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1. Introduction 
 

Civil engineering structures are subjected to different 

types of dynamic loadings including earthquake load, wind 

load, traffic load and accidental collision load etc. The 

identification of these loads is important for the design and 

monitoring of these structures. Direct measurement of these 

loads using load transducers is not actually feasible 

primarily because their exact locations are not known in 

most of the cases. Sometimes the loads are distributed over 

so many locations that the use of load transducers does not 

remain practical. That is why many indirect methods have 

been proposed for the estimation of applied loads using 

measured structural response. (Liu et al. 2000, Ma and 

Dong 2000, Qiu and Shenfang 2011).  

As a type of dynamic loads, an impact load is a high 

force of one or more objects striking against another and 

applied over short time period. Because an impact force is 

generally applied to small contact area of the colliding 

objects with significant energy, it has greater effects than 

distributed loads applied over longer period. If such impact 

loads are neither expected, nor considered in the structural 

designs, the structures will be exposed to unforeseeable 

structural risk.  

Particularly, many accidents of vehicle collisions with 

bridges have been reported in the past and some have even  
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resulted in the collapse of the bridge (Buth et al. 2010). For 

instance, on May 19, 1993 a tractor with semitrailer driving 

on I-65 near Evergreen, Alabama hit a bridge pier of the 

County Road 22 overpass and resulted in the collapse of 

two bridge spans. Later, two other vehicles collided with the 

collapsed bridge killing both the drivers. A similar accident 

occurred on I-45 in Texas on September 9, 2002 when a 

tractor-trailer hit bridge column of Highway 14 overpass, 

collapsing the bridge and killing one person. Another bridge 

collapse due vehicular collision occurred on May 23, 2003 

when a semitrailer crashed into the support of bridge 

crossing I-80 near Big Springs Nebraska (El-tawil et al. 

2005). Prompt identification of such collision events 

enables timely decisions to be made regarding the structure 

use restrictions to preemptively avoid yet another 

consequential catastrophe. In addition, accurate 

identification of the magnitude time histories and applied 

location of the collision-induced impact force can provide 

essential information for understanding the impact-induced 

structural behaviors.     

A number of studies have been conducted for 

identifying the impact force over the last decades, mostly 

for aircraft composite panels. Most straightforward 

approach is to use trigonometric location techniques 

(Staszewski et al. 2009, Mahzan 2007). In triangulation, 

stress waves generated due to impact event are recorded by, 

at least, three sensors simultaneously and then impact 

location is determined by considering wave velocities and 

traveling times in the medium. But this approach is not 

readily feasible for relatively complex and composite 

structures, because the wave velocities are highly dependent 

on the properties of wave propagation paths (Meo et al. 
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2005). Optimized sensor triangulation has been proposed, 

which combines classical triangulation with Genetic 

algorithm (Coverley and Staszewski 2003). Improved 

results have been observed with this method for composite 

panels. However, these wave-based approaches still have 

limitation in applying for large systems where wave 

energies are not sufficient to cover the whole structures, but 

is more suitable for local identification.  

Machine learning-based techniques have been 

introduced for impact force identification (Worden and 

Staszewski 2000, Sharif et al. 2012, LeClerc et al. 2007, 

Sung et al. 2000). For instance, a neural network in 

combination with Genetic algorithm has been studied to 

identify impact force using dynamic strain measurements 

(Worden and Staszewski 2000). Sharif et al. (2012) used 

artificial neural network to identify a large number of 

impacts over a wide range of energies at different locations 

of a composite plate. LeClerc et al. (2007) applied 

regression, identification and their combination to neural 

network for impact force identification on an aircraft 

composite panel. Sung et al. (2000) detected the impact 

location using acoustic signal information in neural network 

paradigms. Mahzan et al. (2010) compared the modified 

triangulation method with Artificial Neural Network for 

impact damage detection in composite aerospace structures. 

Machine learning approaches have exhibited good ability to 

handle complex problems but the requirement of large 

training test data is a critical hurdle of these methods in 

applying for real systems (Yan et al. 2017). 

