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1. Introduction 
 

Bottom-fixed offshore structures such as monopiles, 

tripods, jackets, and gravity-based structures have been 

widely utilized for the purpose of extracting oil and gas and 

supporting metrological towers and multipurpose ocean 

science platforms, and their applications are expanded for 

supporting ocean energy facilities (OEFs) including 

offshore wind turbines and tidal stream turbines. Indeed, in 

recent years, the number of bottom-fixed offshore structures 

has been increasing rapidly with the increase in the large-

scale offshore wind farms (EWEA 2015). Because these 

offshore structures are generally built in harsh 

environments, strong winds and tidal currents can cause 

structural degradation (fatigue and corrosion) that leads to 

catastrophic failure. In addition, the quasi-periodic 

excitation forces due to the rotating devices including 

rotors, main shafts, and generators can be a source of 

fatigue (BMT report 2013, Ren and Zhou 2014, Yeter et al. 

2015). Being prone to the structural failures due to various 

external excitations, these offshore structures for OEFs are  
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carefully maintained to prevent catastrophic collapses and 

to prolong their lifetime. 

Structural health monitoring (SHM) provides an 

effective means of maintaining the offshore structures 

appropriately to assess the present status as well as the 

remaining lifetime. SHM is typically performed by 

collecting the response data measured from a limited 

number of accessible locations using sensors such as 

accelerometers and strain gauges. In the monitoring of the 

offshore structures of OEFs, most of the fatigue-sensitive 

spots and critical members are located in regions that are 

inaccessible for direct measurements (e.g., at the mudline 

several ten meters below the water level). Thus, the sensor 

installation at important regions deep inside the water can 

be quite challenging.  

Recently, virtual sensing approaches are being actively 

developed for offshore wind turbines to indirectly obtain the 

responses at the unmeasured locations by using the 

measured responses such as acceleration and strain (Paust 

2015, Iliopoulos et al. 2015, Ren and Zhou 2014). The 

virtual sensing technologies can be classified as data-driven 

techniques, such as the neural network-based methods, and 

model-driven techniques, such as Kalman filtering (Kalman 

1960) with finite element (FE) models.  

The model-based virtual sensing technology has been 

intensively studied for estimating the unmeasured responses 

from a limited set of response data based on the Kalman 

filter (Van der Male and Lourens 2014, Papadimitriou et al. 

2010, Park et al. 2013, Park et al. 2014, Cho et al. 2014, 
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and Jo and Spencer 2014) and modal decomposition and 

expansion (Iliopoulos et al. 2014). Joint input-response 

estimation techniques are developed to improve the 

accuracy of estimation (Lijun et al. 2016, Maes et al. 2015, 

Lourens et al. 2012). Iliopoulos et al. (2014) proposed 

response estimation techniques using a modal 

decomposition and expansion algorithm and validated the 

performance of their method using the measurement data 

obtained from a monitoring campaign on an offshore Vestas 

V90 3 MW wind turbine mounted on a monopile 

foundation. Further, similar algorithms with data fusion 

techniques are used in reference-free displacement 

estimation (Cho et al. 2016) and the estimation of a 

flexibility matrix (Sim 2016). Van der Male and Lourens 

(2014) proposed a strategy to monitor the accumulated 

fatigue damage in real time by employing a joint input-state 

estimation algorithm. Measuring the operational vibrations 

at appropriate locations enables the estimation of strain 

responses at the unmeasured locations. The estimation 

algorithm is applied to a wind turbine mounted on a lattice 

support structure for which the response estimates of the 

lattice members are based on the measurements obtained 

only from the turbine tower. Most of these studies are 

limited to zero mean responses, and their algorithm is 

verified only using numerically simulated responses. Some 

recent experimental results have been reported by Maes et 

al. (2016) and Iliopoulos et al. (2017). 

This study investigates a near real-time virtual sensing 

strategy based on Kalman filtering associated with an FE 

model tailored to the offshore structures under non-zero 

mean stochastic external loads. A multimetric data fusion 

technique is incorporated to overcome the difficulties 

related to the non-zero mean static response estimation. 

This technique is implemented by the fusion of different 

sensors such as strain gauges and accelerometers for low 

and high-frequency regions. The bottom-fixed offshore 

structures of OEFs consists of broad spectrum of strain 

responses because of the thrust force as well as the dynamic 

excitations due to the turbulent effect and the periodic 

operational loads due to the rotors. Therefore, extracting 

accurate responses from homogeneous sensor networks 

using either acceleration or strain is quite challenging. Thus, 

a multi-sensor network is more appropriate to estimate 

broad spectrum responses.  

