows: 
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Table 1 presents the comparison results for a FG 

nanoplate for various gradient index and nonlocal 

parameters and good agreement is observed. 

Figs. 3 and 4 present the variation of critical buckling 

temperature of simply-supported porous nanoplate 

respectively versus nonlocal parameter (µ) and strain 

gradient length scale parameter (λ) for varying thickness 

between h=0.1-1.0 nm for different aspect ratios (a/b) at 

length of plate a=10 nm, gradient index n=1, porosity 

coefficient ξ=0.2. It is evident that for all values of 

nonlocality parameters, increasing thickness value (h) leads 

to higher dimensionless buckling loads. Furthermore, it is 

interesting to point out that that the effect of nonlocal 

parameter and strain gradient length scale parameter on 

porous nanoplates with the higher aspect ratio is more 

significant than that of with lower aspect ratio. Therefore, 

effect of scale parameters on thermal stability of porous 

nanoplates depends on the value of length-to-thickness and 

width-to-length ratios. 

The effect of external voltage on the thermal stability of 

the porous nanoplate can also be investigated. Shown in 

Figs. 5 and 6 are the critical buckling temperature of the 

sandwich piezoelectric nanoplate with porous core in terms 

of the voltage rising for different aspect ratios where a/h= 

10, n=1, ξ=0.2. The obtained results indicate that with 

increasing voltage, the critical buckling of the FG nanoplate 

is decreased for all nonlocal and strain gradient length scale 

parameters. Also, an increase in the nonlocal and strain 

grained length scale parameters leads to smaller and greater  

Table 1 Comparison of critical buckling temperature cr(ΔT )  of FG nanoplate for various gradient index and nonlocal 

parameters (a/h=10) 

   n=0   n=0.2   n=1   n=5  

 SSDT* Present  SSDT* Present  SSDT* Present  SSDT* Present 

1 10.0931 10.5926  7.1724 7.6980  4.5418 5.1729  4.0601 4.8376 

2 8.6647 9.0936  6.1573 6.6085  3.8991 4.4409  3.4855 4.1530 

3 7.5905 7.9662  5.3940 5.7892  3.4157 3.8903  3.0534 3.6381 

4 6.7532 7.0875  4.7990 5.1507  3.0389 3.4612  2.7166 3.2368 

*SSDT: (Karami et al. 2019d) 

  
(a) a/b=1 (b) a/b=2 

Fig. 3 Variation of critical buckling temperature under nonlocal parameter versus thickness of FG nanoplate 
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critical buckling temperature, respectively. It is also 

observed that thermal stability response of FG nanoplate is 

influenced significantly by scale parameters under voltage 

differences so that it is more sensitive at higher aspect 

ratios. 

Fig. 7 and 8 indicate the effects of material composition, 

and small scale parameters on the critical buckling 

temperature of porous nanoplates where ξ=0.2. One  

 

 

 

 

particularly key fact highlighted by these figures is that the 

critical buckling temperature reduces as the gradient index 

increases, especially for lower gradient indices. It is because 

higher portion of metallic phase leads to the higher gradient 

index. In addition, it should be noted that µ=0 and λ=0 

corresponds to local plate model. The increase in nonlocal 

parameter (µ) causes to reduction in the critical buckling 

temperature. The reason is softening impact of nonlocal 

  
(a) a/b=1 (b) a/b=2 

Fig. 4 Variation of critical buckling temperature under strain gradient length scale parameter versus thickness of FG 

nanoplate 

  
(a) a/b=1 (b) a/b=2 

Fig. 5 The effects of voltage and nonlocal parameter on critical buckling temperature for different aspect ratio 

  
(a) a/b=1 (b) a/b=2 

Fig. 6 The effects of voltage and strain gradient length scale parameter on critical buckling temperature for different 

aspect ratio 
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parameter on the nanoplate rigidity. But, strain gradient 

length scale parameter (λ) has an increasing effect on the 

nanoplate stiffness and critical buckling temperate. So, both 

scale parameters have significant effect on the thermal 

stability response of porous nanoplates and should be 

considered for their accurate analysis. 

