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1. Introduction 
 

Due to its distinguish advantages, such as convenient to 

be measured, insensitive to disturbance, high measurement 

resolution and so on, structural frequency has been an 

attractive diagnostic parameter in structural assessment 

procedures, and has the potential to be applied in the 

practical application (Salawu 1997, Song et al. 2011, Li and 

He 2011). Therefore, many researchers have attempted to 

detect structural integrity through the changes in natural 

frequencies (Świder et al. 2012, Liu et al. 2015, 

Nagarajaiah and Yang 2015). However, since natural 

frequencies can only provide the global information of 

structures, it is difficult to obtain more detail information 

about the damage, such as the location and severity. In 

addition, the insensitive to small defect for structural 

frequency also limit its application in the area of structural 

health monitoring and damage diagnose.  

On the other hand, by combining with other structural 

characteristic parameters and the related analysis  
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algorithms, some frequency-based methods had been  

developed to attempt to obtain more information about the 

structural integrity. For example, Xiang et al. (2009, 2011, 

2012, 2014) presented a series of researches on the 

frequency-based mothed to detect the crack location and 

depth, especially for the beam-like structures, when 

combining with the mode shape curvature or other 

parameters. Ismail and Ong (2012) proposed a technique to 

determine the location and severity of honeycomb damage 

in a reinforced concrete beam using frequency mode shape 

regression focusing on minimal data. Unfortunately, 

compared to the modal frequency, there are still no other 

structural parameters that have the same advantages that can 

be conveniently obtained with the high precision, thus it is 

very meaningful to develop a frequency-only based method 

to take full advantage of the frequency to realize the 

structural damage detection. 

In 1979, Cawley and Adams (1979) proposed a 

frequency-only based damage detection approach using the 

sensitivity concept, and this approach was based on the 

premise that the ratio of frequency changes in two modes is 

a function of the location of the damage only, if changes in 

stiffness are independent of frequency. To locate the defect, 

theoretical frequency shifts, due to damage at selected 

positions on the structure, are calculated and compared with 
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parameters was constructed according to the typical mass and stiffness distribution characteristic of shear buildings. After that, 

this to-be-updated model was updated using CMCM algorithm by combining with the measured frequencies of the actual 

structure when no damage was introduced. Thus, this updated model was regarded as a representation of the FEM model of 

actual structure, because their modal information were almost the same. Finally, based on this updated model, the frequency-

change-ratio based method can be further proceed to realize the damage detection and localization. In order to verify the 

effectiveness of the developed method, a four-level shear building was numerically simulated and two actual shear structures, 

including a three-level shear model and an eight-story frame, were experimentally test in laboratory, and all the test results 

demonstrate that the developed method can identify the structural damage occurrence and location effectively, even only very 

limited modal frequencies of the test structure were provided. 
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measured values. In 1991, Hearn and Testa (1991) validated 

that frequency-change-square-ratio (FCSR), which is 

normalized with respect to the largest frequency change, is 

independent of severity for small deterioration and can be 

employed to indicate the location of deterioration directly. 

In 1994, based on theoretical derivation, Narkis (1994) 

proved that ratio of the frequency changes only associated 

with the damage location, but the physical dimension and 

property of the test structure. Then, Hassiots
 

(1995) 

deduced the relationship between natural frequency changes 

and the changes of the stiffness matrix, and built the 

optimization model by employing the least square method, 

and then this model was successfully utilized to identify the 

damage location and severity of a 10-story steel frame 

structure and a cantilever beam just using the first five 

frequency-changes. Morassis and Rovere (1997) built an 

optimization model by utilizing the analysis frequencies and 

the measured frequencies of the structure, and a damage 

identification was successfully conducted by using the first 

five frequency-change ratio for a five-story steel framed 

structure. 

For frequency-change-ratio based damage detection 

techniques, even only the measured frequencies of the test 

structure are provided, the structural integrity, including the 

damage occurrence and location, can be monitored and 

identified accurately. This distinguish advantage makes it 

potential to be widely applied especially in the adverse 

measurement environment of the actual structures. For these 

frequency-only based diagnose methods, calculating and 

extracting the theoretical frequency changes due to damage 

at selected position on the structure, is inevitable and 

essential, and directly influence the final identification 

results. However, it is always difficult, or even impossible 

for huge or complicate structure to obtain the theoretical 

modal parameters because of the huge uncertainty for the 

structural theoretical model. All this makes the frequency-

change-ratio based technique still face a lot of challenges 

when be used in the structural health monitoring area for the 

practical applications.  

In order to improve the feasibility of frequency-change-

ratio based method in structural health monitoring, a novel 

approach was developed in this paper to help to realize the 

structure damage identification by combining the FCSR-

based method with the cross-model cross-mode model 

updating algorithm. At the beginning, based on the typical 

mass and stiffness distribution characteristic of shear 

buildings, a model was initially assumed and constructed by 

the CMCM technique combining with the measured 

acceleration data of actual structure when no damage was 

introduced. Then, this model was utilized to represent the 

structural theoretical model to calculate and construct the 

FCSR-based baseline datasets. In addition, Model 

Assurance Criterion (MAC) and Normalized Modal 

Difference (NMD) methods were employed to quantify and 

evaluate the identification result. Finally, the structural 

health condition, especially the damage occurrence and 

location, can be identified accurately. In order to verify the 

effectiveness of the developed method, a four-level shear 

building was numerically simulated and two actual shear 

structures, including a three-level shear model and an eight-

story frame, were experimentally test in the laboratory. All 

the results demonstrate that the developed method can help 

to realize the structural damage diagnose when only the 

measured frequencies of the structure under health and test 

conditions are provided, and no structural theoretical model 

is needed. 

 

 

2. Theoretical foundation  
 

In order to clearly describe the developed method of this 

paper, the related basic theoretical foundations were first 

briefly introduced in this section, including the cross-model 

cross-mode model updating algorithm and the frequency-

change-square-ratio based damage detection method. In 

addition, the MAC and NMD evaluation criterions were 

also mentioned here. 

 

2.1 Cross-model cross-mode model updating 
algorithm  

 

In 2007, Hu et al. (2007) developed a direct, physical 

property adjustment model updating method, named as 

cross-model cross-mode (CMCM) method, this new method 

is capable of updating the mass and stiffness matrices 

simultaneously based on very limited measured mode 

shapes and modal frequencies. Then, Wang (2009) 

successfully applied this technique to identify the structural 

health condition, both the theoretical deviation and 

numerical simulation demonstrated that CMCM method can 

detect the damage location and extent accurately, and has a 

good potential in structural health monitoring area.  

