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1. Introduction 
 

Today, protection of buildings against natural 

phenomena such as wind and earthquake is one of the 

fundamental concerns in structure engineering. This 

protection was traditionally only based on the ability of the 

structure itself, e.g., its ability to dissipate the energy 

generated by earthquake. However, structural vibrations 

generated by earthquake or wind can be controlled by 

various methods including passive, active, and semi-active 

control (Spencer and Nagarajaiah 2003, Housner et al. 

1997). Because semi-active control combines the reliability 

associated with passive control and the adaptability 

associated with active control, it has generated great interest 

among researchers. 
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One of the effective factors in the successful 

implementation of structural control is an efficient control 

algorithm to compute the magnitude of control forces to be 

applied to the structure. Active and semi-active control 

methods used in structural control fall into two classes: 1- 

Classic control including Linear Quadratic Regulator 

(LQR), Linear Quadratic Gaussian (LQG), H2, H∞ and 2- 

Intelligent control including neural network and fuzzy 

control methods. In recent years, researches have shifted 

towards modifying the existing control algorithms or 

developing new algorithms like soft computing methods. 

Neural network is known as one of the most effective 

tools in control applications. The first studies in applying 

Neural Networks in structural control were conducted 

simultaneously by Ghaboussi and Joghataie (1995), Chen et 

al. (1995). Kim et al. (2004) designed an optimal neural 

control method in their studies. They also eliminated the 

neural network controller in their further study and instead 

they used sensitivity analysis method. In order to train a 

neural network controller Karamodin and Kazemi (2008) 

proposed a semi-active control method for a seismically 

excited nonlinear benchmark building equipped with a 

Magneto Rheological (MR) damper. In this method, the 
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Abstract.  Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent 

years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some 

specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. 
However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn 

suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction 

and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System 

(ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic 

behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine 

input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to 

optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang 

damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story 

benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic 

algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic 

performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the 

structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 

46% reductions in peak inter-story drift (J1) compared to the LQG controller; 30 and 39% reductions in J1 compared to the COC 

controller and 3 and 16% reductions in J1 compared to the GAFLC controller. When compared to other controllers, one can 

conclude that Fuzzy CoCo controller performs better. 
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neural network predictive control algorithm (NNPC) has 

been used. Ramezani and Zahrai (2016) used a new method 

in order to gain Tuned Mass Dampers (TMD) parameters. 

They examined structures with different numbers of stories 

under various earthquakes and used neural network in order 

to achieve optimal parameters. Hashemi et al. (2016) 

proposed a wavelet neural network-based semi-active 

control model in order to determine accurately computed 

input voltage applied to the MR dampers to generate the 

optimum control force in structures. 

Application of the fuzzy control method has been 

studied by many researchers in recent years. Ahlawet and 

Ramaswamy (2004a, b) optimized designing and training of 

a fuzzy controller using genetic algorithm and studied the 

control of several buildings against wind and earthquake. 

Huang et al. (2009) used a model according to Bouc-Wen 

hysteresis model in order to control structure with a MR 

damper and predict both force-displacement behavior and 

complex nonlinear force-velocity response. Using fuzzy 

control for damper voltage determination, the results of 

investigation showed that the responses have reduced after 

optimization with genetic algorithm. Zahrai et al. (2013) 

used fuzzy control to reduce vibration response using TMD 

dampers by testing this control system on an 11-story 

building. Uz and Hadi (2014) used an integrated fuzzy 

control in order to render interactive relations between the 

forces and input voltage of MR damper according to 

modified Bouc-Wen model. They compared their findings 

with those of LQR and LQG methods. Their goal was to 

reduce responses as well as total cost of damper. Bathaei et 

al. (2017) investigated the performance of a semi-active 

TMD with adaptive MR damper using type-1 and -2 fuzzy 

controllers for seismic vibration mitigation of an 11-degree 

of freedom building model. 

One of the most important and widely used types of 

neuro-fuzzy networks is Adaptive Neuro-Fuzzy Inference 

System (ANFIS) proposed by Jang (1993). This system is a 

combination of a 5-layer neural network with Fuzzy 

Inference System. Ali (2008), Ali and Ramaswamy (2006) 

designed their active control system using ANFIS controller 

and showed its efficiency in reducing structural vibration 

responses through a study on benchmark Highway Bridge 

using few sensors. Also, Reigles and Symans (2006) 

showed the efficacy of their proposed system using semi-

active MR damper and ANFIS controller for controlling 

benchmark isolated building. Zhi and Oyadiji (2008), 

applied MR damper using ANFIS method in structure 

control. In order to obtain training data for ANFIS control 

using LQG control method. A Force-Feedback control 

design was used in order to overcome the problem of 

commanding MR damper which was considered in the 

output of a desired force. In this method, a force-feedback 

circle was used in order to induce MR damper to produce a 

desirable control force. Fayezioghani and Moharrami 

(2015) by integrating MR dampers dynamic equations and 

structural motion, and after solving them in a series, 

proposed a brief semi-active optimum control strategy. 