Another approach for impact force identification is 

based upon system modelling. In these methods, dynamic 

structural responses, generated by numerical models 

subjected to impact forces, are compared with sensor 

measurements (Staszewski et al. 2009). For example, Choi 

and Chang (1996) used a smoother algorithm on distributed 

piezoelectric sensor measurements for a simple Bernolli-

Euler Beam model to identify impact load. Saydel and 

Chang (2001) modified the model proposed by Choi and 

Chang (1996) to detect low velocity impacts on stiffened 

composite panels. Yan and Zhou (2009) proposed a genetic 

algorithm based approach for impact force identification. 

They represented impact force as a set of parameters and 

then used genetic algorithm to estimate those parameters by 

minimizing the difference between estimated and measured 

dynamic response. Zhang et al. (2014) monitored low 

velocity impact on a CFRP composite plate using a model 

reconstruction algorithm based on support vector 

regression. The model-based methods have also been 

developed based on deconvolution of inverse analysis. 

(Inoue et al. 2001). For instance, frequency response 

function (FRF) matrix and response measurements can be 

used to estimate the input excitations. But the inversion of 

FRF, involved in the process, is an ill-posed problem and 

may suffer from un-stability in case of noise. (Guillaume et 

al. 2002, Ma et al. 1998). Such ill-posed issues of inverse 

problems can be improved by employing regularization 

techniques (Jacquelin et al. 2003, Busby and Trujillo 1997, 

Hansen 1992). Yun et al. (2017) employed Bayesian 

regularization to obtain stable identification of the impact 

forces for composite plates. However, these regularization 

methods have been known to be computationally inefficient 

for large size of formulated linear problems (Golub and Urs 

1997). 

Lourens et al. (2012) introduced an augmented Kalman 

filter for input force identification in which input force is 

estimated by incorporating input forces as part of state 

vector and applied for a simple beam structure. However, 

incorporation of input force in the state vector may 

intrinsically suffer from instability issue when acceleration 

measurements are only used in the measurement update 

process. Naets et al. (2015) improved the instability issue of 

the augmented Kalman filter by employing dummy 

displacement measurements. Khodabandeloo and Jo (2015) 

utilized multi-metric measurements to address the 

instability issue as well as improve the accuracy of the 

augmented Kalman filter. However, these augmented 

Kalman filter based methods have been validated only for 

the cases where input force locations were known.  

This paper presents a novel approach for simultaneous 

identification of impact force location and its time history 

by combining augmented Kalman filter with Genetic 

algorithm. Proposed method uses small numbers of multi-

metric measurements. The impact force location is 

statistically identified in the way to minimize response 

estimation errors at the measured locations. Impact force 

time history is then accurately reconstructed by optimizing 

the error co-variances of the Kalman filter for the identified 

impact location. Possible uncertainties in numerical 

modeling and measurements are effectively considered 

through the Kalman filter process, making it more feasible 

for practical applications. The rest of this paper is structured 

as follows. Section 2 describes the state space model used 

for numerical simulations and the augmented Kalman filter 

formulation. Section 3 explains the detail of the proposed 

methodology for impact force identification. Numerical 

examples are presented to demonstrate the effectiveness of 

the proposed method in section 4. Finally, conclusions are 

drawn in section 5. 

 

 

2. Problem formulation 
 

The proposed method combines augmented Kalman 

filter(AKF) and Genetic algorithm(GA) to locate the 

applied impact force and reconstruct its time history by 

optimizing the error co-variance matrices.  

 
2.1 State space model 
 

The dynamic behavior of a linear system is described by 

Eq. (1) 

Mü(t) + Cu̇(t) + Ku(t) = Spf(t) (1) 

Where M, C, K, and f are mass, damping, stiffness, and 

force matrices respectively. M, C, and K are „n х n‟ matrices 

with „n‟ being the total number of degrees of freedom. Sp is 

„n x np‟ force selection matrix, where np is the number of 

degrees of freedom which forces are acting at. The 

continuous state space formulation of Eq. (1) can be 

expressed as (Juang and Phan 2001) 
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ẋ(t) =  Acx(t) + Bcf(t)) (2) 

Where 

x(t) =  {
u(t)

u̇(t)
} ;  Ac =  [

0 I
−M−1K −M−1C

]   

Bc =  [
0

M−1Sp
] 

(3) 

In the above equations „x‟ is the state vector composed 

of structural displacement and velocity responses. Eq. (4) 

expresses the measurements in terms of the states of the 

system 

y(t) =  Gcx(t) +  Dcf(t) (4) 

