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1. Introduction 
 

Recently, the damage detection of structures has 

considerably attracted the attention of researchers. Note 

that; estimating the severity and location of damage 

provides the possibility of avoiding the damage propagation 

in structures and repairing at the right time. By this way, the 

occurrence of damage is prevented during the remaining 

useful life of structures. Consequently, the continuous and 

periodic inspection of important structures is essential to 

identify their damages after the extreme events. 

Accordingly, the damage detection of structures is 

necessary for health monitoring and maintaining the 

structures.  

Damage detection is a process in which the location and 

severity of damage are estimated. In general, damage 

detection techniques are divided into groups, namely local 

and global tactics (Doebling et al. 1998). Visual inspection 

is one of the simplest local approaches. To remove the 

limitations of local schemes, the global ones were 

developed. In these strategies, the location and severity of 

damage are estimated by using the structural responses. Due 

to the fact that various structural responses are available, 

different global methods have been presented up to now.  

In practice, different devices are applied for measuring 

the structural responses (Wu and Casciati 2014). Usually,  
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these responses are noisy. As a result, it is not possible to 

reach the actual responses. To defeat this difficulty, various 

approaches have been suggested for providing the stability 

of the damage detection process with noisy measurements 

(Simon et al. 2015). It is worthwhile to mention that the 

model updating and sensitivity analysis techniques are the 

most efficient tactics utilized for damage detection of 

structures (Simon et al. 2015). In these schemes, the finite 

element model of the healthy structure is sequentially 

updated until its responses match with those of the actual 

damaged structure.  

Messina et al. (1998) took advantage of a method based 

on the sensitivity analysis for damage detection of 

structures. Moreover, Nasser-Alavi et al. (2011) suggested a 

new sensitivity analysis approach for estimating the 

location and severity of damage in structures. For this 

purpose, they utilized an algorithm previously applied to 

solve subset problem. Also, Esfandiari (2017) and 

Esfandiari et al. (2017) presented different sensitivity 

analysis approaches for damage identification. In these 

tactics, some of the structural frequencies were used. In 

addition, Cheng et al. (2009) proposed a method in order to 

determine optimal sensor locations and damaged areas 

utilizing sensitivity analysis and model updating. It is 

worthwhile to remark that the least square method has been 

extensively utilized for solving the system of equations of 

the damage detection problem by some researchers. 

Additionally, Entezami and Shariatmadar (2014) 

determined the location of damage and its severity by using 

the techniques based on combining the model updating 

strategies and regularization tactics. 

Recently, various researchers employed the dynamic 

responses of the structures, including the acceleration, for 

damage detection of structures. In this regard, Yu and 

Chung (2012) take advantage of measured acceleration 
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responses and FE model updating and least square method 

for damage identification of reinforced concrete structures. 

In this process, a nonlinear over-determinate system of 

equations was required to be solved. Note that; this system 

of equations is established by matching the responses of the 

analytical model with those of the damaged structure. Up to 

now, various algorithms have been proposed to solve this 

system of equations. Li and Law (2010) mixed the 

Tikhonov regularization method with the least square 

scheme for finding the solution of the aforesaid system of 

equations. This technique was stable against the noisy 

measurements. In addition, by using a penalty function and 

stabilization methods, Lu and Law (2007) proposed a 

sensitivity analysis strategy in which noisy acceleration 

responses were applied for damage detection of structures. 

These researchers remarked that they utilized the 

accelerations due to their easy measurements. In another 

study, Wang and Yang (2012) suggested a modified 

Tikhonov regularization (MTR) method by imposing the 

constraints on the physical parameters. Besides, Sarvi et al. 

(2014) proposed a new damage identification strategy. To 

achieve this goal, they employed Levenberg-Marquardt 

algorithm and transformed the nonlinear system of 

equations into the linear one. Furthermore, Nasser-Alavi et 

al. (2016) presented a tactic in which the gradient and 

Tikhonov regularization methods were utilized. 

As previously mentioned, a nonlinear system of 

equations is required to be solved in the damage detection 

methods based on the sensitivity analysis and model 

updating. Various methods have been suggested for solving 

nonlinear system of equations. They could be categorized 

into direct and iterative methods. The least square with 

regularization technique belongs to the former one 

(Esfandiari et al. 2017, Li and Law 2010, Wang and Yang 

2012, Entezami and Shariatmadar 2014, 2015, Lei 2013), 

and conjugate gradient (CG) and biconjugate gradient 

(BCG) approaches are the iterative ones whose rate of 

convergence is high (Saad 2003, Yang 2009). Safari et al.  

(2012, 2014) applied various iterative algorithms for 

nonlinear analysis of structures. According to their results, 

BCG method is a proper technique for finding the solution 

of the system of equations whose coefficient matrix is 

asymmetric. It is worth emphasizing that the iterative 

methods may not converge when they are applied for 

solving the linear system of equations due to ill-posedness 

of the set of questions. To remedy this difficulty, 

preconditioning approaches are usually utilized. Also, these 

techniques can provide the stability and improve the 

efficiency of numerical methods (Saad 2003). For 

estimating the inverse of a matrix as a preconditioner 

matrix, various formulas have been proposed (Toutounian 

and Soleymani 2013, Li and Li 2010, Li et al. 2011). 