They also used ANFIS controller in their study. Ramezani et 

al. (2017) design fuzzy systems for optimal parameters of 

TMDs to reduce seismic response of tall buildings. The 

design of the fuzzy systems is performed by three methods: 

look-up table, the data space grid-partitioning, and 

clustering. After that, rule weights of Mamdani fuzzy 

system using the look-up table are optimized through 

genetic algorithm and rule weights of Sugeno fuzzy system 

designed based on grid-partitioning methods and clustering 

data are optimized through ANFIS. 

One of the main disadvantages of fuzzy controllers is 

the lack of learning ability triggering use of knowledge and 

experience of the professionals specializing in controller 

database. A learning process should be employed to solve 

this problem and to automate the fuzzy controller design. 

Various methods have been proposed based on fuzzy 

controllers capable of learning. These controllers, in 

addition to the method of fuzzy decision-making ability, 

possess the ability to create or improve their control rules 

based on past information. One of the effective methods for 

designing fuzzy controllers is to exploit genetic algorithm 

inspired from evolutionary theory and seeking for 

appropriate fuzzy controller that can satisfy design criteria. 

Also, combination of Neural Networks with Fuzzy 

Inference System which uses neural network training and 

adaption capability is a suitable idea to resolve the fuzzy 

control deficiencies. ANFIS is one of the most well-known 

neuro-fuzzy networks. Both premise and consequent 

parameters of fuzzy membership and output functions of 

ANFIS have the ability for training and improvement but 

most researchers have focused on just consequent 

parameters. In order to optimize the controller performance, 

an approach is proposed in this paper where both premise 

and consequent parameters of fuzzy functions in an ANFIS 

network are adjusted simultaneously by GA. 

In this study, two controllers are used for semi-active 

seismic control of structures. The first controller combines 

neural networks and fuzzy inference system. Genetic 

algorithm is used for training and optimizing ANFIS 

structure parameters. The second controller is based on a 

Fuzzy cooperative coevolution (Fuzzy CoCo). Fuzzy 

control is an intelligent control method in contrast to 

classical control with some specific capabilities such as 

handling nonlinear and complex systems, adaptability, and 

robustness to errors and uncertainties. However, due to lack 

of learning ability of fuzzy controller, it is used in 

combination with a genetic algorithm, which in turn suffers 

from some problems like premature convergence around an 

incorrect target. To resolve this problem, the Fuzzy CoCo 

controller is introduced in which the parameters of 

membership functions and rules will be searched in two 

separate species. In most studies that have been conducted 

in structural control, the design of the controllers has been 

based on the reduction of the peak inter-story drift, but in 

this study, the design of controllers is based on the 

reduction of the Park-Ang damage index. In order to assess 

the effectiveness of the designed control system, its 

function is numerically studied on a 9-story benchmark 

building, and is compared to those of Wavelet Neural 

Network (WNN), fuzzy logic controller optimized by genetic 

algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and 

Clipped Optimal Control (COC) systems in terms of 

seismic performance. 
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2. Fuzzy genetic controller 
 

Fuzzy controllers are nonlinear controllers with special 

structure which provide successful applications of fuzzy 

theory in practical issues. These controllers by applying 

fuzzy theory, indicate a behavior similar to that of expert 

humans when they are used as control system. Conversely, 

fuzzy controllers in comparison with classic controllers, 

without the need for mathematical model of the system, 

evaluate systems considering the experience of experts in 

the form of if - then fuzzy expression rules. Fuzzy control is 

a control method based on fuzzy logic. In fact, if fuzzy 

logic is simply called computation with words rather than 

number, fuzzy control is the one with statements rather than 

equations (Ross 2004). 

A fuzzy system has various components and parameters. 