The state Eq. (2) and measurement Eq. (4) constitute 

state space model of the system in continuous form. The 

discrete time form of the state space model can be defined 

as 

xk+1 = Axk + Bfk (5) 

yk = Gxk + Dfk (6) 

Where 

A =  eAc∆t  ;  B =  (A − I)Ac
−1Bc 

G =  Gc;   D =  Dc 
(7) 

The Kalman Filter estimates the system states using 

state space model while considering possible model error 

(mk) and measurement noise (zk), so Eqs. (5) and (6) 

become 

xk+1 = Axk + Bfk +  mk (8) 

yk = Gxk + Dfk +  zk (9) 

 

2.2 Kalman filter  
 
Kalman filter (KF) is an algorithm that estimates linear 

states in a statistically optimal manner when provided with 

measurements having uncertainties. The KF uses system 

model to predict the states (i.e., structural responses) and 

update the prediction using observations. Its modified form 

that can be used for the prediction of both structural 

responses and applied forces is known as augmented 

Kalman filter (AKF) (Lourens et al. 2012). This research 

uses the AKF for identifying unknown impact forces. 

Kalman filter has two main steps, i.e., measurement 

update and time update (Bishop and Welch 2001). 

Measurement update 

Kk = Pk
−GT(GPk

−GT + F)−1 

x̂k = x̂k
− + Kk(yk − Gx̂k

−) 

Pk = (I − KkG)Pk
− 

(10) 

Time update 

x̂k
− = Ax̂k−1

− + Bfk−1 

Pk
− = APk−1

− AT + E 
(11) 

Where  𝑃𝑘
−  and 𝑃𝑘  are a priori and a posteriori 

estimate error co-variances respectively. E and F are 

modelling error and measurement noise co-variance 

matrices respectively and their order of magnitude is 

determined by the state vector magnitude order and signal 

to noise ratio (Lourens et al. 2012). For more details on 

these terms see Bishop and Welch (2001). 

 

2.3 Augmented Kalman filter (AKF) 
 
Conventional KF approach can estimate the structural 

response if the excitation force is known. However, the 

applied force is not known in practical problems most of the 

times. The augmented Kalman filter (AKF), an updated 

form of traditional Kalman filter, is employed in this 

research to address this problem of unknown force 

excitations. In this approach, input force is made a part of 

state vector (i.e., augmented state vector) and is estimated 

with the structural response. Random walk model is 

employed to incorporate the force term into existing state 

vector, its formulation in the continuous domain is given as 

ḟ = 0 + β (12) 

Where β is the force model noise on the derivative of 

force parameter, meaning that force increment is a totally 

random process. Its discrete version is expressed as 

fk+1 = fk + βk (13) 

Then the augmented form of the state vector obtained by 

including input force is 

{
ẋ(t)

ḟ(t)
} =  [

Ac Bc

0 0
] {

x(t)

f(t)
} + {

m
β } (14) 

Aac = [
Ac Bc

0 0
] ;  ζ =  {

m
β } (15) 

Where Aac is the continuous form of system matrix in 

augmented formulation and δ is the noise vector. 

Observation equation takes the form 

y =  Gac {
x(t)

f(t)
} +  z (16) 

Gac =  [G D] (17) 

The augmented state vector and state equation in 

discrete form are 

Xk
a =  {

Xk

fk
}

(ns+np)×1

 (18) 

Where „ns‟ is the number of states 

Xk+1
a =  AaXk

a +  ζk (19) 

Aa = [
A B
0 I

] (20) 
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The observation equation becomes 

yk = GaXk
a + zk (21) 

Ga =  [G D] (22) 

Matrices G and D are given in Eq. (30) 

So, the time and measurement update equations for AKF 

method becomes (Lourens et al. 2012); 

Measurement update 

Lk = Pk|k−1Ga
T(GaPk|k−1Ga

T + F)−1 

X̂k|k
a = x̂k|k−1

a +  Lk(yk − Gax̂k|k−1
a ) 

Pk|k = Pk|k−1 − LkGaPk|k−1 

(23) 

Time update 

X̂k+1|k
a = AaX̂k|k

a  

Pk+1|k = AaPk|kAa
T + Ea 

(24) 

In AKF formulation, augmented co-variance matrix „Ea‟ 

is formed by combining the modelling error co-variance 

matrix „E‟ with regularization matrix „H‟ 

Ea =  [
E 0
0 H

] (25) 

The relationship between measurements and structural 

response used in the measurement matrix Ga of augmented 

state space form can be expressed as 

y(t) =  Saü(t) +  Svu̇(t) + Sdu(t) (26) 

Where Sa, Sv, and Sd are „nm × n‟ selection matrices 

corresponding to acceleration, velocity, and displacement 

respectively. „nm‟ is the number of measurements and „n‟ is 

the number of degree of freedoms. 