To study the environmental effect on the thermal 

stability of porous nanoplate, effects of temperature and 

moisture differences on the critical buckling temperature 

with respect to nonlocal parameter (µ) and strain gradient 

length scale parameter (λ) are demonstrated in Figs. 9 and 

10, respectively at a/h=10, gradient index n=1, and porosity 

coefficient ξ=0.2. As we see in Fig. 9, increasing the 

temperature difference will decrease critical buckling 

temperature of the porous nanoplate. Also, it is evident from 

the Fig. 10 that the critical buckling temperature becomes 

smaller as the moisture difference increases for all nonlocal 

and strain gradient length scale parameters. Furthermore, 

from Figs. 9 and 10 it is observed that inclusion of nonlocal 

and strain gradient length scale parameters have stiffness-

softening and stiffness-hardening impact on the porous 

nanoplate structure. It is also seen that critical buckling 

temperature of the nanoplate is significantly affected by the 

moisture and temperature differences. 

 

 

 

Fig. 7 Influence of gradient index and nonlocal 

parameter on critical buckling temperature of FG 

nanoplate λ=0.2 

 

 

Fig. 8 Influence of gradient index and strain gradient 

length scale parameter on critical buckling temperature 

of FG nanoplate µ=1 

 

 

 

Fig. 9 Effect of temperature difference on critical 

buckling temperature of FG nanoplate with respect to 

nonlocal and strain gradient length scale parameters 

 

 

 

Fig. 10 Effect of humidity difference on critical buckling 

temperature of FG nanoplate with respect to nonlocal and 

strain gradient length scale parameters 

 

 

 

Fig. 11 Effect of elastic Kerr foundation parameters on 

critical buckling temperature of FG nanoplate with 

respect to gradient index parameter and porosity 

coefficient 
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To better understanding of the foundation's effect, 

variations of critical buckling temperature of porous 

nanoplate on an elastic Kerr foundation with respect to 

gradient index n and porosity coefficient ξ for different Kerr 

foundation parameters are illustrated in Fig. 11 when 

a/h=10, µ=1, λ=0.2, ΔT=20, and ΔH=0.5. To simplify the 

issue, it is assumed that stiffness of upper and lower springs 

of Kerr foundation are identical. Increasing in stiffness of 

springs yields increment in the critical buckling temperature. 

In fact, the porous nanoplate becomes more rigid by 

increase of springs stiffness leading. Also, it is seen that the 

presence of shear layer of foundation provides a continuous 

interaction with the nanoplate and raises the critical 

buckling temperature. Therefore, the Kerr foundation 

causes to increase in critical buckling temperature of porous 

nanoplate, as it has been discussed in several other types of 

research in the literature. In addition, it is seen that the 

linear layer parameters possess less influences on the 

thermal stability in comparison with the shear layer of this 

foundation. 

 

 

6. Conclusions 
 

The present work deals adequately with size-dependent 

thermal stability analysis of sandwich piezoelectric 

nanoplates with porous core based on a four-variable 

refined plate theory in conjunction with NSGT under 

hygrothermal loading. The model contains two different 

length scale parameters to consider the size-dependent 

behavior of nanostructures. The porosity and temperature-

dependent material properties of porous nanoplate are 

estimated using a modified power-law rule. The Galerkin 

method is applied to solve the governing equations derived 

from Hamilton's principle. As previously specified, gradient 

index, porosity coefficient, nonlocal and strain gradient 

parameters, geometry parameters, external voltage, 

environmental conditions, and Kerr elastic foundation 

parameters dramatically vary the critical buckling 

temperature of sandwich porous nanoplate. It is evident that 

swindling external voltage cause to lower critical buckling 

temperature. The inclusion of the nonlocal parameter 

reduces the critical buckling temperature of sandwich 

nanoplate. Furthermore, the inclusion of the strain gradient 

length scale parameter improves the nanoplate stiffness as 

well as critical buckling temperature. Therefore, NSGT 

provides larger critical buckling temperature when it is 

compared to NET by introducing a strain gradient length 

scale parameter. Moreover, it is easily observable that effect 

of nonlocal parameter and strain gradient length scale 

parameter on sandwich nanoplates with higher aspect ratios 

is more considerable than sandwich nanoplates with lower 

ones. 
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