The purpose of designing a fuzzy system is to determine 

these components and parameters, so that the system has a 

high numerical accuracy and its interoperability property is 

preserved. The parameters of a fuzzy system are divided 

into four parts. The first part is the logical parameters of the 

fuzzy system. This part includes the form of membership 

functions and relationships that are used for fuzzy 

operators, and, or, arguments, aggregate rules and 

difuzzification. The second part of fundamental parameters 

of the system is mainly related to the size and magnitude of 

the fuzzy system. These include the number of membership 

functions and the number of fuzzy rules. The third part is 

the communication parameters related to the topology of the 

fuzzy system, which include the introduction, result, and 

weight of the fuzzy rules. Finally, the fourth part of the 

fuzzy system includes operation parameters that establish 

the relationship between the numerical values and the fuzzy 

values of the variables or in fact the same membership 

functions of the fuzzy system. 

In the direct design of fuzzy systems, all these sections 

and parameters must be selected by the designer. Doing this 

requires sufficient knowledge of the system behavior, 

expertise and experience, and sometimes it requires trial 

and error. The use of direct method in complex and large 

systems, with their insufficient knowledge or the problem 

space and large number of parameters, is difficult and 

sometimes impossible. The use of automated modeling 

techniques has been considered for the design and modeling 

of fuzzy systems in complex and large issues. In these 

methods, the logical parameters of the fuzzy system that 

determines its overall characteristics are selected by the 

designer. Other parameters of the fuzzy system can be 

determined or searched by computational methods. 

Evolutionary algorithms have the ability to search in 

large and complex spaces. These algorithms have shown 

their ability to search optimally in different fields. Fuzzy 

modeling can be considered as an optimization problem, 

whose objective function is the behavior of the system and 

the search space, the parameters of the fuzzy system. 

The fuzzy system consists of three parts: fuzzifier, 

inference Engine and defuzzifier. The behavior of the fuzzy 

system is evaluated on the basis of a conduction criterion 

and placed on the genetic algorithm as a function of 

competence. Gene population algorithm populations in this 

system are parameters of a fuzzy system that are optimized 

in an evolutionary process. 

Depending on the various criteria, including the 

available information and knowledge of the system, the 

number of parameters, the availability and completeness of 

the input and output data, genetic algorithm can be used in 

different ways to determine the parameters of the fuzzy 

system. The logical parameters of the fuzzy system are 

usually selected by the designer. But three other parts of 

fuzzy system parameters can be determined using genetic 

algorithm (Cord 2001). 

 The combination of fuzzy systems and evolutionary 

algorithms has problems such as duality and premature 

convergence. An evolutionary set of rules and membership 

functions can be an effective way to solve this problem 

(Pena-Reyes and Sipper 2001). For this reason, in this 

paper, the design and introduction of Fuzzy CoCo controller 

fellow is considered as one of the proposed controllers. 

Fuzzy-Genetic controller comprises of a fuzzy controller 

and a genetic algorithm that is illustrated in Fig. 1. 

 

 

3. Proposed Controllers 
 
3.1 Fuzzy CoCo controller 
 

Two types of coevolution are defined in fuzzy 

cooperative coevolution which are membership functions 

and rule base. This method is essentially based on the 

determined framework defined by (Potter 1997) and (Potter 

and Jong 2000). Fuzzy CoCo system allocates high degree 

of freedom to designing fuzzy systems until users can 

provide interaction between performance and justifiability. 

The number of fuzzy modeling processes typically 

needs simultaneous operational and connected parameters. 

These parameters present a fully complete definition of 

language knowledge to describe fuzzy system and mapping 

values from symbolic definition to real values (a complete 

definition requires structural parameters as dependent 

variables and number of rules). Therefore, the fuzzy 

modeling consists of two separate but intertwined 

processes: (1) seeking for membership functions as fuzzy 

variables (functional parameters) and (2) seeking for rules 

(connected parameters) used to derive. 

 

 

 

Fig. 1 The structure of fuzzy- genetic controller 
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Fuzzy modeling illustrates several properties that justify 

the use of cooperative coevolution: 

• The required solutions can be very difficult 

because fuzzy systems use a large number of variables to 

define hundreds of parameters. 

• The proposed solution (a fuzzy inference system) 

can be divided into two distinct components: rules and 

membership functions. 

• Membership functions can be displayed 

continuously or in real numbers but the rules are displayed 

in discrete and symbolic values. 

• These two components are interdependent 

because the membership functions are defined by the first 

part of values arranged by the second part (rules). 

In this method, individuals in the first species encode 

the values that define all membership functions for all 

variables in the system, and individuals in the second 

species describe a set of rules. 