Additionally, Safari et al. (2014) employ the 

preconditioning technique for nonlinear geometric analysis 

of space frames. It is worthwhile to highlight that the 

current paper employs a new strategy to provide the 

stability conditions and estimating the inverse of sensitivity 

matrix. 

Based on the model updating and sensitivity analysis, 

this paper presents a new technique for damage detection of 

structures. For this purpose, an iterative method is utilized 

for finding the solution of the system of equations. By 

applying the iterative algorithms for calculating the matrix 

inverse and finding the eigenvalues, the computational costs 

are considerably reduced. It should be mentioned that the 

structural accelerations are utilized as the outputs of the 

damaged structure. In this work, the structural damage is 

modeled as a reduction in elasticity modulus of the 

elements.   

The remaining text is organized as follows. In section 2, 

the formulation of the damage detection problem is briefly 

presented. Section 3 deals with introducing the BCG 

approach, preconditioning technique, the procedure used for 

reducing the size of the search space and calculating the 

pseudo-inverse of the sensitivity matrix. Afterwards, the 

authors' new algorithm is presented in section 4. Then, 

numerical examples corroborate the high accuracy and 

efficiency of the suggested approach in section 5. Finally, 

the conclusions are summarized in section 6. 

 

 

2. Basic formulation of damage detection 
 

In this section, the general form of the damage detection 

problem based on the model updating and sensitivity 

analysis is presented. In matrix notation, the differential 

equation governing the dynamic behavior of a multi-degree 

of freedom system is presented as follows (Li and Law 

2010) 

f(t)KuuCuM    (1) 

Where M , C and K  are nn  matrices which denote 

mass, damping and stiffness matrices of the structure, 

respectively. Moreover, u , u  and u  are acceleration, 

velocity and displacement vectors, correspondingly. These 

vectors have n  entries, in which n  denotes the number 

of degrees of freedom. Also, the external force vector is 

shown by f(t) . By solving Eq. (1), the structural responses 

can be obtained at each time step which can be employed in 

the damage detection process. 

On the contrary to Eq. (1), damage detection problem 

includes a nonlinear system of equation. In solution 

procedure of this problem, the suggested structural model is 

updated for matching its responses with those of the 

measured ones (by sensors). This process is expressed 

mathematically as below 

R(X)Rd   (2) 

In this equation, },...,,...,,{ 21 nei xxxxX  is the 

vector of unknowns. It should be added that ne denotes the 

numbers of structural members. Furthermore, dR  and 

R(X) are acceleration time history of the actual damaged 

structure and its model, respectively. 

It is obvious that Eq. (2) is nonlinear (Li and Law 2010, 

Naseralavi et al. 2016). By omitting its higher order 

sentences, it can be changed into the coming linear system 

of equations 
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)( hd XX
X

R
RR hd 




  (3) 

ΔXSΔR .
 

(4) 

Note that; the damage localization and severity estimation 

can be conducted by solving this system of equation whose 

unknown parameters are related to the magnitude of 

damage in each member. In Eq. (3), hR  is the structural 

response of the healthy structure. Moreover, hX  and dX  

denote the damage vectors of the healthy and damaged 

structure, respectively. It should be reminded that the entries 

of hX  are equal to zero. 
X

RS


  is named the 

sensitivity matrix, and its entries are the known coefficients 

of the equations. To calculate the entries of this matrix, the 

finite difference approach can be applied. To compute the i-

th column of the aforesaid matrix, a structural member is 

artificially damaged with the severity of Se . This 

parameter is assumed to be 0.001 in this paper. Accordingly, 

the sensitivity matrix can be calculated as below 

(Naseralavi et al. 2016) 

Se

hdi
inei

RR
sssssS


 ,],...,...,,,[ 21  (5) 

In this equation, the i-th column of the sensitivity matrix 

and the response of the i-th structural element due to 

artificial damage are denoted by is  and diR , respectively. 

If the ""nsr  sensors installed on the structure measure the 

accelerations at nt  iterations, the number of entries of 

ΔR  is 1 )nsrnt( , and the number of columns and 

rows of the sensitivity matrix are equal to ne  and 

)( nsrnt  , respectively. In general, the system of 

equations of the damage detection procedure is over-

determinate. In other words, number of equations is greater 

than the number of unknowns. 

As previously mentioned, Eq. (4) can be obtained by 

linearizing Eq. (2). This process causes errors in the 

solution procedure. To minimize the error due to 

linearization, model updating methods are usually 

employed (Li and Law 2010, Lu and Law 2007). At the first 

stage, the damage detection system of equations is 

established and solved. Then, by using the unknown vector 

achieved from the first iteration, the model is updated and a 

new system of equation is set up and solved. This procedure 

is iteratively repeated until reaching the proper accuracy. 