The proposed method includes a buffering technique, 

which reduces the computation time significantly in 

contrast to any other estimation techniques. Thus, this 

estimation technique can be easily implemented in wireless 

and mobile sensing technologies (Lee and Kim 2016). The 

proposed method is verified numerically and experimentally 

using a four-legged portal frame in a circulating water 

channel. 

 

 

2. Formulation 
 

Monitoring the offshore structures under water is unique 

in that the sensor installation and maintenance associated 

with the data acquisition systems are quite challenging 

because critical structural members are often inaccessible.  

 

Fig. 1 Kalman state observer with buffer 

 

Furthermore, strong tidal currents, debris and installation 

error could cause sensor malfunctioning. Estimating 

structural responses at the important unmeasured locations 

can be a powerful alternative to the direct measurement 

when the direct measurement is not available. Despite the 

usefulness of the response estimation technique, it has not 

been fully explored in the literature yet. This study 

investigates the Kalman filter-based data fusion technique 

to estimate the unmeasured non-stationary strain data from 

an offshore structure, which can be subsequently used to 

assess structural conditions such as the fatigue remaining 

life of steel members in the offshore structure. As this study 

focuses on monitoring the offshore structures, we consider 

two major aspects that need to be addressed appropriately: 

1) Offshore structures are continuously subjected to 

non-zero mean input excitations because of tidal currents. 

2) Sensors are prone to damage because of the harsh 

environments or are difficult to install and manage in some 

hot spots. 

The input forces, as well as the structural responses, 

have a large amplitude trend that varies slowly according to 

the changing speed and direction of the tidal current. Thus, 

the response estimation algorithm should be capable of 

handling non-zero mean inputs. Further, sensor malfunction 

and inaccessibility of some hot spots in offshore structures 

demand the algorithm to estimate complete responses with 

limited measurements (Palanisamy et al. 2015). 

A buffering technique is added to the conventional 

Kalman filter algorithm for near real-time responses 

estimation in structures that are subjected to non-stationary 

random loading. The Kalman filter provides an efficient 

computational means to estimate the state of a process in a 

way that minimizes the mean of the squared error (Crassidis 

and Junkins 2012). The buffering technique pre-processes a 

segment of measured responses that strategically enables 

Kalman filter to work under non-stationary loading.  

 

2.1 System design 
 

The general Kalman filter-based state estimator requires 

a known input. Further, it assumes that the state 

disturbances and the sensor noise are stationary. In reality, 

offshore structures are subjected to unknown non-stationary 

random inputs. Thus, a buffering technique is added to the 

general Kalman filter that strategically performs the 

response estimation under unknown non-stationary random 

inputs. The simplified block diagram of the state estimator 

is shown in Fig. 1. The state estimator has three major parts: 
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a plant, a buffer, and an observer. In this study, the plant is 

the actual structure, which is intractable, and the observer 

can be designed depending on the output of interest. The 

buffer is an addition to the typical Kalman estimator. This 

technique enables the estimator to handle non-stationary 

inputs in real time with a buffer delay. 

 

2.1.1 Plant 
The equation of motion of the considered linear system 

or plant is given as follows 

)t(u)t(Kx)t(xC)t(xM    (1) 

where ( )x t , )t(x , and )t(x  are the displacement, 

velocity and acceleration, respectively, and M , C , and   

K  are the mass, damping, and stiffness matrices of the 

dynamic system, respectively. ( )u t  is the input force 

vector applied to the system. Eqs. (2) and (3) express the 

state-space model of the system. 

)t(Bu)t(Ax)t(x   (2) 

( ) ( ) ( ) ( )
m

y t Cx t Du t v t    (3) 

where matrices C  and D  in Eq. (3) are selected 

depending on the output of interest ( )my t ; input ( )u t   

and measurement noises ( )v t  possess a covariance 

( ) ( ) ( )TQ t E u t u t     and ( ) ( ) ( )TR t E v t v t    , 

respectively. Matrices A  and B  are system matrices. 

 

2.1.2 Observer design 

As the input force vector, ( )u t , is unknown, the typical 

Kalman estimator is slightly modified for near real-time 

application without the input, ( )u t . Eqs. (4) and (5) 

indicate the observer design. 