Putting the expression of �̈�(𝑡) from Eq. (1) to Eq. (26) 

and rearranging them, we get 

y(t) = (Sv − SaM−1C)u̇(t) + (Sd − SaM−1K)u(t)
+ SaM−1Spf(t) (27) 

So 

G =  Gc =  [Sd − SaM−1K  ,    Sv − SaM−1C ] 

D =  Dc =  SaM−1Sp 
(28) 

If observations include strain measurements then strains 

can be expressed as the linear combinations of displacement 

states, so Eq. (26) becomes 

y(t) =  Saü(t) +  Svu̇(t) + Sdu(t) + Ssu(t) (29) 

Where Ss is the strain selection matrix. So, if strain 

measurements are considered, Eq. (28) becomes 

G =  Gc =  [Ss + Sd − SaM−1K  ,    Sv − SaM−1C ] 

D =  Dc =  SaM−1Sp 
(30) 

 

 

3. Proposed impact force localization method 
 

Two sets of sensor measurements, i.e., structural 

responses, are used in conjunction with augmented Kalman 

filtering process for the proposed model-based impact force 

localization. Once the sensors are placed on the structure, 

structural response measurements from a portion of the 

sensors (hereafter called SE-sensors) are used for state 

estimation in the Kalman filtering process with the initially 

assumed location of applied impact force and assumed error 

covariance values. And measurements from the remaining 

sensors (hereafter called AD-sensors) are utilized as 

references to compare them with estimated responses from 

the Kalman filtering process. This process is repeated for all 

potential locations of the impact force and the root mean 

square (RMS) estimation errors between measured and 

estimated responses at the AD-sensor locations are 

calculated using the Eq. (31). The minimum-error location 

would be the tentative impact force location. 

RMS Error =  √
∑(εest − εmea)2

Signal length
 (31) 

Sensors may be placed at the maximum expected 

response locations based upon engineering judgement or in 

further optimized ways. Once the sensors are installed, their 

positions remain fixed; however, their roles can switch from 

SE-sensors to AD-sensors and vice versa. The tentative 

impact force locations are estimated again for all other 

different combinations of SE- and AD-sensor roles. Then 

the final impact force location is statistically determined 

considering all those combinations; which may have the 

minimum mean value and standard deviation for the 

average estimation errors.  

Once the impact force is located, then Genetic 

Algorithm (GA) is applied to decide the optimized 

covariance values in a way to further minimize the average 

estimation error at the AD sensor locations. The error 

covariance values obtained from GA are then used in the 

augmented Kalman filtering process to reconstruct the 

accurate time history of the impact force.  

In order to improve the stability of the Kalman filtering 

process and estimation accuracy, two types of multimeric 

sensors, i.e. strain gauges and accelerometers, are used in 

this research. Acceleration-only-based augmented Kalman 

filtering process may cause un-stability issue when 

modeling errors and/or measurement noises are considered 

(Naets et al. 2015, Khodabandeloo and Jo 2015). And 

accuracy improvement of many structural monitoring 

methods over broad frequency range by using multi-metric 

measures has been demonstrated (Khodabandeloo and Jo, 

2015, Sim et al. 2011, Kijewski et al. 2006). Fig. 1 shows 

the flow chart of the proposed algorithm. 

 

 

4. Numerical examples 
 

Two numerical examples, a truss bridge and a cantilever 

plate, have been considered to validate the proposed 

approach for impact force identification. Finite element 

models of both structures have been developed in Matlab 

considering possible uncertainties in modeling (inbuilt 5% 

model error). Materials properties are set same as A-36 

steel. 
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Formulate state space model  

Place sensors  

Generate all possible 

combinations „n‟ of SE- and 

AD-sensors  

k = 1  

Consider k
th

 senor combination 

Consider i
th

 location out of „m‟ 

locations and calculate average 

estimation error in AD-sensors 

i = 1  

Save average error 

Is k < n? 

k = k + 1  

Select the point with minimum 

estimation error as the force location 

  

Start 

Yes  

Yes  

No  

No  

i = i + 1  

Is i < m? 