This procedure can be mathematically expressed as follows 
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(6) 

in which iX , X  and 1iS  are the damage vector in i-

th iteration, the ultimate damage vector and sensitivity 

matrix obtained from the damage vector in the i-1 iteration, 

respectively. After introducing the system of equation of the 

damage detection problem, it is required to select an 

appropriate solution routine. In general, the least square 

scheme with the regularization methods have been widely 

utilized for finding the solution of the over-determinate 

system of equations in which it was required to invert the 

coefficient matrix directly and calculate the eigenvalues 

(Esfandiari 2017, Li and Law 2010, Wang and Yang 2012, 

Naseralavi et al. 2016). Hence, increasing the size of the 

system of equations leads to considerable increment in 

computational costs. 

In the next section, a new iterative method is presented. 

In this approach, it is not required to compute the inverse 

and the eigenvalues of the coefficient matrix. As a result, 

the authors' technique is very efficient for structures with 

large number of members. This approach is able to solve the 

system of equations with rectangular coefficient matrices. 

Also, it should be stable against the noisy measurements. 

 

 

3. The proposed method 
 

In this section, the suggested strategy is mathematically 

expressed. First, CG and BCG approaches are briefly 

reviewed. Afterwards, the preconditioning tactic and the 

approximate method for calculating pseudo-inversion of 

matrices are presented. 

 
3.1 Conjugate gradient method 
 

As mentioned before, various methods have been 

proposed for solving the linear and nonlinear system of 

equations by other researchers. They are categorized into 

direct and iterative approaches (Saad 2003). The latter ones 

utilize an initial guess to produce a sequence of improving 

approximate solutions for a class of problems. An iterative 

procedure is convergent when the corresponding sequence 

converges, i.e., the convergence criterion is satisfied. In 

contrast, the direct tactics solves the problem by a finite 

sequence of operations. It should be reminded that usage of 

direct methods for large system of equations is expensive 

from mathematical point of view. Additionally, they 

sometimes are not able to find the solution (Saad 2003). 

Due to the fact that the iterative approaches are simpler and 

faster than the direct ones, they are generally employed in 

practice. CG and BCG iterative tactics are more popular and 

efficient than other iterative strategies for solving the large 

system of equations (Saad 2003, Yang 2009, Saffari et al. 

2012). Usually, the conjugate gradient technique is applied 

for finding the solution of the linear system of equations 

whose coefficient matrix is real and symmetric. In contrast, 

this matrix is not required to be real, positive-definite and 

symmetric in the BCG approaches. Both of these tactics 

find the solution of bAX   by minimizing the following 

second-order equation (Lu and Chen 2017) 

bXAXXX
TTf 

2

1
)(  (7) 
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3.2 Biconjugate gradient method 
 
The BCG approach has been suggested for solving the 

system of equations whose coefficient matrices are un-

symmetric. This tactic employs a dual scheme for solving 

the system of equations in which both bAX   and 
***

bXA  systems of equations are established and 

solved. It should be added that 
*

A  is the conjugate 

transpose of matrix A . In other words, this well-known 

approach is developed based on projecting bAX   into 

the Krylov subspace (Saffari et al. 2012). The BCG 

algorithm solves the system of Eq. (4) as follows (Saad 

2003): 

1. Guess the initial 
0
iX . 

2. Compute 
0

0 i. XSRr   and choose 

0r  

with condition inner product 000  ),( rr . 

3. Set 00 rP   and 
  00 rP . 

4. Until reaching to convergence criteria and for 

...,,k 21 , repeat following steps, 
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Due to the fact that a large system of equations governs 

the damage detection problem of structures, it is suggested 

to utilize the iterative methods for finding its solution. It 

should be reminded that this system of equation is 

rectangular if the structural accelerations are employed in 

damage detection process. Prior to using the iterative BCG 

approaches for solving this system of equations, it is 

essential to reshape its coefficient matrix into a square one 

(Saad 2003). For this purpose, a preconditioner matrix is 

required. In addition, this matrix should be able to establish 

the well-posedness of the new square coefficient matrix. In 

other words, the condition number of the square matrix 

ought to be as small as possible. In what follows, the 

selection process of a suitable preconditioner matrix is 

discussed in depth.  

It is worthwhile to highlight that using the 

preconditioner matrix reshape the coefficient matrix into an 

asymmetric square one. For this reason, it is necessary to 

take advantage of the BCG method in damage detection of 

structures. Recall that; this tactic can be utilized for 

problems whose coefficient matrices are asymmetric. 

 

3.3 Preconditioning 
 
Preconditioning is typically related to transforming the 

system of equations into a simpler form suitable for 

numerical solving strategies (Saad 2003). This can be 

achieved with the help of the preconditioner matrix ( M


). In 

general, the iterative methods applied for solving the linear 

system of equations are prone to divergence. Consequently, 

they are usually mixed with the preconditioning approaches 

to solve AX=b. Pre-multiplying the system of equations by 

M


 leads to bMXAM .ˆ.ˆ  . The solution of this new form 

is similar to that of the original one. Note that; the solution 

procedure of the new system of equation is more stable in 

comparison to that of the initial one, and its rate of 

convergence is higher. It is worth remarking that the 

selected preconditioner matrix should be calculated and 

established easily at each iteration. Moreover, an 

appropriate preconditioner matrix is able to increase the rate 

of convergence. 