))t(y)t(y(L)t(x̂A)t(x̂ estm    (4) 

ˆ( ) ( )
est

y t Cx t     (3) 

where   is the buffer time, x̂  is the estimated state, and  

L  is the Kalman gain, which is selected to minimize the 

steady-state error covariance. esty  is the estimated output. 

 

2.1.3 Buffer 
This section explains how the buffer prepares the data 

and the Kalman gain for the observer to handle a non-

stationary random input. The error dynamics of the 

complete system (plant + observer) without the buffer in 

real time is derived as 

))t(v)t(Du(L)t(Bu)t(e)LCA()t(e   (6) 

where e  is the difference between the actual state and the 

estimated state, ˆe x x  . The objective of the Kalman 

filter is to minimize the covariance of e . 

( ) [ ( ) ( ) ]
T

P t E e t e t  (7) 

 

 

Fig. 2 Input covariance estimation from time segments of 

preloaded measurement data 

 

The rate of change of error covariance is given as 

)t(CP)t(RC)t(PB)t(BQ

)LCA)(t(P)t(P)LCA()t(P

T

T

1


 (8) 

To minimize error covariance ( )P t . )t(P  is equated 

to zero and solved using an algebraic Riccati equation. It is 

necessary that ( )Q t , ( )R t , and ( )P t  in Eq. (8) should be 

time invariant to equate )t(P  to zero. However, in the 

considered case, input covariance ( )Q t  is non-stationary, 

i.e., the statistical properties of the input changes over time. 

In order to solve this issue, a buffering technique is 

introduced (see Fig. 1) where the measured data are 

preloaded and processed to estimate an input covariance   

during Q  the complete time segment,  , (See Fig. 2). 

The equation of input covariance after introducing the 

buffering technique is given as 

( )( )
TS S S

Q E u u  
   (9) 

where, 
S

Q  is the input covariance between time t   and  

t  .  
S

u  is the input between time t   and t  . As 

we have the complete knowledge of Q  for the time 

segment  , we can safely assume that the input covariance 

is bounded and time invariant within the selected time 

segment  . Thus, )t(P  in Eq. (8) can be equated to zero, 

and it takes the form of a continuous-time algebraic Riccati 

equation (CARE). 

1
0 ( ) ( )

T T
A LC P P A LC BQB PC R CP


       (10) 

where  ( )R DQD R   and the solution, P , from CARE 

is used to build the Kalman gain, L . 

 
1

T T
L PC R DQD



   (11) 

The value of L   behaves optimally within the time 

segment  . This enables the observer to handle the non-

stationary input. It is important to note that Eqs. (10) and 

(11) should be recalculated for every time segment  . 

Further, while the observer is working on the offline data 

from the buffer, the buffer will load the data corresponding  



t t 2t 3t
t

( )my t

( )i iQ t t i

-1 1 2 3          4 
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Fig. 3 Numerical model 

 

 

to the next time segment and estimate S
Q . Thus, the 

overall system estimates the response in real time with a 

buffering time delay of   (subjected to the hardware used 

for computation). The buffer duration shall be decided on 

the knowledge of loading history. These modifications in 

the filter are verified numerically and experimentally as 

described in the following sections. 

 

 

3. Numerical validation 
 

This section presents a numerical model of an offshore 

structure (see Fig. 3). To simulate the tidal current loading, 

this model is simulated using MATLAB Simulink under 

non-zero mean input excitation. A limited number of 

responses is collected and used in the Kalman filter-based 

response estimation algorithm to obtain the unmeasured 

responses. 

 

3.1 Simulation setup 
 

The model is composed of 24 frame elements, each of 

which has a length of 0.2 m as shown in Fig. 3. The 

columns (C1, C2, C3, and C4) have the same circular cross 

section of radius 3 cm. It is assumed that the columns and 

the top plate are made of high-density polyethylene (HDPE) 

and steel, respectively. The Young’s modulus and the mass 

density of the columns presented here are 1,000 MPa and 

953 kg/m
3
, respectively. The Young’s modulus and density 

of the four frame members on the top of the columns are 

210 GPa and 7,850 kg/m
3
, respectively. The developed 

numerical model is used in MATLAB Simulink to simulate 

the acceleration and strain responses under the non-zero 

mean inputs that are applied to the first two nodes of each 

column as shown in Fig. 3. Although all four columns are 

forced under a single stream, they may not have a similar 

stream velocity. The turbulence, stream direction, and 

structure complexity will change the stream velocity in each 

column, which in turn will change the input force at each 

column. However, the input forces are dependent on the 

speed and direction of the mainstream. Thus, for simulation, 

columns 1 and 2 in the downstream are assumed to 

experience a force 50% less than columns 3 and 4 in the 

upstream velocity (based on experimental experience). 