Generate random population of 

co-variance values 

Calculate the fitness value 

using Eq-31 

Generate new population 

Stop criteria 

satisfied? 

Output the optimized co-

variance values 

Apply AKF to generate exact 

force time history 

Yes  

No  

End 

A 

B 

A: Location Identification  

B: Time-history Identification 

 

 

An impact force combined with random noise is applied 

on both structures. Time histories of the structural responses 

have been generated by using Matlab SIMULINK. 

Two types of measurement noises, i.e., absolute and 

relative, are considered in all the simulations. Absolute 

measurement noise is closer to the many of commercially 

available sensor specification; 1μ-strain and 1mg are added 

in strain and acceleration responses respectively 

(Khodabandeloo et al. 2017). Relative noise is also 

considered to account for possible sources of additional 

noises due to harsh environment, long cabling, and 

improper setup; 10% relative noise is added to each 

measurement. 

 

 

4.1 Truss structure  
 
A simply supported 9-bay truss with 34-members and 18 

joints is modelled. The geometry of the truss is shown in 

Fig. 2. Cross-sectional areas of the truss members are given 

in Table 1. The Impact force is applied at the node no. 14 in 

vertical direction. Two different cases of sensor 

combination are considered for impact force identification.  

 

Case-1: strain gauges as AD-sensors. 

 

Case-2: Accelerometers as AD-sensors. 

 

 

 

Fig. 1 Flow Chart of the proposed impact force localization algorithm 
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Table 1 Cross-sectional areas of truss members 

Element No. Sectional area (cm2) 

1, 6, 10, 14, 18, 23, 27, 31, 34 15 

2, 3, 4, 7, 8, 11, 12, 15, 16, 20, 21, 

24, 25, 28, 29, 32, 33 
9.75 

5, 9, 13, 17, 19, 22, 26, 30 4.75 

 

4.1.1 Case-1: Strain measurement for AD-sensor 
data 

Total ten sensors, i.e., seven strain gauges and three 

accelerometers, are installed on the truss as shown in Fig. 2.  

These accelerometers measure acceleration responses in 

vertical direction and will be used as SE-sensors for the 

Kalman filtering process. Three of the strain gauges are also 

used as SE-sensors and remaining four strain gauges are 

used as AD-sensors. Total thirty-five unique combinations 

can be generated by considering three out of seven strain 

gauges as SE-sensors and remaining as AD-sensors. All of 

these sensor role combinations are considered for the 

analysis. For every combination, the impact force is 

assumed to be acting at a node from 2 to 17 one by one to 

find the minimum estimation error location.  

Example results for the state (i.e., impact force and 

structural responses) estimation for one of the sensor role 

combinations with initially assumed (incorrect) impact 

force location and assumed co-variances are shown in Fig. 3. 

Strain gauges at the members 9, 13, 14, and 22 are used as 

the AD-sensors in this particular combination. As shown in 

Fig. 3(a), the impact force estimate is absolutely incorrect 

and strain response estimates (Figs. 3(b) and 3(c)) have 

large errors. About 10kN impact force has been applied 

0.98 second later since low-level random excitation has 

been provided. However, estimated strain response at 

member #9 (one of the AD sensor locations) did not catch 

the expected impulse response around 1 second (Fig. 3(b)), 

showing 6.18 μ-strain RMS error for that member. Strain 

estimation errors for entire truss members are shown in Fig. 

3(c), average RMS error for all the members is 3.18 μ-strain  

for this particular sensor role combination.  

 

 

 

 
(a) 

  

(b) 

 
(c) 

Fig. 3 Example of (a) impact force and (b) and (c) 

strain response estimations with incorrect force locati

on and assumed co-variance values  
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Fig. 2 Truss geometry and Multi-metric sensor arrangement for Case-1 simulation 0 5 10 15 20 25 30 35 40 45
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Average strain estimation error in AD-sensor location 

has been calculated for all the sensor role combinations and 

possible impact force locations. The variation in the average 

strain error with the assumed location of impact force is 

shown in Fig. 4 for one of the sensor role combinations. 