Ill-conditioning and ill-posedness are two main 

difficulties which exist in solving the system of Eq. (4). It 

should be reminded that coefficient matrix is ill-conditioned 

if its condition number is very large. When the solution of a 

system of equation is highly sensitive to the small changes 

in its right side, it is named ill-posed. It should be 

mentioned that the condition number can be used for 

measuring the stability and convergence rate of an ill-posed 

system of equations. Note that; a system of equations whose 

condition number is very large is highly sensitive to the 

small changes in its right side. In addition, numerical 

instability and divergence may occur in its solution 

procedure. 

To avoid instability, regularization tactics are usually 

used (Hanke and Groetsch 2017). Recently, Tikhonov 

regularization method has been widely applied in damage 

detection problems (Li and Law 2010, Lu and Law 2007). 

In this paper, a preconditioner matrix is presented for 

guaranteeing the stability of the numerical solution 

procedure as substitute for stabilizing approaches. In other 

words, by employing the authors' preconditioner matrix, the 

condition number of the system of equations of the damage 

detection problem is considerably reduced as 

comprehensively shown in section 5. Additionally, this 

matrix can be easily set up.  

The suggested preconditioner is the approximation of 

the pseudo inverse of the sensitivity matrix (


S ) whose 

size is nensrnt  )( . Hence, its pseudo-inverse is a 

)( nsrntne   matrix. At this stage, pre-multiplying the 

system of equations of the damage detection problem by 


S  results in a square system of equations. Furthermore, 

numerical investigations prove that the condition number of 

the new system of equations is significantly reduced. This 

new system of equations has the subsequent appearance: 

1111 




  iiiii RSXSS  (8) 
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Where 1 iR , 1iS  and 

1iS  denote the difference 

between the responses of the damaged and undamaged 

structures at the (i-1)-th iteration, the sensitivity matrix 

obtained from the damage vector of the (i-1)-th iteration 

and the approximate pseudo-inverse matrix. 

 

3.4 The approximate of pseudo-inverse 
 
Inversion of a large matrix is expensive from 

mathematical point of view. As a result, applying the 

iterative methods for finding the approximate inversion of 

matrices, which can be used as a preconditioner, has 

attracted the attention of researchers (Toutounian and 

Soleymani 2013, Li and Li 2010, Li et al. 2011). To 

approximately invert a matrix, AM.ˆ  should be equal to an 

identity matrix. One of the most stable methods for 

calculating the approximate inverse of a matrix has been 

proposed by Schulz (Toutounian and Soleymani 2013). The 

formulation of this approach has the succeeding shape 

...,2,1,0)2(1  mmmm NAINN  (9) 

In the Eq. (9), mN  is an approximate inverse of a matrix 

at the m-th iteration and I  denotes the identity matrix 

whose size is similar to that of mN . It is noticeable that the 

convergence rate of Eq. (9) is quadratic. Other researchers 

suggested methods with higher order convergence rates. In 

2013, Toutounian presented a tactic with the convergence 

of the higher order. Moreover, the high efficiency and 

convergence rate of this strategy in computing the 

approximate inverse of a rectangular matrix was proved 

(Toutounian and Soleymani 2013). 

  ...,2,1,0,)))6(14(16(9
2

1
1  mmmmmmm NAIANINAINAINN

 
(10) 

The size of the system of equations corresponding to a 

damage detection problem is dependent on the measured 

responses, the structure's topology and model. For 

structures made of large number of members, this system of 

equation is large. Therefore, it is strongly suggested to use 

iterative methods for finding the approximate inversion of 

its coefficient matrix.  

To approximately calculate the pseudo-inverse of the 

sensitivity matrix, the coming equation can be utilized 

  ...,2,1,0,)))6(14(16(9
2

1
1  

 mmmmmmm SSISSISSISSISS
 

(11) 

In this equation, 

mS  and 

)nsrnt()nsrnt(R I are the 

approximate pseudo-inverse of the sensitivity matrix at the 

m-th iteration and the corresponding identity matrix, 

respectively. It is obvious that increasing the number of 

iterations leads to more accurate results, and selection of a 

proper 

0S  improves the convergence rate. On the other 

hand, choosing an inappropriate 

0S  results in divergence. 

In this paper, the coming formula is applied for finding the 

suitable 

0S  which guarantee the convergence 

(Toutounian and Soleymani 2013) 

2

1

0


T
S

S 
 (12) 

In which the transpose of matrix S  and its maximum 

eigenvalues are denoted by 
T

S  and 1 , respectively. 

Various methods, such as power technique, are available for 

computing 1 . Due to the fact that the accurate value of 

1  is not essential for Eq. (12), it is calculated with the 

help of approximate equation presented in the next section. 

 

3.5 Gershgorin circle theorem 
 
Based on this theorem, the spectrum of a square matrix 

can be bounded (Golub and Van 2012). For a square matrix 
nnR A , iR  can be computed for each of its rows. Then, 

by computing iR  for a square matrix 
nnR A and 

depicting circles with center of iia  and radius of iR , it 

can be shown that each eigenvalues of this matrix is placed 

into at least one of these circles (Golub and Van 2012). In 

other words, the maximum values of iii Ra   is an 

approximation of the maximum eigenvalue as follows 





n

ijj

iji aR
,1

 (13) 

  niRaMax iii ...,,2,1,1 

 

(14) 

In each iteration, the sensitivity matrix ( S ) is 

rectangular. For this reason, SS
T

 should be applied prior 

to usage of Gershgorin circle theorem. Finally, the 

approximation value of the eigenvalue of the sensitivity 

matrix can be achieved by utilizing Eq. (14). Then, it can be 

applied in Eq. (11). Note that; the convergence of Eq. (11) 

is guaranteed when the eigenvalue is obtained by using Eq. 