Responses are sampled at 150 Hz. The acceleration data is 

numerically contaminated by 2% noise in the root mean 

square (RMS), whereas the strain is contaminated by 10% 

noise in the RMS based on the experience of higher noise 

on the actual strain measurement (Palanisamy et al. 2015). 

These limited responses are used to predict the input 

covariance and the unmeasured responses. 

 

3.1.1 Input covariance estimation 
From the simulation setup, it can be understood that the 

input forces on each column are different but they are not 

independent. Using this idea, we calculated a strain 

relationship matrix as shown in Eq. (12). This matrix is 

calculated when all the sensors are active. The Kalman state 

estimator estimates the input covariance 
S

Q  in its buffer 

part using the available measurement 
m

S
y . There are two 

steps involved in estimating the input covariance. In Step 1, 

the missing strain data is estimated using the available 

strain data and strain relationship matrix (see Eq. (13)). The 

estimated strain may not be accurate; the only purpose of 

this estimation is to estimate the input covariance in the 

next step. In Step 2, with the help of the numerical model, a 

flexibility matrix 
spK  is constructed using strain s   and 

input force 
su  as shown in Eq. (14). With this relation, the 

measured strain responses can be transformed to the input 

forces. 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

i i

j j

i i

j j

std std

std std

std std

std std

 

 

  

 

       
    
       
 

        
    
       
 
 

K

K

M M O

 (12) 

S S

my   
(13) 

S S

spu K   (14) 

The accuracy of the estimated input, 
Su , depends on 

the accuracy of the FE model used. However, the observer 

gain, L , depends only on the covariance of input 
S

Q  as 

shown in Eq. (11), which does not require an accurate FE 

model.  

 

3.1.2 Multimetric data fusion 
Further, to improve the accuracy of estimation, the 

multimetric data fusion technique is adopted. The 

acceleration and strain responses are chosen for data fusion. 

Unlike the accelerometer, strain gauges are sensitive to the 

electrical noise and local defects in a structure. Acceleration 

being a poor low-frequency observer, the quasi-static trend 

of non-zero mean responses is generally difficult to capture 

in comparison to the strain gauges. Thus, the fusion of the 

multimetric data (strain and acceleration) will enhance the 

accuracy of the response estimation (Park et al. 2013, Park 

et al. 2014, Cho et al. 2014, Jo and Spencer 2014). 
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Table 1 Measured and estimated response for each case 

Case 
Measured strain 

location 

Measured 

acceleration 

location 

Estimated 

strain location 

1 8, 14, and 20 6 2 

2 2, 14, and 20 6 8 

3 2, 8, and 20 6 14 

4 2, 8, and 14 6 20 

 

 

Four different simulation cases are considered here. In 

each case, one of the strain responses is estimated with the 

help of other strain and acceleration responses (see Table. 

1). For example, in case 1, the strain measurements near the 

root of columns 2, 3, and 4 and the acceleration at the top of 

the columns (see Fig. 3) are used to estimate the strain 

response of column 1. 

 

3.2 Estimation result 
 

Fig. 4 shows the estimated strain in each case. Each case 

is processed in two steps: 

1) Step 1: estimate the input covariance, Q , and 

calculate the Kalman gain, L . 

2) Step 2: use the Kalman gain, L , and the limited 

measurements in the Kalman filter-based state 

estimator to estimate the unmeasured responses. 

In case 1, the strain response at nodes 8, 14, and 20 with 

the acceleration response at node 6 are used to estimate the 

strain at node 2. During the input covariance estimation, the 

strain response at unmeasured node 2 is replaced with that 

at node 8 because they experience a similar stress state. A 

similar procedure is followed to estimate the strain response 

at the other columns as shown in Table 1. From Fig. 4, the 

estimated non-zero mean strain at each column is in good 

agreement with the reference strain. Because of the large 

upstream force, columns 3 and 4 experience a higher strain 

compared to columns 1 and 2. Fig. 5 shows the capability of 

the algorithm to estimate the dynamic component of the 

response. 