For a structure, it is assumed that the mass and stiffness 

matrix (denoted as M
*
 and K

*
, respectively) of the actual 

(experimental) model is a modification of the corresponding 

parameters (denoted as M and K, respectively) of the 

structural finite-element model (FEM), as shown that 
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where Kn
e
, Mn

e
 are the nth element stiffness and mass 

matrix, respectively; Ne is total number of elements; 𝛼n, 𝛽n 

are the nth element stiffness and mass correction 

coefficients to be determined, respectively. For CMCM 

model updating algorithm, the structural FEM parameters, 

including the mass matrix M and stiffness matrix K, can be 

updated or corrected using the modal measurements, 

including a few mode shapes and corresponding modal 

frequencies. Thus, the structural updating equation using 

the CMCM algorithm can be expressed as 
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where 𝝋i denotes the ith eigenvector of the initial FEM 

model,  𝝋𝑗
∗  and 𝜆𝑗

∗  mean the jth eigenvector and 

eigenvalue of the actual structure, respectively. When Ni 

modes, including their modal information, are available 

from the FEM model, and Nj modes are collected and 

computed by the measurement of actual structure, so totally 

Nm=Ni×Nj CMCM equations can be available in Eq. (2). 

Using a new index m to replace ij, Eq. (2) can be re-written 

as 

, ,

1 1

Ne Ne

n n m n n m m

n n

C E f 
 

    (4) 

written in a matrix form, one has 

G f  (5) 

where G = [C E], 𝜸 = [𝛂  𝛃]
T
, in which, C and E are Nm × 

Ne matrix, 𝜶 and 𝜷 are column vector of size Ne, and f is 

a column vector of size Nm. According to the CMCM 

algorithm, if Nm is greater than 2Ne, more equations are 

available than unknowns, one would expect that a least-

squares solution for 𝜸 can be taken. According Hu and Li’s 

study, to gain a unique solution for the correction factor, at 

least an additional constraint equation must be imposed. For 

instance, a particular mass or stiffness is predetermined, or 

the total mass of the system is known, etc. 

 

2.2 Structural frequency-change-square-ratio 
based method 

 

Frequency-change-square-ratio based method was first 

presented by Cawley and Adams (1979) in 1980s as a 

damage feature for structural health monitoring, Then, 

Hearn and Testa (1991) further demonstrated that the 

magnitude of change in natural frequencies is a function of 

the severity and of the location of deterioration in structures. 

Ratios of changes in natural frequencies are independent of 

severity for small deterioration and can serve to indicate the 

location of deterioration directly.  

In the frequency-change-square-ratio based method, 

damage of the original structure is assumed to cause 

changes in the stiffness matrix by an amount ∆K. Distress 

in civil engineering structures may often have a significant 

effect on stiffness, but not on mass, so it is further assumed 

that the damage is not accompanied by a change in mass. 

The change in stiffness produces changes in eigenvalues 

∆𝜔𝑖
2 and eigenvectors ∆𝛗i. The eigenvalue problem of the 

damage structure is given by 

     2 2 0i i i      
 

K K M    (6) 

Neglecting second-order terms, Eq. (6) leads to 
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Assuming the structural stiffness changes ∆K was only 

induced by the change of the nth element stiffness Kn, i.e., 

∆K = ∆Kn = 𝛼nKn, in which, 𝛼i means the proportional 

change in the stiffness of nth element. Then, Eq. (7) can be 

re-written as 
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In Eq. (8), the change in natural frequencies still depends 

both on damage severity and on damage location. However, 

if Eq. (8) is written for two vibration modes i and j, and the 

ratio of frequency changes is formed, it is seen that this 

ratio is a function of damage location only, as shown as 
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To monitor the structural status, natural vibration 

frequencies are measured periodically. When changes in 

natural frequencies are observed, the set of ratios of changes 

is formed and is compared to the various member 

characteristic ratio ensembles obtained from Eq. (9). The 

location of damage is determined by selecting the member 

characteristic ensemble that most closely match the 

observed ratios of frequency changes of actual structure. 

 

2.3 Evaluation criterion for the frequency change-
square-ratio vectors  

 

According to the description above, for frequency-

change-square-ratio based method, one of the important 

procedure is to select the characteristic ensemble that most 

closely match between the measured and the characteristic 

frequency-change-ratios. So Modal Assurance Criterion 

(MAC) (Allemang 2003, Lieven and Ewins 1988, Ewins 

2000) and Normalized Modal Difference (NMD) (Yang and 

Griffin 1997, Adewuyi and Wu 2015) methods were 

employed here to quantify and evaluate the similarity 

between the frequency-change-square-ratios.  

Assuming the frequency-change-square-ratio (FCSR) 

vector F, as a characteristic ensemble came from the 

structural FEM model, can be expressed as 

22 2

2 2 2
= , , ,

T

ji n

k k k

 

  

  
 
    

F  (10) 

where ∆𝜔𝑖
2, ∆𝜔𝑗

2, ∆𝜔𝑛
2, ∆𝜔𝑘

2 denote the ith, jth, nth, kth 

modal frequency-change-square, respectively. Similarity, 

the corresponding FCSR vector �̃� calculated from actual 

structural measurement can be written as 
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Ewins (1988, 2000) proposed the Modal Assurance 

Criterion (MAC) method to quantify the similarity between 

two independent mode shapes. In this study, the MAC 

method was also employed to evaluate the similarity 

between the measured and the characteristic FCSR vectors, 

so the corresponding equation can be expressed as 

MAC ( , )
( )( )

T

T T


F F
F F

F F F F
 (12) 

where F and �̃� represent the frequency-change-square-

ratio (FCSR) vectors of the characteristic and the measured 

model, respectively. Ewins (2000) demonstrated that when 

MAC > 0.9, these two mode shapes can be regarded as 

have a good correlation. When MAC < 0.05, these two 

mode shapes is irrelevant. 

Normalized Modal Difference (NMD) is another 

evaluation method, which can be expressed as 

1 MAC( , )
NMD( , )

MAC( , )




F F
F F

F F
 (13) 

Compared to MAC, the NMD is more sensitive to the 

similarity. The closer to 1 for MAC, or the closer to 0 for 

NMD, the more similar for these two FCSRs. 
 
 
3. FCSR-based damage detection for shear 
buildings 

 

After the related theoretical foundations were briefly 

described, this section focused on the theoretical derivation 

and detail procedure description of the developed method. 