(14). 

 

3.6 Reduction of search space 
 
The entries of the damage vector (the unknowns vector) 

corresponding to the damage detection problem are ranged 

from zero to one. Moreover, most of its entries are zero (Li 

and Law 2010). The latter characteristic of this vector has 

been used in two-step approaches. At first, these tactics 

identified the probable damage members. Afterwards, the 

damage detection procedure is conducted on these members. 

In practice, most of the structure's members are undamaged 

and few number of them are damaged. Hence, the search 

space can be reduced.  

This paper takes advantage of the aforementioned 

characteristics of the damage vector. In this way, the 

computational efforts are considerably reduced, and the 

accuracy of the suggested damage detection algorithm is 

increased when the measurements are noisy. In the authors' 

damage detection algorithm, the entries of the damage 
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vector which are less than a specific value (such as 0.01) are 

set to zero. Actually, in this way, most of the entries of the 

damage vector are zero. At this stage, the structure is re-

updated based on the modified damage vectors, and the new 

system of equations is obtained. Afterwards, the members 

corresponding to the zero entries of the damage vector are 

removed from the system of equations. As a result, the 

number of unknowns is significantly reduced. This process 

iteratively repeated until the end of the solution procedure. 

The steps of this method are summarized as below:  

1- The calculated damage vector divided into two sections: 

the probable damaged members (more than 0.01) and the 

members with negligible damage (less than 0.01). 




































parthealty

partdamaged

X

X
XX

nex

x

x


2

1

 (15) 

These sub-vectors are denoted by partdamagedX  and 

parthealtyX , respectively. 

2- The entries of parthealtyX are set to zero. 

0parthealtyX  (16) 

3- The elasticity modulus of members belongs to 

parthealtyX are modified. 










partdamaged

parthealty

X

X

ii

i

i xifxE

xif
E

)1(

0
 (17) 

The elasticity modulus of the i-th element and its damage 

severity are shown by E  and ix , correspondingly. 

4- The structure is updated based on the elasticity modulus 

calculated in the previous iteration, and a new system of 

equation is established by using Eq. (8). 

5- The unknowns corresponding to the entries of 

parthealtyX are set to zero and removed from the new 

system of equations. Then, the remaining unknowns are 

obtained by using the BCG algorithm, and the solution 

procedure return to its first step. 

 
partdamaged

spacesearchofDecrease

parthealty

partdamaged
XX

X

X
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







  (18) 
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(19) 

where dss


 and hss


 are sub-matrices of the 

sensitivity matrix corresponding to partdamagedX  and 

parthealtyX , respectively.   

It is worthwhile to mention that when the iteration 

number reaches to 20% of the structure's elements, the 

process of search space reduction begins. In other words, 

after a relative convergence, the convergence rate is become 

more rapid by reducing the search space and modifying the 

elasticity modulus of the elements which are vividly 

healthy. 

neT  2.0  (20) 

in which T  is the minimum number of iterations required 

for starting reduction search space procedure. Also, ne

denotes the number of elements. 

 

 

4. The proposed algorithm 
 

In this section, the issues discussed in the previous 

sections are summarized in a flowchart. This flowchart is 

illustrated in Fig. 1. At each iteration, the system of 

equations is established based on the responses of the 

structural model and the damaged structure. With the help 

of Eq. (11), the preconditioner matrix can be obtained by 

computing the pseudo-inverse of the sensitivity matrix. By 

pre-multiplying this matrix by the system of equations, the 

new system of equations is obtained (Eq. (8)). Due to the 

asymmetry of the coefficient matrix of this new system of 

equation, the BCG approach is employed for finding its 

solution. At this stage, the structural model is updated based 

on the damage vector (vector includes the damage severity 

of the members) achieved from the previous iteration. Then, 

this procedure is repeated.  In this process, the reduction of 

the search space begins when the iteration number reaches 

to the values achieved from Eq. (20). Note that; this 

procedure is conducted by utilizing Eqs. (15)-(19). 

It is worthwhile to highlight that investigating the 

convergence and accuracy of the suggested algorithm in 

damage detection problem are important issues. For this 

purpose, the following convergence and accuracy criteria 

are used (Lu and Law 2007, Naseralavi et al. 2016) 

21ii XXC   (21) 

2
1 modeld RRerror 

 
(22) 

1002
1




ne

i

exact

i

calculated

i xxerror
 

(23) 

where 1iX   and iX  are the damage vector of iteration i 

and i-1, respectively. Eq. (21) is utilized for assessing the 

convergence of the proposed method. It is the second norm 

of the vector equal to the difference between unknown 

vectors of two sequential iterations. Eqs. (22) and (23) are 

applied for evaluating the error of the proposed damage 

detection technique.  It should be added that modelR  

contains the responses of the updated structural model in 

each iteration. Moreover, 
exact

ix  and 
calculated

ix  are the 

actual and calculated damage vector of the i-th element. 
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5. Numerical examples 
 

To assess the capability and efficiency of the suggested 

method, it is applied for damage detection of two trusses. 