 

 

  
(a) Case 1 (b) Case 2 

  
(c) Case 3 (d) Case 4 

Fig. 4. Estimated and reference strain responses in time 

domain 

 

 

Fig. 5 Estimated and reference strain response in column 

1 (between 12 s and 17 s) 

 

 

 

Fig. 6 Estimated and reference strain responses in 

frequency domain 

 

 

In addition to the comparison in the time domain, the 

estimated and measured strain responses are compared in 

the frequency domain by plotting their power spectra as 

shown in Fig. 6. Note that only case 1 is shown as all the 

cases exhibit similar power spectra. From Fig. 6, it can be 

observed that the estimated strain is in good agreement with 

the reference strain. Their strong agreement near 0 Hz 

shows the capability of the algorithm to handle non-

stationary responses. 

To investigate the consistency of the response estimation, 

root mean square errors (RMSEs) between the reference 

and estimated strains were calculated as 

 

 

2

2

est ref

ref

Error
 








 (15) 

where 
ref  is the reference strain and est  is the 

estimated strain. Fig. 7 shows the RMSEs calculated for 

each column. The error in the response estimation for each 

column is less than 2%. The estimation errors in columns 3 

and 4 are relatively higher when compared to columns 1 

and 2. Because columns 3 and 4 experience a larger 

upstream force (see Figs. 3 and 4), thus the estimation error 

is also higher. However the more quantitative error analysis 

is not covered in this study. 

Further, the estimation error corresponding to a different 

level of observation noise in the strain and acceleration data 

is tested. Fig. 8 indicates that the estimation error increases 

with an increase in the measurement noise. A similar trend  
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Fig. 7 Estimation errors 

 

 

 

Fig. 8 Estimation error in column 1 for different 

observation noise 

 

 

is observed in all the columns; thus, only the results 

corresponding to column 1 are shown. From Fig. 8, it can 

be observed that the measurement noise in the strain has a 

larger influence on the estimation error when compared to 

the acceleration noise. 

 

 

4. Experimental validation 
 

This section describes the experimental validation of the 

response estimation approach using a scaled model of an 

offshore structure. The experiment is conducted in a flume 

with a controlled water current. The measured responses are 

used to validate the response estimation algorithm.  

 

4.1 Experimental setup 
 

The experiment is carried out in a circulating water 

channel as shown in Fig. 9. The length, width, and height of 

the circulating water channel are 24 m, 480 mm, and 900 

mm, respectively. A specimen is installed 9 m away from 

the sluice gate to avoid the effect of the reflected water 

current from the gate and to ensure a uniform flow. 

Fig. 10 shows the dimension of the specimen and the 

deployed sensors. Table 2 lists the material properties and 

the dimensions of the top plate and columns, which are the 

parts of the experimental specimen. The strain gauges are  

 

Fig. 9 Circulating water channel setup 

 

 

 

Fig. 10 Specimen with deployed strain gauge and 

accelerometer 

 

 

attached to each column at 150 mm from the root of the 

specimen. A waterproof material is applied to avoid the 

strain gauges from malfunctioning. A half-bridge 

configuration is used to improve the sensitivity of the strain 

gauges. The acceleration and strain responses are measured 

at a sampling rate of 200 Hz by the data acquisition devices 

(DAQ). 

Fig. 11 shows the specimen with and without the water 

current. It can be observed that the upstream water level is 

higher than the downstream in the columns that experience 

more turbulence compared to the other columns. Thus, the 

columns in the upstream will experience a different force 

than that in the downstream. 

 

Table 2 Material properties and dimension of experimental 

specimen 

Properties Top plate Columns 

Material Steel 
High-density 

polyethylene (HDPE) 

Young’s 

modulus 
210 GPa 1,000 MPa 

Shear 

modulus 
79.3 GPa 800 MPa 

Density 7,850 Kg/m3 953 Kg/m3 

Size 
430 mm x 350 mm x 9 

mm 

D60 mm x 5 mm  

height: 1000 mm 

Weight 
10.63 kg 

(without accessories) 

0.823 kg/each column 

(without connector) 

 

E
rr

o
r 
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)
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(a) without water current (b) with water current 

Fig. 11 Specimen 

 

 

The experiment is carried out in the following steps. 

Initially, the flume is filled to a water level of 400 mm by 

shutting the sluice gate at the end of the water channel (see 

Fig. 9). Next, the pump is turned on and the sluice gate is 

controlled to maintain the same water level throughout the 

experiment. After a few minutes, the pump is turned off and 

simultaneously the sluice gate is controlled to maintain the 

same water level. 