At first, the typical physical parameters distribution 

characteristic of shear buildings was introduced. Then, 

based on this typical element stiffness and mass distribution, 

the FCSR baseline dataset was constructed combining with 

the CMCM algorithm. At last, the detail procedure of this 

damage detection method was summarily presented in the 

section. 

 

3.1 Typical parameters distribution characteristic of 
shear buildings 

 

For shear structures as shown in Fig. 1, the mass of the 

ith floor can be denoted as mi, then the corresponding 

system mass matrix M is written as M = ∑ 𝐌𝑖
𝑒𝑛

𝑖=1  = 

diag(m1, m2, ⋯ ,mn-1, mn), in which, 𝐌𝒊
𝒆  denotes the 

corresponding mi represented in the global coordinates.  

Similarly, the lateral stiffness of the ith story can be 

denoted as ki, and the corresponding element stiffness 

matrix ki
e 
in the global coordinates can be written as 𝐊𝒊

𝒆 , 

then, the system stiffness matrix K for the n-story shear 

building can be assembled as 
 
 

 

Fig. 1 Diagram of an n-story shear building 
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K K  (14) 

Based on above analysis, the corresponding eigenvalue 

λ  and eigenvector 𝝋  of the shear structure could be 

calculated by eigenvalue decomposition of structure mass 

matrix M and stiffness matrix K, which are established by 

the mass vector m = [m1, m2,⋯, mn] and stiffness vector k = 

[k1, k2,⋯,kn] in the way mentioned above. 

 
3.2 Construction of the FCSR baseline dataset of 

shear buildings 

 

For structural damage detection of shear buildings, 

Liang et al. (2017) proposed a new concept using structural 

element mass-stiffness vector (SEMV) based on the typical 

mass and stiffness distribution characteristics of shear 

buildings. In Liang’s study, a corresponding damage 

identification method was developed by combining SEMV 

with the cross-model cross-mode (CMCM) model updating 

algorithm. As a result, the structural damage location and 

severity can be identified accurately, even only the 

structural acceleration measurements are provided. Based 

on this distinguish feature, concept of the SEMV-based 

approach will be employed to help to form the developed 

method of this paper, so a brief description of this method is 

introduced in the following.  

At first, according to the CMCM algorithm described in 

section 2.1, the complete model updating for all mass and 

stiffness parameters can be realized when only one 

constraint is available. So, it is first assumed that m1 is 

known as the necessary constraint, then the mass and 

stiffness vectors of shear structures can be re-written as 
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1 2 3
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where �̂� i, �̂� i (i=1,2,⋯ ,n) mean the mass and stiffness 

values of the initial to-be-updated model, respectively. 

According to the typical characteristics of shear buildings 

described in last section, if this to-be-updated model exists, 

all the structural parameters, including the corresponding 

mass matrix �̂� , stiffness matrix �̂� , element mass and 

stiffness matrix �̂�𝑖
𝑒 , �̂�𝑖

𝑒  (i = 1,2,⋯,n) expressed in the 

global coordinates, eigenvalue �̂� and eigenvector �̂� of the 

given to-be-updated model, could be obtained by 

assembling or calculating. Consequently, all the element 

stiffness and mass correction coefficients �̂�, �̂� of the to-

be-updated model could also be calculated following the 

CMCM algorithm by combining with the actual measured 

modal information of the structure.  

Therefore, the updated mass and stiffness of the model 

can be expressed as 

1 1

ˆˆ (1 ) , ( 2,3, , )

ˆ ˆ(1 ), ( 1,2,3, , )

i i i

i i i

m m

m m i n

k k i n








  


  

 (16) 

where mi and ki denote the updated element mass and 

stiffness, respectively, which equal to actual structural 

physical parameters. Thus, based on above theoretical 

analysis, a conclusion could be summarized, although the 

given initial models may differ in their spatial and modal 

properties (�̂�, �̂�,�̂�𝑖
𝑒, �̂�𝑖

𝑒, �̂�, �̂�), with the help of CMCM 

method by combining with the corresponding stiffness and 

mass correction factors �̂�, �̂�, the final updated model is 

the same (K, M,  𝐊𝒊
𝒆 ,  𝐌𝒊

𝒆 , 𝝋 ,  λ ) with actual modal 

measurement, i.e., no matter what the initial given model is, 

the physical parameters of an actual structure could be 

obtained after model updating according to Eq. (16). In 

other words, the final updated model is less susceptible to 

the assumed values of initial �̂�i, �̂�i , and the given model 

could finally be corrected or updated to true structural 

element mass and stiffness using the CMCM algorithm. 

Based on above analysis, assuming all the element mass 

and stiffness of a given to-be-updated model equal to m1, 

i.e., �̂�i = m1, �̂�i = m1, then the updated mass and stiffness, 

denoted as the vector form Z=[m1,m2,⋯,mn, k1, k2,⋯,kn], can 

be expressed as 

11 mmZ U  (17) 

where 

1 2 3 1 2  1, 1 ,  1 , ,  1 ,  1 ,  1 , ,[ ( ) ( ) ( )  1( ) ( ) ( )]m n n           U  (18) 

in which, vector Um1 can be regarded as the normalization 

of vector Z at the location of m1, i.e., 1+𝛽i = mi/m1, 1+�̃�j = 

kj/m1 (i=2,3,⋯,n, j = 1,2,⋯,n). In addition, it should be 

noted that the Um1 calculation is based on the assumption 

that m1 has been pre-determined, however, the final value of 

Um1 has nothing to do with m1 because Um1 is just 

normalized at m1 location. Thus, the vector Um1 in Eq. (18) 

can be explained as m1-normalized structural element mass-

stiffness vector (SEMV). Finally, a conclusion can be drawn 

that the SEMV vector of a structure represents the structural 

particular mass and stiffness distribution in certain sequence, 

therefore, as the inherent property of an actual structure, it 

can be used for damage detection. 

On the other hand, according to the procedures mentioned 

above, m1 in SEMV Um1 can be any positive constant for a 

given to-be-updated model, in which �̂�i = m1, �̂�i = m1 

(i=1,2,  ⋯ ,n). Then, the corresponding SEMV can be 

obtained by substituting the correction coefficients �̃�, �̃� 

of the to-be-updated model into Eq. (18) after the CMCM 

model updating calculation. Likewise, if assuming another 

parameter of the structure has been pre-determined (such as 

k1), all the previous theoretical analysis and conclusion can 

still work, and the only difference is that the element value 

corresponding to k1 has changed to 1 in the k1-normalized 

SEMV. 
 