Note that; the noisy measurements are employed. Due to the 

fact that experimental data are not available, the aforesaid 

errors should be induced to the responses of the damaged 

structure's model. To achieve this goal, the coming equation 

is employed (Li and Law 2010). 

calculatedpcalculatedmeasured RNRR ..E  (24) 

In this equation, the responses with and without noise are 

denoted by measuredR  and calculatedR , respectively. Also, 

the induced error level and the error vector with standard 

normal distribution are shown by pE  and N , 

correspondingly. The mean and standard deviation are 

assumed to be equal to 0 and 1, respectively. 

 

 

 

 

5.1 Plane truss 
 
Herein, a 31-member truss is assessed (Li and Law 

2010). As shown in Fig. 2. It has 14 nodes and 25 degrees 

of freedom. This truss is made of a material with the density 

of 2770 kg/m
3
 and elasticity modulus of 70 Gpa. Moreover, 

the cross-sectional area of its members is 0.0025 m
2
. The 

parameters required for calculating the accelerations and 

load patterns are assumed to be equal to those of Li and 

Law (2010), for comparison purposes. Members 18, 19, 20 

and 22 are damaged. The elasticity modulus of member 20 

is reduced by 15%, and the elasticity modulus of the other 

damaged members is decreased by 10%. To perform the 

damage detection process, an impulsive load is applied to 

node 5. The impulsive load duration is 0.005 sec, and its 

maximum value is equal to 320.4 kN. The vertical 

accelerations of nodes 2, 4, 6 and 7 are recorded. In other 

words, only four sensors are used for measuring the vertical 

accelerations. 

 

Fig. 1 The flowchart of the proposed method 

 

Fig. 2 31-member plane structure (Li and Law 2010) 
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5.1.1 Detection of damaged elements 
To prove the stability of the suggested approach against 

the noisy measurement, responses with 5% and 10% noise 

levels are applied. The least square technique has been 

widely employed in researches dealing with solving the 

system of equations corresponding to the damage detection 

problem. In this paper, to assess the efficiency (reducing the 

condition number of the coefficient matrix) of the suggested 

technique, the obtained results are compared with those of 

the least square method. In Fig. 3, the damage detection 

chart of the 31-member truss with noise-free measurements 

is presented. Due to the fact that the measurements are 

noise-free and the sensitivity matrix is not large, the 

location and severity of damage can be obtained accurately 

with the help of both approaches. Now, the measurements 

with 5% noise level are used. Based on Fig. 4, it is obvious 

that the suggested approach can estimate the location and 

severity of damage with high accuracy by utilizing these 

measurements. With the help of Eq. (23), the error existing 

in the damage vector is computed, and it is equal to 2.58%. 

In a similar manner, the damage detection process is 

conducted by employing measurements with 10% noise 

level as depicted in Fig. 5. In this case, the error index is 

equal to 8.2%, and the authors' tactic performs well. In  

 

 

 

 

other words, fortunately, the suggested method and the 

tactic used for stabilizing the damage detection process 

against noisy measurements are successful. 

At this stage, the obtained results are compared with 

those of Li and Law (2010). In this way, the comparison 

between the suggested stabilizing approach and other 

techniques, such as Tikhonov regularization is conducted. It 

should be added that this reference proposed an adaptive 

Tikhonov regularization algorithm for solving the system of 

equations corresponding to the damage detection problem. 

In Fig. 6, the results achieved by locating and estimating 

severity of damage in 31-member truss are presented for 

measurements with noise 5% and noise 10%. Obviously, the 

authors' approach performs more accurately in 

determination of damage location than the other one. 

Similarly, the proposed algorithm is more successful in 

estimating the damage severity in comparison to the other 

researchers' scheme. On the other hand, the damage 

magnitude in members wrongly identified as the damaged 

members by the suggested tactic is less than those 

calculated by other method. 

 

 

 

 

Fig. 3 The results of damage detection for noise 0% 

 

Fig. 4 The results of damage detection for noise 5% 
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5.1.2 Evaluation of the condition number of matrix 
Now, the capability of the approach proposed for 

reducing the condition number of the system of equations  

 

 

 

 

 

 

 

and its effect on the authors' stabilizing process is 

investigated. After preconditioning procedure, the 

coefficient matrix of the system of equations for presented  

 

Fig. 5 The results of damage detection for noise 10% 

 

Fig. 6 The comparison between the results of proposed method and Li-Law method 

Table 1 Condition number of coefficient matrix 

 0% noise 5% noise 10% noise 

Iteration SS .T
 SS .

 SS .T
 SS .

 SS .T
 SS .