 

4.2 Estimation results 
 

Fig. 12 compares the experimental and estimated strain 

response of each column. The validation cases considered 

here are similar to the cases seen in the numerical 

validation. From the experimental strain response, it can be 

observed that during the first 60 s, the water is still, and 

after 60 s, the current velocity increases rapidly until 130 s. 

The water velocity is maintained constantly for about 100 s 

and gradually decreased to zero. The response estimation 

algorithm uses the same FE model used in the numerical 

validation. The estimation consists of two steps. Step 1: 

estimate the input time history of each column with limited 

responses (Eq. (12)); the strain at the unmeasured location 

is assumed the same as the nearest available strain response. 

Step 2: calculate the input covariance with the available 

input time history and use the limited response in the 

Kalman filter-based response estimation algorithm to 

estimate the unmeasured responses. The overall estimation 

shown in Fig. 12 is in good agreement with the measured 

responses. As it is difficult to observe the dynamic 

component of estimation from Figs. 12 and 13 shows the 

estimation between 240 s and 250 s. It is also notable that 

the strain levels for columns in upstream, i.e. Columns 3 

and 4, are almost same to those for columns in downstream, 

and this is not consistent to the assumption in numerical 

simulation study. This might be because the current velocity 

is increased passing through the upstream columns and 

there is a certain level of blockage effect due to the narrow 

channel width. 

Fig. 14 shows the frequency domain comparison 

between the measured and estimated responses. It can be 

observed that the estimation is in good agreement near 0 

Hz, which clearly shows the ability of the algorithm to 

capture the quasi-static responses. The comparison results 

corresponding to each column exhibits similar power 

spectral responses. Thus, Fig. 14 shows only the result 

corresponding to column 1. Unlike the reference strain from 

the numerical model, the strain data from the experiment is 

subjected to small electrical noise (see Fig. 14). A 60 Hz 

peak can be observed from the figure. 

 

 

  
(a) Case 1 (b) Case 2 

  
(c) Case 3 (d) Case 4 

Fig. 12 Estimated and experimental strain responses in 

time domain 

 

 

 

 

Fig. 13 Estimated and experimental strain responses in 

column 4 (between 240 s and 250 s) 

 

 

 

 

Fig. 14 Estimated and experimental strain responses in 

frequency domain 
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Fig. 15 Error in estimated strain at each column 

 

 

Fig. 15 shows the RMSE in the strain estimated for each 

column. The strain estimation in columns 1 and 2 has a 

higher percentage of error. The strain gauges should be 

deployed perpendicular to the plane of bending else the 

measured responses may not be accurate. Because the 

model and the estimator are designed to work with strain 

measured purely along the x-direction, the higher errors in 

columns 1 and 2 could be due to improper sensor 

deployment. Columns 3 and 4 have an error of 

approximately 1-3%. 

 

 

5. Conclusions 
 

The virtual sensing strategy that is tailored to the SHM 

of offshore structures was investigated in this study. As the 

important structural members of offshore structures are 

located under water, the virtual sensing strategy can be a 

powerful alternative to the direct measurement, particularly 

when the structural responses are desired due to unavailable 

sensors. The problem formulation for the near real-time 

virtual sensing based on Kalman filtering was provided with 

how the non-stationary random excitation can be properly 

handled for accurate response estimation. Two different 

types of data, acceleration and strain, were input to the state 

estimator. The strain response contributes to the low 

frequency, large amplitude trend in the estimation, whereas 

the acceleration with a high-frequency information is 

capable of reducing the random noise. The numerical 

simulation was conducted with the FE model of a small-

scale offshore structure. The non-stationary input excitation 

that varies with time and height is introduced to simulate 

the tidal current. The overall simulation result indicated that 

the estimation was accurate with errors between 1 - 10%. A 

laboratory experiment was conducted subsequently with the 

small-scale offshore structure installed in a water channel. 

The virtual sensing strategy successfully obtained a strain 

response using the other three strains and the acceleration of 

the top plate. The numerical analysis and the experiment 

lead to the following conclusions: 

• The virtual sensing strategy has the potential to 

capture structural responses of the bottom-fixed offshore 

structures under the non-stationary tidal current.  

• The combined use of the different types of 

measurements (i.e., strain and acceleration) can help 

improve the estimation of the unmeasured strain response in 

lower and higher frequency regions.  

The virtual sensing strategy is observed to be quite 

useful for monitoring offshore structures. Based on the 

findings in this paper, further studies may use the estimated 

response for the SHM purposes such as fatigue estimation 

and damage detection.  
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