3.3 The detail procedure of the developed damage 

detection method 
 

For the developed damage detection method, which 

combined the cross-model cross-mode (CMCM) model 

updating algorithm with the structural frequency-change-

square-ratio based method, as shown in Fig. 2, the detail 

procedure can be summarized as following: 

(1) Assuming the initial to-be-updated model. Following 

the description in section 3.2, an initial to-be-updated model 

corresponding to the actual shear structure is established, in 

which, m1 is chosen randomly (here 1 is chosen only for the 

convenient of demonstration purpose) and other parameters 

equal to m1 consistently ( �̂�𝑖  = m1, �̂�𝑖  = m1). The 

corresponding parameters of this model, including �̂�, �̂�, 

�̂�𝑖
𝑒 , �̂�𝑖

𝑒 , �̂� , �̂� , are subsequently constructed and 

calculated. 

(2) Updating the initial model. By analyzing the 

measured acceleration of actual structure under the health 

condition, the first several modal information, including the 

modal frequencies and mode shapes, can be obtained. Then, 

the assumed initial to-be-updated model can be updated 

using the CMCM algorithm combining with the obtained 

modal information of actual structure. 

(3) Building the actual FCSR vector. The first several 

modal frequencies of actual structure under the test 

condition can be obtained by analyzing the acceleration 

measurement, then the corresponding structural frequency-

change-square-ratio (FCSR) vector can be formed by 

combining the structural frequencies obtained at the health 

condition with the one obtained at the test condition.   

(4) Building the FCSR baseline datasets of damage 

location. As described in section 3.2, the updated model in 

step (2) has the same modal information (modal frequency 

and mode shape) with the actual structure at health 

condition. Therefore, a FCSR baseline datasets of damage 

location can be constructed by artificially reducing the 

element stiffness of the updated model with a certain value 

one by one.  
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(5) Damage localization. By calculating and comparing 

the the MAC and NMD values for the structural FCSRs, 

which came from the test condition in step (3) and the 

baseline datasets constructed in step (4), respectively, the 

damage location of the actual structure can be identified by 

selecting the most matched FCSR sample in the baseline. 

The corresponding preset damage location of this selected 

FCSR can be regarded as the actual structural damage 

location. The closer to 1 for MAC and to 0 for NMD, the 

more possibility for the actual damage locates in the pre-set 

location of the selected FCSR sample. 

 
 
4. Numerical simulation 

 

In this section, a four-story shear building is studies as a 

numerical example to demonstrate the detailed procedure 

and to verify the effectiveness of the developed method. 

 

4.1 Model introduction  
 

Assuming a four-story shear building, as shown in Fig. 1 

and considered n = 4, its uniform mass and inter-story 

stiffness distribution along the height of the structure is 

known, i.e., m1 = m2 = m3 = m4 = 1.0×10
5
 kg and k1 = k2 = 

k3 = k4 =2.04×10
8
 N/m, and each floor slab can only move 

horizontally. In order to obtain the acceleration 

measurement of the building under ambient excitation, four 

accelerometers were attached to each floor slab with a 

sampling frequency of 320 Hz. At the same time, four  

 

 

uncorrelated band-limited white noise with a bandwidth of 

0 Hz to 50 Hz, were applied to each floor slab to simulate 

ambient excitations. In this study, the corresponding 

structural dynamic responses including accelerations, 

velocities and displacement, which can be regarded as the 

exact response under ambient excitation, were simulated by 

using the discrete-time state space model (Juang 1994) 

technique. 
In order to verify the effectiveness of the developed 

damage detection method, nine different scenarios were 

introduced for this numerical model, as shown in Table 1, in 

which, the stiffness of each floor was reduced 15% and 

30%, respectively. For each scenario, the test lasted 25.6s, 

i.e., 8192 samples were recorded. In addition, white noise 

with 5 percent Signal-to-Noise Ratio (SNRs), i.e., SNR = 

5%, is mixed into the “measured” (simulated) acceleration 

signals to test the robustness ability of the proposed 

approach. Fig. 3 presents the collected “measured” 

acceleration signal in time domain and its power spectrum 

density in frequency domain. Because of the space 

limitation, only channel 2 was presented in the figure. 
After the acceleration signals of each floor were 

measured, the corresponding structural modal parameters, 

including modal frequencies and mode shapes, for different 

test conditions can be obtained by using various existing 

modal parameter identification algorithm. In the study, a 

commercial modal analysis and calculating software, LMS 

test lab (Zhang et al. 2008), was employed here to help to 

identify and extract the structural modal information from 

the measured acceleration. For this software, the core  

 

Fig. 2 Procedure of the developed damage detection method 
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Fig. 3 The acceleration time-history and its power spectrum density 

Table 1 Summary of structure state conditions. 

Scenarios K1 K2 K3 K4 

State#1 -- -- -- -- 

State#2 -15% -- -- -- 

State#3 -30% -- -- -- 

State#4 -- -15% -- -- 

State#5 -- -30% -- -- 

State#6 -- -- -15% -- 

State#7 -- -- -30% -- 

State#8 -- -- -- -15% 

State#9 -- -- -- -30% 

Table 2 The first four frequencies of the structure under nine different conditions. (Unit: Hz) 

Order State#1 State#2 State#3 State#4 State#5 State#6 State#7 State#8 State#9 

1 2.48 2.41 2.29 2.43 2.33 2.46 2.40 2.49 2.47 

2 7.21 7.00 6.78 7.19 7.19 6.99 6.73 6.98 6.67 

3 11.05 10.86 10.72 10.69 10.27 10.96 10.89 10.64 10.25 

4 13.51 13.46 13.42 13.20 12.96 13.08 12.69 13.35 13.23 

Table 3 The updated physical parameters for the initial assumed to-be-updated model. 

 
Actual physical 

parameters 

Assumed initial 

parameters 

No noise  SNR = 5% 

Correction 

coefficients 

Updated 

parameters 
 

Correction 

coefficients  

Updated 

parameters 

m1 1.0×105  1 -- 1  -- 1 

m2 1.0×105  1 0.0679 1.0679  -0.0672 0.9328 

m3 1.0×105  1 0.0860 1.0860  -0.0946 0.9054 

m4 1.0×105  1 0.0891 1.0891  -0.0563 0.9437 

k1 2.04×108  1 2.0681×103 2.0691×103  2.0392×103 2.0402×103 

k2 2.04×108  1 2.0739×103 2.0749×103  1.9670×103 1.9680×103 

k3 2.04×108  1 2.1652×103 2.1662×103  1.9080×103 1.9090×103 

k4 2.04×108  1 2.1998×103 2.2008×103  1.9255×103 1.9265×103 

*all the unit of the element mass is kg, and the unit of the element stiffness is N/m 
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identification algorithm is called PolyMax (Peeters et al. 