 

1 33819.887 25.271 33819.887 25.271 33819.887 25.271 

2 54701.198 41.182 49455.806 37.248 46945.412 35.466 

3 32221.821 24.112 34012.908 25.552 37310.915 28.192 

4 34887.025 26.512 37392.322 28.525 40783.546 30.577 

5 34844.773 26.486 37756.628 28.298 42067.584 31.126 

6 34692.069 26.432 37901.030 28.410 41539.402 30.308 

7 - - 38318.494 6.071 40457.868 10.836 

8 - - 37770.040 3.088 41460.728 7.057 

9 - - 37967.261 3.070 40983.143 6.074 

10 - - 37932.250 - 41462.395 6.034 

11 - - 37832.587 - 40617.493 6.074 
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method changes into SS .
. In contrast, for least square 

method, the coefficient matrix is in the form of SS .T
. For 

both techniques, the condition numbers corresponding to 

various steps of the model updating process with different 

noise levels are listed in Table 1. It is clear that the 

condition number of the suggested algorithm is 

continuously decreased. 

As a consequence, the stability of the coefficient matrix 

is guaranteed when the noisy measurements are applied. In 

the first iteration of the damage detection process of the 31-

member truss, the sensitivity matrices of various noise 

levels, which are calculated based on the responses of the 

undamaged structure, are the same. It is worthwhile to 

mention that the condition numbers of matrices d.SS


 

and SS .T
 are 25.271 and 33819.88, respectively. In fact, 

due to the usage of stabilizing method, a considerable 

reduction can be observed in condition number. For noise 

5%, the condition numbers are shown in Fig. 7. By reducing 

the search space, the condition numbers are decreased more 

considerably. As a result, the solution approach becomes 

more stable against noisy input data. 

 

5.1.3 Convergence test 
This section deals with evaluating the accuracy and 

convergence rate of the suggested tactic with the help of Eq. 

(22). Moreover, the effect of the process, which is 

introduced for reducing the search space, on the 

convergence rate is investigated. Based on Fig. 8(a), the 

damage detection of the 31-member truss is finished prior 

to the beginning of the process of reducing search space 

when the measurements are noise-free. For this case, the 

number of iterations of the model updating and establishing  

 

 

 

the new system of equations procedures is equal to 6, and  

the second norm of the vector equal to the difference 

between the damaged and modeled structural responses is 

5871  e.error . For noises 5% and 10%, the reduction 

process of search space begins. According to Eq. (20), 6 

iterations are required for the beginning of the aforesaid 

procedure. In Figs. 8(b) and 8(c), the computational 

operations of Eq. (22) are presented for both noise levels. 

For noise 5%, the search space is reduced in two stages, and 

26 members are omitted. Furthermore, for noise 10%, the 

reduction of search space is conducted in 4 stages, and 7 

members are finally removed. Based on Figs. 8(b) and 8(c), 

it is obvious that the accuracy of the solution method is 

decreased after the beginning of the first stage of the search 

space reduction process. But in the end, the convergence 

rate is enhanced. 

In Fig. 9, the calculated damage magnitudes are 

presented for noise 10%. For instance, in the first stage of 

damage detection method, the magnitude of damages 

corresponding to members 30 and 31 is equal to 0.042 and 

0.207, respectively. In the coming iterations, the damage 

magnitude is 0.019 and 0.01 for member 29 and 31, 

correspondingly. 

In Fig. 10, the solution space is illustrated, and it is 

divided into two search subspace and removed one. Note 

that; for noise-free measurements, the damage detection 

process is completed prior to reducing the search space. For 

the case with noise 5%, 86% reduction can be observed in 

the search space. In the case with noise 10%, 82% of the 

initial space is omitted. It is worthwhile to highlight that 

reducing the search space decreases the required 

computational efforts. 

 

 

 

Fig. 7 The comparison of condition number for noise 10% 
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(a) (b) 

 
(c) 

Fig. 8 The amount of norm of residual: (a) for noise 0%, (b) for noise 5% and (c) for noise 10% 

 

Fig. 9 Iteration results of damage detection for noise 10% 
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5.2 Space truss 
 

In this section, a 52-space truss with different damage 

scenarios is assessed. For this purpose, a limited number of 

sensors and noisy measurements are applied. In Figs. 11(a) 

and 11(b), the finite element model of this structure is 

depicted. It includes 21 nodes and 39 degrees of freedom. 

Besides, the sensors installed on this truss are shown in Fig. 

11(c). In specified places, the acceleration is measured in x, 

y and z directions. The cross-sectional area, elasticity 

modulus and material density of the structural elements are 

0.0002 m
2
, 210 Gpa and 7800 kg/m

3
, respectively (Kaveh 

and Zolghadr 2011). Note that, only the sensors are 

arranged based on Naseralavi 2016. Two different damage 

scenarios and two noise levels are investigated. They are 

presented in Table 2. In the first damage scenario, the  

 

 

 

 

elements are considerably damaged, and in the second 

scenario, damage severity is restricted to 20%. Additionally, 

an impulsive load with the maximum value of 320.4 kN and 

duration of 0.005 sec is used. It is applied to node 8 in z-

direction. 
 