In Fuzzy CoCo control, two evolutionary algorithms are 

used to control the evolution of two populations, which are 

examples of a simple genetic algorithm. Fig. 2 presents the 

Fuzzy CoCo algorithm in pseudo-code format. 

A more detailed view of the fitness evaluation process is 

depicted in Fig. 3. An individual undergoing fitness 

evaluation establishes cooperation with one or more 

representatives of the other species, i.e., it is combined with 

individuals from the other species to construct fuzzy 

systems. The fitness value assigned to the individual 

depends on the performance of the fuzzy systems it 

participated in (specifically, either the average or the 

maximal value) (Pena-Reyes and Sipper 2001). 

Fuzzy CoCo provides a lot of freedom in designing a 

variety of fuzzy systems and allows the designer to manage 

the balance between optimal behavior and interpretation of 

the system. 

In Figs. 4 and 5, in the Fuzzy CoCo controller design, 

two input variables have seven membership functions and 

an output variable that has eleven output variables. 

 

 

Fig. 2 Pseudo-code of Fuzzy CoCo (Pena-Reyes and 

Sipper 2001) 

Input membership functions are presented in Fig. 4 after 

the design. 

The linguistic variables used for fuzzy input and output 

values are presented in Tables 1 and 2, respectively. The 

fuzzy rules database used in control systems are also 

demonstrated in Table 3. For acceleration as an input 

variable, P and N stand for positive and negative values. In 

the Fuzzy CoCo controller, acceleration is used as input. 

 

 

 

Fig. 3 Fitness evaluation in Fuzzy CoCo (Pena-Reyes 

and Sipper 2001) 

 

 

Fig. 4 Triangular membership functions for input variable 

 

 

Fig. 5 Triangular membership functions for output 

variable 
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Table 1 The linguistic variables for input values of 

Fuzzy CoCo 

Linguistic variable Acceleration 

L Negative large 

NM Negative medium 

NS Negative small 

ZR Zero 

PS Positive small 

PM Positive medium 

PL Positive large 

 

 

Table 2 The linguistic variables for output values of Fuzzy 

CoCo 

Linguistic variable Voltage 

SS Small small 

SM Small medium 

SL Small Large 

MS Medium small 

MM Medium medium 

ML Medium large 

LS Large small 

LM Large medium 

LL Large large 

VL Very large 

 

 

Table 3 Fuzzy CoCo controller rules database 

 Acceleration 

A
cc

el
er

at
io

n
 

 PL PM PS Z NS NM NL 

NL VL LM ML VL SS VL LL 

NM VL MM LL ML VL MM ML 

NS LS LL LS VL LL LM ML 

Z VL LL LS ZR LL MM ML 

PS SL MM LM VL VL VL LL 

PM VL ML LM LS SL VL MM 

PL LL LL LS LM LS LM LM 

 

3.1 ANFIS Controller 
 

In this method, the acceleration and drift are considered 

as ANFIS input. For each input, 5 fuzzy membership 

functions are considered that are presented in Tables 4. 

Another important step is to choose the type and form of 

membership fuzzy functions. For inputs of the ANFIS 

network, Gaussian membership functions are considered 

because of norm changes and optimal function in neuro-

fuzzy controllers. Gaussian membership fuzzy functions are 

defined by σ and C parameters that are related to the width 

and center of the functions. The parameters of used 

Gaussian membership functions are chosen in a way that 

they have uniform distribution over the entire range. 

Therefore according to the range of inputs (+1, -1), σ and C 

parameters are calculated as the amounts illustrated in Table 

5. Fig. 6 shows these functions. 

 

Table 4 The linguistic variables for input values of ANFIS 

controller 

Linguistic variable Acceleration & Drift 

NB Negative big 

NS Negative small 

ZE Zero 

PS Positive small 

PB Positive big 

 

 

Table 5 The input parameters of membership functions in 

ANFIS controller 

 
NB NS ZE PS PB 

σ 0.2 0.2 0.2 0.2 0.2 

C -1.00 -0.50 0 0.50 1.00 

 

 

Table 6 ANFIS controller rules database 

 

Drift 

NB NS ZE PS PB 

A
cc

el
er

at
io

n
 

NB mf1 mf2 mf3 mf4 mf5 

NS mf6 mf7 mf8 mf9 mf10 

ZE mf11 mf12 mf13 mf14 mf15 

PS mf16 mf17 mf18 mf19 mf20 

PB mf21 mf22 mf23 mf24 mf25 

mf: member function 

 

 

 

Fig. 6 Membership functions in the proposed ANFIS 

approach 

 

 

The rules that comprise ANFIS network structure include if-

then rules. In order to make the assumption part of these 

rules, the membership degree of each input is calculated in 

five fuzzy membership functions. In this way, 5 

membership degrees are calculated for the acceleration and 

5 membership degrees for drift resulting in totally 25 states 

from the combinatory forms. Therefore, the proposed 

ANFIS structure consists of 25 rules. It should be noted that 

making combination in the assumption part is from AND 

type and is conducted by T-norm operator (multiplication). 