2004 a, b), which is an non-iterative frequency-domain 

parameters estimation method and presents very good 

stability, accuracy of the estimated modal parameters and 

quality of the frequency response function synthesis when 

compared with classical Experimental Modal Analysis 

(EMA) method (Cuuha and Caetano 2006, Maia and E 

Silva 1997). Therefore, the modal frequency identification 

results for these nine test scenarios in this section can be 

achieved, as shown in Table 2. 
 

4.2 Construction of the FCSR baseline dataset  
 
For this numerical model under health condition, its 

modal parameters, including the modal frequencies and  

mode shapes, were obtained by using the modal parameters 

identification algorithm, for example, by employing the 

LMS test lab software. Then, assuming a to-be-updated 

model for this numerical structure existed, and its element 

mass m1 had been known (here 1 is chosen only for the 

convenient of calculation) and other parameters were all 

equal to m1 consistently, i.e., �̂�𝑖 = 1, �̂�𝑖 = 1 (i=1,2,⋯,n). 

Following the description in section 3.2, this to-be-updated 

model with the initial physical parameters can be updated 

using the CMCM algorithm by combining with the 

identified frequencies of the actual structure under health 

condition. Table 3 presents the correction coefficients and 

the updated physical parameters. 

 
 

 
 
After the updated physical parameters of the assumed 

initial model were obtained, the corresponding updated 

model can be re-constructed based on the typical element 

mass and stiffness distribution characteristic of shear 

buildings, as descripted in section 3.1 and 3.2. Then, in 

order to build the FCSR baseline datasets of damage 

location for this numerical model, the element stiffness of 

this updated model was artificially reduced at 20% one by 

one, and then for each stiffness reduction scenario, its 

corresponding modal frequencies can be calculated by 

modal analysis process. Finally, the frequency-change-

square-ratio F, i.e., ∆λi/∆λ1 (i =2,3,4) as shown in Table 4, 

for each reduction scenario can be obtained by combining 

with the structural frequencies under the health condition. 

At the same time, the actual structural FCSRs denoted as F
*
 

in Table 4, were also calculated from the actual structural 

physical parameters. In order to further analyze the 

difference between F and F
*
, a bar figure was presented in 

Fig. 4. 
From Table 4 and Fig. 4, it is clear that the FCSRs 

calculated from the updated model, have a good consistency 

with the one calculated based on the actual structure. This 

result demonstrates that the model, which was updated from 

the assumed initial structural physical parameters by 

combining with the actual structural frequencies, can be 

employed as a representation of the FEM model of the 

actual shear structure in some degree, because they share a 

very similar modal parameters, including modal frequencies  

Table 4 The frequency-change-square-ratio for each reduction conditions of the structure 

 k1 (-20%) k2 (-20%) k3 (-20%) k4 (-20%) 

 F* F F* F F* F F* F 

2 1    5.99 6.14 0 0 14.24 12.90 52.18 45.37 

3 1    7.06 6.94 20.13 20.35 5.66 4.10 132.85 117.77 

4 1    2.80 2.40 21.71 19.64 53.56 52.23 67.69 67.62 

 

Fig. 4 The FCSRs calculated from the updated model and actual structures, in which, the bar with dark color denotes the 

FCSR calculated by the actual structural physical parameters, and the bar with light color denotes the FCSR calculated 

based on the updated model 
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and mode shapes. On the other hand, the permutation and 

combination of the FCSRs in Fig. 4 are very different with 

each other for these four stiffness reduction scenarios, and 

this phenomenon can be attributed to the difference of the 

damage location. All the results predicted that the structural 

FCSRs have a good potential ability to identify the damage 

location. 
 

4.3 Damage localization 
 

After the FCSRs of the updated model with different 

damage location were calculated and analyzed, then the 

FCSR baseline datasets of the damage location can be 

constructed for this actual structure, as shown in Table 4. At 

the same time, the actual FCSRs, which were calculated by 

the measured frequencies of actual structure, can also be 

obtained for these eight test conditions, as shown in Table 5. 

Then, by calculating the MAC and NMD value to compare 

the similarity of the actual structural FCSRs with the one 

came from the baseline datasets, a special FCSR sample, 

which has the maximum MAC value and minimum NMD 

value, can be selected from the baseline datasets. At last, the 

preset element damage location corresponding to this 

selected FCSR sample, can be regarded as the actual 

damage location of the test structure, and all the 

identification results were shown in Table 6. 
From Table 6, it is clear that the damage location of 

these eight test conditions can be identified accurately, 

because the selected FCSRs sample has the maximum MAC 

value, i.e., MAC = 1, and the minimum NMD value, i.e., 

NMD ≈ 0. All the simulation results demonstrate that the 

developed method of this paper has a good ability to realize 

the damage localization, even only the first several 

frequencies were provided. 

 
 
 
 

 

 
 
5. LANL test-bed structure 
 

In this section, experimental tests at Los Alamos 

National Laboratory (LANL) are employed to validate the 

damage detection and localization ability and to illustrate 

the application of the developed method. 

 

5.1 Model description 
 

As shown in Fig. 5, the LANL three-story shear-

building consists of four aluminum plate (30.5 cm × 30.5 

cm × 2.5 cm), which were connected by bolted joints to 

four aluminum columns (17.7c m × 2.5 cm × 2.5 cm) at 

each floor. It should be noted that an additional element (15 

cm × 2.5 cm × 2.5 cm) attached to the top floor and an 

adjustable bumper mounted on the second floor, were used 

to introduce a gap nonlinearity in the system, and the gap 

distance can be modified by adjusting the position of the 

bumper to vary the level of the nonlinearity. At the 

beginning, the gap distance was adjusted large enough to 

guarantee the system within the linear range during the 

dynamic tests conducted in this study. The whole structure 

was mounted on two rails to allow the system to slide only 

in one direction, and an electro-dynamic shaker was used to 

provide a band-limited random base excitation (20-150Hz) 

to the test structure (Figueiredo et al. 2009).  

For the structure, four accelerometers with nominal 

sensitivities of 100 mv/g, were attached to each aluminum 

plate along a vertical center line to measure the dynamic 

response of the 4DOF lab structure. In addition, a force 

transducer with nominal sensitivities of 2.2 mV/N, was 

connected to the tip of the stinger to gauge the input force 

generated by the shaker. All the sensor’s measurement were 

recorded at a sampling frequency of 322.58Hz by a data 

acquisition system. Full details concerning the LANL test 

setup are documented in Figueiredo’s research (Figueiredo 

et al. 2009). 