Table 2 Damage scenarios 

Scenario Element no. 
Damage extent 

(%) 
Noise (%) 

1 

10 40 

5 % 14 30 

49 30 

2 

4 15 

6 % 
9 20 

23 20 

50 10 

 

Fig. 10 The amount of search and missing space (%) 

 

 
 

(a) Element numbers (b) Front view (c) Pattern of sensors 

Fig. 11 52-bar dome-like space truss (Kaveh and Zolghadr 2011) 
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In Fig. 12(a), the results of damage detection of the 

space truss for scenario 1 is presented. Findings prove the 

efficiency and stability against noisy measurements of the 

authors' tactic. In both damage scenarios, the suggested 

scheme successfully locates and estimates the severity of 

damage. 

Based on Eq. (22), the convergence curve is obtained 

and presented in Fig. 12(b). After iteration 10, the reduction 

process of the search space begins. It can be seen from Fig. 

12(b) that at the end of damage detection process 48 

members are omitted from the search space. In iteration 11, 

after reducing the search space, the convergence cannot be 

achieved. To solve this problem, the solution procedure 

moves to a point whose search space includes 3 members. 

In this way, the convergence can be gained. 

For several members, the process of finding the damage 

severity is presented in Fig. 13. It is clear that by executing 

the procedure of reducing the search space, the estimated 

severities of some elements become more accurate. For 

instance, the severity of damage of member 14 is firstly  

 

 

 

 

22%. nevertheless, after implementing the search space 

reduction, this value is changed into 30% which is the 

actual magnitude of damage. For the first damage scenario 

of the truss space, the search space division into search 

subspaces and omitted ones are conducted, based on Fig. 

14. Note that; 10 iterations are required for reducing the 

search space. After iteration 10, the search space is 

significantly decreased. Consequently, the accuracy is 

increased, and the required time for solving the system of 

equations is reduced. Finally, the missing subspace includes 

48 members. Accordingly, the damage detection method 

correctly identified the location of the damaged members. 

For the second damage scenario of the space truss, the 

corresponding results of damage detection are presented in 

Figs. 15(a) and 15(b) and 16. Based on Fig. 15(a), it is 

obvious that the proposed approach is successful in locating 

and estimating the severity of damage. As can be seen from 

Fig. 15(a), After reducing the search space, the convergence 

path of the numerical method tends zero, and the final 

search space includes 4 members. 

 
 

(a) (b) 

Fig. 12 The results for scenario 1: (a) damage detection results and (b) the amount of norm of residual 

 

Fig. 13 iteration results of damage detection for scenario 1 
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Fig. 14 The amount of search and missing space (%) for scenario 1 

  
(a) (b) 

Fig. 15 The results for scenario 2: (a) damage detection results and (b) the amount of norm of residual 

 

Fig. 16 The amount of search and missing space (%) for scenario 2 
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As Fig. 16 reveals, the reduction of search space occurs 

in 11 steps, and the last missing space consists of 48 

members. Based on the findings of these two numerical 

examples, it is observed that the capability of the damage 

detection process using time history responses, such as 

nodal accelerations, is dependent on the location and 

magnitude of the applied load. Also, the number of sensors 

and their arrangement are important factors. Due to the fact 

that the number of sensors utilized in the second example is 

more than that of the first one, the damage detection method 

leads to more accurate results. It is worthwhile to highlight 

that the suggested scheme is suitable for solving the 

nonlinear large system of equations. The preconditioning 

method and the procedure of reducing the search space 

stabilize the authors' damage detection algorithm against 

noisy measurements. 

 

 

6. Conclusions 
 

This paper deals with proposing a new method for the 

damage detection problems. This technique is developed by 

integration of recent methods designed to improve accuracy 

and save computational costs in solving equations. The 

method takes advantage of the iterative BCG method, a 

proper preconditioner matrix obtained by approximately 

calculating the pseudo-inverse of the sensitivity matrix and 

a procedure of reducing the search space. The BCG 

technique was applied due to the asymmetry of the 

sensitivity matrix of the system of damage detection 

equations. Moreover, for providing the numerical stability 

against the input errors due to noisy measurements, the 

preconditioner was utilized. In addition, a new process for 

reducing the search space was presented based on the 

characteristics of the damage vector. The authors' method 

employs iterative strategies instead of direct ones. In other 

words, the direct inversion of matrix and calculation of the 

eigenvalues are not required. As a result, this approach is 

applicable to the structures including a large number of 

elements. 

 To demonstrate the performance and accuracy of the 

presented method, two numerical examples were deployed. 

To measure the nodal accelerations, a limited number of 

sensors was applied. Findings proved the high accuracy and 

stability of the presented scheme for damage identification 

of the numerical examples in the presence of noisy data. 

Furthermore, the proposed preconditioner matrix decreased 

the condition number of the coefficient matrix of system. As 

a result, the ill-conditioned problem was upgraded to the 

well-conditioned problem. The convergence diagrams 

revealed that executing the search space reduction led to a 

higher convergence rate. Besides, the estimated magnitudes 

of the damaged elements became more accurate and the 

vast majority of elements, which were wrongly recognized 

as damaged elements, were eliminated from the search 

space. 

Finally, based on the discussed results, it can be 

concluded: (1) the method is capable of estimating the sites 

and severities of damages with high precision, (2) the 

limited number of sensors does not have a considerable 

influence on the damage detection process using proposed 

method, (3) using an appropriate preconditioner matrix 

along with the reduction of search space stabilizes the 

damage detection process against the noisy data. 
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