Table 6 shows ANFIS rules database. 

 

5



 

Masoud Bozorgvar and Seyed Mehdi Zahrai 

 

 

Controller output is normalized voltage in the range of (0, 

+1) that by multiplying it in the maximum imposed voltage 

to the used MR damper, the necessary voltage for each 

damper is calculated. The result functions in ANFIS are 

from either zero degree (constant) or one degree (linear). 

Although using linear result functions causes more difficult 

and time lasting training, their use improves accuracy and 

the controller function. Therefore in this research, the 

following linear result functions are used for ANFIS 

networks used in the controller: 

fi = pix + qiy + ri     ,      i=1,2,3,… (1) 

In this equation x and y are network first input 

(acceleration) and second input (drift) and ri, qi, pi are i-th 

parameters of result function. Thus parameters will 

comprise of genes in genetic algorithm. The designed 

ANFIS network structure as a controller is illustrated in Fig. 

7 according to described inputs, membership and result 

fuzzy functions. 

 

 

4. Benchmark building for numerical study 
 
In this study, to evaluate controllers, a 9-story 

benchmark building is selected for numerical investigation, 

which is defined by Ohtori et al. (2004). The benchmark 

structure is 45.73 m by 45.73 m in plan, and 37.19 m in 

elevation. The bays are 9.15 m wide center to center, in both 

directions, with five bays each in the north-south (N-S) and 

east-west (E-W) directions. The building lateral load-

resisting system comprises of steel perimeter moment-

resisting frames (MRFs) with simple framing on the farthest 

south E-W frame. The interior bays of the structure contain 

simple framing with composite floors. Fig. 8 shows the 

details of the benchmark building. 

In the evaluation model, the effects of nonlinear 

behavior of the plastic hinges are considered on the ends of 

the elements centrally. The behavior of these hinges is 

modeled as bilinear hysteresis model. A detailed description  

 

 

and mathematical modeling of the benchmark building can 

be found elsewhere (Ohtori et al. 2004). 

 

4.1 Simulation of structural control system 
 
The structure control system is simulated in the 

MATLAB (The MathWorks Inc., Natick, MA) software. 

The environment of this software is very suitable for 

simulation of control systems due to strong mathematical 

facilities and a variety of tool box such as a control, a fuzzy 

system, a neural network toolbox, and genetic algorithm. In 

addition, SIMULINK software provides a good opportunity 

for this graphical simulation using computational blocks 

that exist in the MATLAB environment. Fig. 9 shows the 

simulation diagram of the structure control system in the 

SIMULINK software environment. 

Two far-field and two near-field historical ground 

motion records are selected for evaluating the performance 

of proposed algorithms including the 1940 El Centro, 1968 

Hachinohe, 1994 Northridge, and 1995 Kobe earthquakes. 

In the benchmark study, various levels of each of the 

earthquake records are utilized including 0.5, 1.0, and 1.5 

times the magnitude of the El Centro and Hachinohe and 

0.5 and 1.0 times the magnitude of the Northridge and Kobe 

earthquakes (Ohtori et al. 2004, Hashemi et al. 2016). 

In this research for modeling controllers, target function is 

to minimize the damage in structures. Also, damage control 

has been conducted based on the Park-Ang damage index 

while the controller has been designed to reduce this index. 

The relation of the Park-Ang damage index can be written 

as 

𝐷 =
𝜑𝑀 − 𝜑𝑦

𝜑𝑢 − 𝜑𝑦

+
𝛽

𝑀𝑦𝜑𝑢

∫𝑑𝐸 (2) 

In the relation, 𝐷= damage index, 𝜑𝑀= maximum 

curvature (The result of nonlinear dynamic analysis), 𝜑𝑢= 

ultimate curvature due to static load, 𝜑𝑦= yield curvature 

of elastic state, 𝑀𝑦= yield moment member, ∫𝑑𝐸= denotes 

the hysteretic energy absorbed by the element during the  

 

Fig. 7 Used ANFIS network in the proposed controller 
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earthquake, 𝛽= non-negative parameter representing the 

effect of cyclic loading on structural damage (Williams and 

Sexsmith 1995). 