Table 5 The FCSRs calculated by the measured frequencies of actual structure 

 State#2 State#3 State#4 State#5 State#6 State#7 State#8 State#9 

2 1    6.10 5.74 0 0 14.48 13.67 52.59 50.83 

3 1    7.37 6.45 20.06 20.04 5.63 5.72 140.83 115.61 

4 1    2.97 2.48 23.50 18.37 57.30 46.21 75.58 53.75 

Table 6 The damage location identification results based on the FCSRs based method 

 ID State#2 State#3 State#4 State#5 State#6 State#7 State#8 State#9 

MAC 

1 1.00 1.00 0.66 0.70 0.47 0.50 0.92 0.95 

2 0.74 0.71 1.00 1.00 0.74 0.75 0.91 0.88 

3 0.49 0.47 0.79 0.71 1.00 1.00 0.57 0.53 

4 0.94 0.92 0.89 0.93 0.61 0.64 1.00 1.00 

NMD 

1 0.04 0.02 0.72 0.65 1.07 0.99 0.30 0.24 

2 0.60 0.64 0.07 0.02 0.60 0.58 0.31 0.37 

3 1.02 1.05 0.52 0.64 0.01 0.04 0.86 0.94 

4 0.26 0.29 0.35 0.28 0.80 0.76 0.02 0.07 
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Fig. 5 LANL-4DOF test-bed structure experiment 
 

 

In the study, three damage conditions were introduced 

by reducing the story’s stiffness by 21.5%, which was 

realized by replacing the corresponding column with 

another one with half the cross-section thickness in the 

direction of shaking. The four structural state configurations 

considered in the study are summarized in Table 7. 

 

 

 

 

 

For these four structural states in this study, the 

corresponding modal frequencies and damping ratio can be 

identified using ERA algorithm (Juang 1994), as 

summarized in Table 8. It should be noted that only the 

lower three modal frequencies from the experimental 

measurement are used in the following study. 

 

5.2 Construction of the FCSR baseline dataset 
 

As described in last section, the modal parameters 

(modal frequencies and mode shapes) of the structure under 

health condition can be obtained by analyzing the measured 

acceleration, as shown in Table 8. At the same time, 

following the detail procedure of the FCSR baseline 

construction described in section 3.3, assuming a to-be-

updated model of this actual structure under health 

condition existed, and its physical parameters were all equal 

to one, i.e., mi =1, ki=1 (i=1,2,⋯,4) and m1 had been known. 

Thus, the other physical parameters, including the mass and 

stiffness matrix, of this to-be-updated model can be 

obtained according to the typical characteristic of the 

element mass-stiffness distribution of shear building. Then, 

by combining with the actual structural frequencies 

obtained under the health condition, this assumed initial to-

be-updated model can be updated using the CMCM model  

Table 7 Summary of the structural state conditions 

Label Condition Description 

State#1 Reference condition Health 

State#2 21.5% 1st-story stiffness reduction Exchange one column on the 1st-story 

State#3 21.5% 2nd-story stiffness reduction Exchange one column on the 2nd-story 

State#4 21.5% 3rd-story stiffness reduction Exchange one column on the 3rd-story 

Table 8 Identified modal frequencies and damping ratio of four states 

Conditions 
Frequency /(Hz)  Damping (%) 

2nd 3rd 4th  2nd 3rd 4th 

State#1 30.7 54.2 70.7  6.3 2.0 0.97 

State#2 30.9 51.2 69.2  7.1 2.2 0.55 

State#3 29.7 53.9 65.8  5.3 1.7 1.2 

State#4 30.2 51.1 69.3  5.6 2.2 0.80 

Table 9 The updated model using the CMCM algorithm 

 

Actual physical parameters m1-normalized 

The updated result 

Initial 

assumption 

Correction 

coefficients 
Updated parameters 

m1 6.54  1 1 -- 1 

m2 6.66  1.0183 1 -0.0147 0.9853 

m3 6.86  1.0489 1 -0.0034 0.9966 

m4 6.80  1.0398 1 0.0758 1.0758 

k1 4.0×105  6.1131×104 1 6.0455×104 6.0456×104 

k2 4.0×105  6.1131×104 1 5.8721×104 5.8722×104 

k3 4.0×105  6.1131×104 1 5.9494×104 5.9495×104 
*all the unit of the element mass is kg, and the unit of the element stiffness is N/m 

116



 

Damage detection of shear buildings using frequency-change-ratio and model updating algorithm 

 

 

 

 

 

updating algorithm, and the updated results were presented 

in Table 9. From the Table, it is clear that the physical 

parameters of the updated model have a good consistency 

with the actual structural parameters after having been 

normalized on m1. 

This updated model can be regarded as the 

representation of the FEM model for actual structure in 

some degree, because their modal parameters, including the 

modal frequencies and mode shapes, are almost the same. 

Therefore, based on this updated model, the FCSR baseline 

dataset of the damage location of actual structural can be 

constructed by artificially reducing the element stiffness at 

30% one by one for the updated model, and then the 

corresponding modal frequencies for each stiffness 

reduction conditions can be calculated. Finally, the FCSR 

for each reduction scenario can be obtained by combining 

with the structural frequencies on health condition, as 

shown in Table 10, in which, F denotes the FCSR of the 

baseline dataset calculated based on the updated model, and 

F
*
 denotes the FCSR calculated based on actual structural 

physical parameters. From Table 10 and Fig. 6, a good 

consistency can be observed for FCSRs, which were 

calculated based on the updated model and the actual 

structural parameters, respectively. This results demonstrate 

that the updated model using the developed method can be  

 

 

 

 

 

effectively employed to represent the FEM of actual 

structure to attend the FCSR-based damage detection 

procedure. On the other hand, it should be noted that the 

FCSRs in the location of k1 and k3 in Table 10 are almost 

the same, this phenomenon may be caused by the symmetry 

characteristic of the test structure along the vertical  

direction. When the symmetry exists for the test structure, 

the frequency-based damage detection technique may lost 

its effectiveness, because it cannot have the ability to 

distinguish which side the damage locates. Lots of research 

and the following identification results also validate this 

conclusion. 

 

5.3 Damage localization  
 

The FCSRs of the actual structure under three different 

damage conditions can be calculated by combining the 

frequencies obtained from the corresponding damage 

condition with the one obtained from the health condition, 

and the result was presented in Table 11. Then, for each 

damage condition, its actual FCSR will be compared with 

the one selected from the constructed baseline dataset for 

their similarity using the MAC and NMD method. 