As shown in Fig. 4, the average strain error is the 

smallest when the assumed force location coincides the 

actual location which is node 14 in this example. Similar 

patterns have been observed for all the thirty-five sensor 

role combinations. The distribution of average error for all 

the combinations is shown in Fig. 5. Both the mean value of 

average strain error and its variation are the smallest at the 

node-14, indicating the node-14 is the most probable 

location of the applied impact force. 

 

Optimized Covariance Matrix for Kalman Filter 
Optimized covariance matrix for the AKF process can 

significantly improve the accuracy of estimated impact 

force. Assumed co-variance values are temporarily used for 

the beginning to locate the impact force. Once the most 

probable location of the impact force is identified, then 

Genetic Algorithm (GA) is applied to optimize the co- 

 

 

 

 

variance values in the way to minimize the average strain-

estimation error in AD-sensors. The optimized co-variance 

values are then used in AKF again to get the more accurate 

time-history of the impact force and structural responses for 

the structure. 

The comparison of the impact force time-history with 

optimized and un-optimized error co-variances is given in 

Fig. 6. Substantial improvement can be observed for the 

accuracy of estimated impact force time history. 

However, the efficacy of the covariance matrix 

optimization for structural response estimations is not as 

significant as it is for impact force estimation. The 

comparison of strain errors in all truss members between 

estimated and actual strain responses for optimized and un-

optimized co-variance values is presented in Fig. 8. 

As shown in the Fig. 8, the accuracy of the structural 

response estimation can be somewhat improved by 

optimizing the covariance matrices; average strain 

estimation error for all members is reduced from 0.174 to 

0.141 µstrain. However, the estimated strain responses even 

with un-optimized (initial) covariance matrix, but for 

correct impact location, are still acceptable except the  

 

Fig. 4 Variation in average strain error at AD-sensor locations with changing force location 

 

Fig. 5 Distribution of average strain error with change in force location for all sensor role combinations 
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estimations for a few of members (e.g., member #25, 26, 

28, 29, 30). Similar observation can be made from Fig. 7, 

which shows an example comparison of measured and 

estimated strain time histories for one of AD-sensor 

locations, i.e., at member 9, for optimized vs. un-optimized  

co-variance values. This less effect of co-variance 

optimization on the response estimation may be attributed 

to a better initial guess of the co-variance values. 

As long as the impact force location is correctly 

identified, the general quality of structural response 

estimation is not so sensitive to the optimization of the 

covariance matrix. Comparison of the Fig. 6 (with correct 

location of the impact force) with the Fig. 3 (with incorrect 

location) reveals that how critical the correct localization of 

the applied forces is for the model-based state estimation of 

dynamic structures. Figs. 6-8 show that the impact force 

and structural response can be well estimated using the 

proposed method. It is noteworthy that all the simulations 

are carried out on Intel(R) Xeon(R) CPU E5-2630 v3 @  

 

 

 

 

 

2.40GHz with 32GB RAM and each impact force 

identification takes about 20 minutes for this specific 

numerical example. 

 

Results with 10% measurement noise 
The effect of relative measurement noise on the quality 

of force and response estimation of the structure is also 

studied. 10% measurement noise is added in all the sensor 

measurements. Both the impact force and structural 

response are successfully identified with this noise level. 

Example results of force and structural response estimates 

for 10% measurement noise are presented in Fig. 9. 

 

4.1.2 Case-2: Acceleration measurements for AD-
sensor data 

The case using accelerometers as the AD-sensors has 

been investigated. Total number of sensors, i.e., 10, are the 

same as the case 1 above. But more accelerometers are used 

for the same truss structure, i.e. seven accelerometers and 

  

(a) (b) 

Fig. 6 Comparison of Force Time-History with (a) unoptimized and (b) optimized co-variance values 

  

(a) (b) 

Fig. 7 Comparison of estimated and measured strain time-histories of an AD-sensor for (a) unoptimized and (b) 

optimized co-variance values 
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(a) (b) 

Fig. 8 Comparison of member strain errors between actual and estimated strain with (a) unoptimized and (b) optimized 

co-variance values 

 

(a) 

  

(b) (c) 

Fig. 9(a) Impact force and (b) and (c) strain response estimations with correct force location and optimized co-variance 

values considering 10% measurement noise 
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three strain gauges, as shown in Fig. 10. Four of the 

accelerometers are used as AD-sensors to compare the 

measured and estimated responses and the other three 

accelerometers and four strain gauges are used as SE-

sensors for AKF process. 