 

 

Fig. 6 Frequency-change-square-ratio (FCSR) of the baseline datasets, in which, the bar with dark color denotes the FCSR 

calculated by the actual structural physical parameters, and the bar with light color denotes the FCSR calculated based on 

the updated model 

Table 10 The FCSR baseline dataset of damage location 

 k1 (-30%) k2 (-30%) k3 (-30%) 

F* F F* F F* F 

3 2    5.4115 5.8781 0.0047 0.0134 5.3892  5.2858 

4 2
    3.5879 3.9544 4.5461 4.8031 2.9403 2.9041 

Table 11 The actual FCSR under three different damage conditions 

FCSR State#2 State#3 State#4 

3 2    -25.67 0.54 10.72 

4 2    -17.03 11.07 6.44 
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Finally, the most similar FCSR sample, which has the 

maximum MAC value and minimum NMD value, will be 

selected from the datasets, and its preset damage element 

location of the selected FCSR sample will be regarded as 

the actual damage location of the structure. The final 

identification result can be found in Table 12.  

From Table 12, it is clear that with the maximum MAC 

=1 and minimum NMD = 0.03, the damage location of the 

structure under State#3 can be identified accurately. 

However, for State#2 and State#4, they share a very similar 

detection result, the MAC value on 1
st
 and 3

rd
 floor all have 

the maximum value, i.e., MAC = 1, and all its 

corresponding NMD values are almost minimum. This 

result further validates the conclusion that the structural 

symmetry will affect the frequency-based identification 

result. 

 

 

 
 
6. An eight-story frame-based test structure  

 

In order to further validate the feasibility of the 

proposed FCSR-based damage detection method, another 

eight-story frame structure was experimentally tested and 

investigated in the laboratory. All the experimental data 

came from the school of aeronautics at Northwestern 

Polytechnical University, China, and it is greatly 

appreciated for their assistance and contribution.    

 

6.1 Model description 
 
An eight-story frame structure was designed and 

assembled in the laboratory, as shown in Fig. 7(a), and the 

neighboring layers of the structure were connected by 

Table 12 The damage location identification results using the developed method. 

 Floor State#2 State#3 State#4 

MAC 

1 1.00 0.60 1.00 

2 0.56 1.00 0.52 

3 1.00 0.52 1.00 

NMD 

1 0.00 0.82 0.04 

2 0.90 0.03 0.97 

3 0.06 0.95 0.03 

Table 13 Summary of structure state conditions 

Scenarios State Condition Description 

State#1 Undamaged Baseline condition 

State#2 Damaged 8.3% stiffness reduction on the 1st-story  

State#3 Damaged 8.3% stiffness reduction on the 2nd-story 

State#4 Damaged 8.3% stiffness reduction on the 3rd-story 

State#5 Damaged 8.3% stiffness reduction on the 4th-story 

State#6 Damaged 8.3% stiffness reduction on the 5th-story 

State#7 Damaged 8.3% stiffness reduction on the 6th-story 

State#8 Damaged 8.3% stiffness reduction on the 7th-story 

State#9 Damaged 8.3% stiffness reduction on the 8th-story 

  
(a) The test model (b) The sketch of the test 

Fig. 7 The eight-story frame model 
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four steel columns. Each column was assembled by 

stacking three steel sheets (139 mm × 27 mm × 1 mm) 

together, thus the bending stiffness of steel column is much 

larger in the y-direction (i.e., the width direction) than that 

in the x-direction (i.e., the thickness direction). Therefore, 

only the vibration in the x-direction was studied during the 

test. The frame structure was assumed to have a lumped 

mass on each layer and the inter-story stiffness distribution 

along the height of the columns.  

As shown in Fig. 7(b), an electro-dynamic shaker 

provided a lateral band-limited sine sweeping excitation 

(0~50 Hz) to the first floor along the center line of the 

structure, and a load cell was attached at the end of a  

stringer to measure the input force from the shaker to the 

structure. In addition, eight accelerometers were attached at 

the center line of each floor to measure the system’s 

response, and the LMS-test lab system (Zhang et al. 2008), 

which had been introduced in detail in Section 4.1, was 

employed here to acquire the acceleration data with the 

sampling frequency of 512 Hz and duration time of 32s. In 

the study, eight different damage statuses were introduced 

by removing one of the three steel sheets of a column at the 

corresponding layer, thus a reduction in inter-layer stiffness 

of 8.3% was observed for each damage condition, as shown 

in Table 13. Thus, a total of nine test conditions were 

investigated, including the undamaged condition as the 

baseline. For each condition, the test was repeated ten times 

to calculate the mean values as the final measuring data.    

By collecting and analyzing the measured acceleration 

using the LMS test Lab, the structural mode shapes and 

frequencies under the baseline condition were successfully 

obtained. On the other hand, benefit to the advantage of the  

proposed method during the damage identification process, 

only several modal frequencies of the structure under the 

test conditions were required and can be conveniently 

obtained even only one acceleration record was provided. 

Table 14 presents all the modal frequencies under the health 

(baseline) and eight damaged conditions. 
 
6.2 Construction of the FCSR baseline dataset 
 
Following the detailed procedure of the FCSR baseline 

construction described in Section 3.3, assuming a to-be-

updated model of this eight-story frame structure under  

health condition existed, and its physical parameters were  

 

all equal to one, i.e., mi =1, ki=1 (i=1,2,⋯,8) and m1 had 

been known. Thus, the other physical parameters, including 

the mass and stiffness matrix, of this to-be-updated model 

can be obtained according to the typical characteristic of the 

element mass-stiffness distribution of the shear building. 

Then, by combining with the identified modal parameters 

(mode shapes and frequencies) of the test structure obtained 

under the health condition, this assumed initial to-be-

updated model can be updated using the CMCM model 

updating algorithm, and the updated results were presented 

in Table 15.  

Based on this updated model, the FCSR baseline dataset 

of the damage location of the actual structure can be 

constructed by reducing the element stiffness of the updated 

model by 30% one by one, and then the corresponding  

modal frequencies for each stiffness reduction conditions 

can be calculated. Finally, the FCSR for each reduction 

scenario can be obtained by combining with the structural 

frequencies on health condition, as shown in Table 16, in 

which, F denotes the FCSR of the baseline dataset 

calculated based on the updated model, and F
*
 denotes the 

FCSR calculated based on actual structural physical 

parameters. 

 

6.3 Damage localization  
 

From the Table 14, the FCSRs of the actual structure 

under eight different damage conditions can be calculated 

by combining the frequencies obtained from the 

corresponding damage condition with the one obtained 

from the health condition. Due to the space limitation, the 

calculated FCSRs were not presented in detail. Then, for 

each damage condition, its actual FCSR will be compared 

with the one selected from the constructed baseline dataset 

for their similarity using the MAC and NMD method. The 

final identification result can be found in Table 17. By 

selecting the FCSR sample that has the maximum of MAC 

value and minimum of NMD value from the baseline 

dataset, most damaged conditions in this study were 

effectively identified and accurately localized. However, it 

should be note that although the identification for State#5 

points to a wrong location, the FSCR sample with the preset 

damage at 4
th

-floor still has the second maximum of MAC 

(exceed 0.9) and second minimum of NMD, which presents 

 

Table 14 Identified structural modal frequencies under the nine test conditions 

Scenarios 1st 2nd 3rd 4th 5th 6th 7th 8th 

State#1 2.36 7.46 11.95 16.20 20.08 23.12 25.37 26.87 

State#2 2.35 7.39 11.88 16.15 20.02 23.10 25.36 26.86 

State#3 2.36 7.47 11.99 16.22 19.93 22.86 25.22 26.88 

State#4 2.35 7.48 11.88 15.99 20.00 22.93 25.00 26.86 

State#5 2.36 7.49 11.90 16.27 19.90 23.09 25.31 26.96 

State#6 2.36 7.44 11.99 16.00 20.08 22.79 25.35 26.74 

State#7 2.36 7.42 11.97 16.15 19.86 22.97 25.39 26.57 

State#8 2.36 7.43 11.85 16.08 20.04 22.93 25.18 26.51 

State#9 2.34 7.40 11.86 15.95 19.74 22.72 25.11 26.55 
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a strong correlation with the actual damaged FSCR at the 

correct location. This single mistake of location 

identification is predicted to be caused by the influence of 

measurement error and environmental noise, but it does not 

affect to draw the conclusion that the proposed FCSR-based 

method has the potential to realize the structural damage 

identification and localization, especially for the shear 

buildings. 

 
 
 
 

 

 
7. Conclusions 
 

The frequency-change-square-ratio (FCSR) based 

damage detection method can realize the damage 

identification and localization, even only the first several 

measured frequencies are provided. This distinguish 

advantage makes this kind method very attractive for 

structural health monitoring in practical applications. 
 
 

 

 

Table 15 The updated model using the CMCM algorithm 

 Actual physical 

parameters 
m1-normalized 

The updated result 

Initial assumption Updated parameters 

m1 3.38 1 1 1 

m2 3.38 1 1 1 

m3 3.38 1 1 1 

m4 3.38  1 1 1 

m5 3.38 1 1 1 

m6 3.38 1 1 1 

m7 3.38 1 1 1 

m8 2.824 0.8355 1 0.8 

k1 2.4129×104 7.1388×103 1 6.4225×103 

k2 2.4129×104 7.1388×103 1 7.1825×103 

k3 2.4129×104 7.1388×103 1 6.5987×103 

k4 2.4129×104 7.1388×103 1 6.7567×103 

k5 2.4129×104 7.1388×103 1 6.5956×103 

k6 2.4129×104 7.1388×103 1 7.1473×103 

k7 2.4129×104 7.1388×103 1 6.9924×103 

k8 2.4129×104 7.1388×103 1 7.3585×103 

*
all the unit of the element mass is kg, and the unit of the element stiffness is N/m 

Table 16 The FCSR baseline dataset for different damage locations 

  k1 

(-30%) 

k2 

(-30%) 

k3 

(-30%) 

k4 

(-30%) 

k5 

(-30%) 

k6 

(-30%) 

k7 

(-30%) 

k8 

(-30%) 

2 1    
F* 7.75 4.05 0.29 2.32 13.19 31.31 55.92 78.67 

F 7.99 3.98 0.20 2.80 14.40 32.86 57.48 78.02 

3 1    
F* 16.17 0.66 15.94 34.46 11.43 16.52 169.63 534.54 

F 15.42 0.31 17.96 33.22 7.85 23.96 192.36 546.19 

4 1    
F* 20.96 8.58 47.32 0.85 76.04 57.34 119.10 1438.22 

F 18.23 10.98 47.16 0.01 85.79 36.99 160.21 1476.90 

5 1    
F* 20.04 54.28 15.60 81.53 9.94 193.40 0.62 2045.47 

F 16.20 61.70 12.90 98.48 1.35 241.89 7.17 2725.00 

6 1    
F* 14.62 70.65 21.13 40.20 146.22 24.72 391.60 1825.99 

F 12.61 77.72 21.12 36.07 153.14 68.85 267.61 2517.60 

7 1    
F* 7.63 42.78 90.37 47.44 2.44 176.03 521.12 1064.69 

F 8.42 54.24 96.30 67.31 6.98 97.54 547.77 1375.70 

8 1    
F* 2.08 12.15 31.54 70.72 128.24 141.01 166.84 308.40 

F 1.03 6.58 14.96 38.35 100.11 222.38 337.68 886.74 
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However, building a precision enough FEM model for the 

test structure is inevitable but difficult when applying this 

frequency-based method. In this paper, by combining with 

the cross-model cross-mode (CMCM) model updating 

algorithm, a novel method is developed to improve the 

applicability of the FCSR-based damage detection method. 

In this paper, according to the typical mass-stiffness 

distribution characteristic of shear buildings, assuming there 

is a to-be-updated model for this actual structure, and its 

element mass and stiffness were all known at the beginning.  

Then, this initial model was updated using the CMCM 

algorithm by combining with the measured modal 

frequencies of actual structure. Thus, the final updated 

model can be regarded as the representation of actual 

structural FEM model, because their modal parameters, 

including the modal frequencies and mode shapes, are 

almost the same. Therefore, this updated model can be 

employed to attend the FCSR-based damage detection 

procedure, and no precious FEM of the test structure is 

needed. 
In this paper, the cross-model cross-mode (CMCM) 

model updating algorithm and the frequency-change-

square-ratio based damage detection were briefly 

introduced at the beginning, and the detection procedure of 

the developed method was then detail summarized. In 

addition, the effectiveness of the developed approach was 

verified by a numerical simulation example of four-level 

shear building and two experimental investigations, 

including a three-story structure and an eight-story shear 

frame. All the results demonstrate that the developed 

approach has the ability to detect the presence of structural 

change and locate the structural section where the change 

occurred. The developed approach extends the application 

of the FCSR-based damage detection method, even only the 

first several structural frequencies are provided, the damage 

detection and localization can be realized, especially for the 

high noisy environment in the practical application. 
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