Average estimation error in the AD-sensors is calculated 

for all possible sensor role combinations and impact force 

locations. Results for one of the combinations with 

incorrect (initial assumption) location and assumed co-

variances are given in Fig. 11. Both force and response 

estimations are not so good. Although accelerometers are  

 

 

 

 

used as AD-sensors but still error bars between actual and 

estimated strains are shown in Fig. 11(c), this is because 

these errors are meant to show the quality of structural 

response estimation and are not related to AD-sensor 

measurements.  

The average error variation with the change in impact 

force locations for one of the sensor role combinations is 

shown in Fig. 12. The average error is minimum when the 

assumed impact force is acting at node no. 14, which is the 

true location of the force applied. Similar patterns are 

observed for all other sensor role combinations. The  

 

Fig. 10 Multi-metric sensor arrangement for Case-2 simulation 

 
(a) 

  
(b) (c) 

Fig. 11 Example of (a) Impact force and (b) and (c) structural response estimates with incorrect force location and 

assumed co-variance values for case-2 
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distribution of average error with the variation in the impact 

force locations is shown in Fig. 13. 

As expected, the best estimation (lowest estimation error) 

is obtained when assumed location of the impact force is 

node 14, which is the true location of the force. Comparison 

of Figs. 5 and 13 shows that average error in AD-sensors is 

subjected to more variation when accelerometers are used 

as AD-sensors. However, the impact force location 

identification is still correct. Covariance matrices are 

optimized by minimizing the average acceleration error in 

AD-sensor measurements using the correct location of force.  

 

 

 

The comparison of the impact force and structural response 

estimations with optimized and un-optimized co-variances 

is presented in Figs. 14-16. Optimization of co-variances 

results in the more accurate estimation of both force and 

structural response. 

The effect of relative measurement noise is considered 

for case-2 simulations as well and the results are presented 

in Fig. 17. The comparison of Figs. 15 and 16 with Fig. 17 

shows that the estimation errors are slightly higher for 10% 

measurement noise case which indicates that the effect of 

10% noise is relatively larger as compared with 1μ-strain 

and 1 milli-g noise levels. 

 

Fig. 12 Variation in average acceleration error of AD-sensors with changing force location 

 

Fig. 13 Distribution of average acceleration error with change in force location for all sensor combinations 

  
(a) (b) 

Fig. 14 Comparison of force time-history with (a) unoptimized and (b) optimized co-variance values 
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(a) (b) 

Fig. 15 Comparison of estimated and measured acceleration time-history of an additional sensor for (a) unoptimized and 

(b) optimized co-variance values 

  

(a) (b) 

Fig. 16 Comparison of member strain errors between actual and estimated strain with (a) unoptimized and (b) optimized 

co-variance values 
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4.2 Plate structure 
 

Another numerical validation has been investigated 

using a cantilever plate model (see Fig. 18) with more 

number of possible impact force locations and higher 

number of degrees of freedom (DOF). The plate has 108 

DOF which is three times more than that of the truss with 

36 DOF, making it a much more complicated structure. The 

shorter side of the plate, from nodes 6 through 36, is fixed. 

From the truss structure, numerical example, performances 

of the proposed impact force localization method have 

already been validated for both cases using strain gauges or 

accelerometers as the AD-sensors; both cases show similar 

results. So, this cantilever plate numerical example will 

only investigate the case using strain gauges as the AD-

sensors. The impact force is applied at node no. 21 in z-

direction. The arrangement of the sensors on the plate is 

shown in the Fig. 18. Three accelerometers are used to 

measure z-direction accelerations. Seven strain gauges are 

used to measure strain responses in different directions; the 

orientation of strain gauges (either x or y) is labeled in the 

Fig. 18. 

All possible thirty locations (except the fixed boundary) 

of the impact force have been considered for all 

combinations of sensors‟ role just like the truss structure. A 

comparison of actual and estimated results for an incorrect  

 

 

 

 

(initially assumed) location of the impact force with 

assumed error co-variances are shown Fig. 19. Strain 

gauges at nodes 3, 11, 23 and 7 are considered as AD-

sensors for the example results shown in the Fig 19. The 

results show that the impact force estimate (Fig. 19(a)) is 

totally incorrect and strain estimate (Fig. 19(b)) is also quite 

bad with this incorrect location of the impact force. The 

strain estimation error bars shown in Fig. 19(c) represent 

strain error in x-direction (DOF 1 to 36), y-direction (DOF 

37 to 72) and shear strain (DOF 73 to 108). It is evident that 

neither impact force nor response estimation is accurate for 

the incorrect force location. 

The variation in average error with the change in the 

impact force location for one of the sensor combinations is 

shown in Fig. 20. The average error is minimum for node-

21, which is the true location of the impact force. 

The distribution of average strain error in AD-sensors 

for all sensor role combinations is plotted in Fig. 21. The 

same observation can be made as Fig. 20, the mean value of 

average error and its variation are the smallest for node-21 

which is the true location of the impact force. It is observed 

that the variation for nodes 15, 27 and 9 are also relatively 

small for this case, because these nodes are close to the 

actual location of the impact force. But the mean values of 

the average error for these three nodes (15, 27, and 9) are 

higher than that of node 21, which makes our selection of 

the most probable impact location be still node 21. 

  
(b) (c) 

Fig. 17 (a) Impact force and (b) and (c) structural response estimates with correct force location and optimized co-

variance values for case-2 considering 10% measurement noise 

 
 

Fig. 18 Sensor arrangement for plate structure 
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(a) 

  
(b) (c) 

Fig. 19 Example of (a) Force and (b) and (c) Structural Response estimates with incorrect force location and assumed co-

variance values for Plate 

 

Fig. 20 Variation in average strain error of AD-sensors with changing force location for plate 

 

Fig. 21 Distribution of average strain error with change in force location for all sensor combinations 
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(a) (b) 

Fig. 22 Comparison of Force Time-History with (a) unoptimized and (b) optimized co-variance values 

  

(a) (b) 

Fig. 23 Comparison of εx, εy, and γxy errors between actual and estimated strain with (a) unoptimized and (b) optimized 

co-variance values 

  

(a) (b) 

Fig. 24 Comparison of estimated and measured strain time-history of an AD-sensor for (a) unoptimized and (b) optimized 

co-variance values 
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Covariance optimization is performed for this case as 

well using GA after the identification of impact force 

location. Comparison of the impact force time-history and 

structural response for optimized and un-optimized co-

variances is presented in Figs. 22-24, showing that more 

accurate results can be obtained after the optimization of the 

covariance values. The effect of covariance optimization is 

much more significant on plate response estimation (see Fig. 

23) as compared with the truss response estimation (Figs. 8 

and 16), this may be either because of relative poor initial 

guess of covariance values or more complicated structural 

behavior of plate. 

The results of 10% measurement noise case for the plate 

are shown in Fig. 25 which shows that the both the impact 

force and structural response can be estimated with 

comparable quality as that of absolute noise case. 
 

 

5. Conclusions 
 

This paper presents a novel approach for the complete 

identification (location and time history) of impact force 

using multi-metric observations. The proposed method 

utilizes AKF, which is a variant of conventional KF, to 

locate the impact force and then GA is applied to optimize 

the co-variances. Finally, accurate identification of applied 

impact force and structural response is achieved by using 

optimized co-variances in AKF.  

 

 

Two numerical examples, a simply supported truss and a 

cantilever plate are used to validate the proposed method. 

Two types of sensor measurements i.e., strain, and 

acceleration are used for impact force identification. Results 

of both the examples show that the proposed method can 

effectively identify the location, duration and peak of the 

impact force. Results also show that both strain and 

acceleration measurements can correctly identify the impact 

force. It was also observed that the impact force is more 

sensitive to the co-variance values as compared with the 

structural response. Good performance of the proposed 

method establishes its potential to be applied for impact 

force identification in real life structures. Of note the 

proposed method can also be extended to identify the 

impact load induced by moving traffic or train on bridges. 

Nevertheless, a possible future study could be the 

experimental validation of this method.  
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(a) 

 

 

(b) (c) 

Fig. 25 (a) Impact force and structural (b) and (c) response estimates with correct force location and optimized co-variance 

values for Plate considering 10% measurement noise 
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