 

4.2 MR damper 
 
A very interesting type of semi-active devices is MR 

damper that is capable of reversible changes in viscosity. 

This type of damper consists of magnetic polarized particles 

suspended in the oil. Their ability to convert from liquid to  

 

 

 

 

semi-solid state with controllable deliverable resistance in 

milliseconds by changing the magnetic field makes them 

ideal for controllable dampers. In addition to the low energy 

content, the other advantages are their simple mechanics, 

which makes it very easy to be maintained, because their 

only moving parts are pistons. Generally, they are 

inherently stable, reliable, and relatively cost-effective. 

Appropriate modeling of MR damper is necessary for 

precise prediction of its behavior. A simple model of MR 

damper is shown in Fig. 10 indicating good compliance 

 

Fig. 8 Description of 9-story benchmark building for assessment in this study (Ohtori et al. 2004, Hashemi et al. 2016) 

 

Fig. 9 SIMULINK Block Diagram for vibration control simulator (Ohtori et al. 2004) 
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with experimental results (Spencer et al.1997). 

The governing equations for the model can be written as 

follows 

f = C0�̇�
 
+ αz (3) 

 

�̇� = -γ�̇�|z|z|
n-1

 - β�̇�|z|
n
 + A�̇� (4) 

 

α = α(u) = αa + αb u (5) 

 

C0 = C0(u) = C0a + C0b u (6) 

In this equation, x is the relative displacement of two 

poles of damper and z is an evolutionary variable that 

shows its response dependence on its history. By adjusting 

γ, β, n and A parameters one can determine the slope of the 

linear behavior and the curvature of the transition part from 

linear behavior to surrender. α and C0 parameters are also 

variable and is adjustable with a controller. In these 

equations, u is the output of the damper electrical circuit 

that is defined according to below dynamic equation 

according to input voltage in circuit (Spencer et al. 1997) 

ù = -η(u-ν) (7) 

In this study, damper parameters are chosen in a way to 

have a capacity of 1000 kN for maximum voltage of 

Vmax=10v. The mechanical properties of MR damper are 

presented in Table 7. 

 

 

 

Fig. 10 Mechanical model of MR damper (Spencer et 

al.1997) 

 

 

Table 7 The mechanical properties of MR damper 

Parameter Value 

αa  51.0872 10 N cm  

αb  54.9616 10 N cm V  

C0a
 

 4.40 Ns cm  

C0b  544.0 10 Ns cm V  

A 1.2 

n 1 

β  -13.0 cm  

γ  -13.0 cm  

η  -150 s  

 

4.3 Evaluation criteria 
 
The benchmark problem (Ohtori et al. 2004) defines 

some evaluation criteria to evaluate the capabilities of each 

proposed control strategy. The performance criteria, which 

are used in this study, are specified by J1 to J6. These 

criteria, which are briefly presented in Table 8, are 

calculated as a ratio of the controlled and uncontrolled 

responses. The norm ‖.‖ is computed using the following 

equation 

‖ ‖ = √
 

  
∫ [ ] 𝑑 

  

 

 (8) 

and tf is a sufficiently large time to allow the response of the 

structure to attenuate (Hashemi et al. 2016). 

 

 

5. The proposed controllers performance and 
numerical results 
 

In this section, the performance of the proposed 

controllers and the optimization method in semi-active 

control of the 9-story benchmark structure are evaluated. 

The simulation of 9-story nonlinear benchmark building has 

been performed using MATLAB. In addition, the code is 

prepared in MATLAB software that can construct the 

ANFIS & Fuzzy CoCo and optimize the parameters of them 

using the GA. 

It must be noted that the optimization has been 

performed for the 1.5× El Centro earthquake and other 

earthquake records have been used for testing the 

performance of the controllers. 

Comparison of the top floor drifts and acceleration of 

the structure for uncontrolled and ANFIS & Fuzzy CoCo 

controllers are shown in Figs. 11 and 12. Fig. 13 also shows 

the relative performance criteria for different controllers. 

Profiles of the peak inter-story drift and peak absolute 

acceleration are presented in Fig. 14. It can be seen that 

these two controllers have effectively reduced story drift 

and acceleration under different earthquakes. Also, it is 

shown the proposed controllers can significantly decrease 

the amount of permanent displacement of the structure. As 

shown in Figs. 11 and 12, it is obvious that the ANFIS and 

Fuzzy CoCo controllers perform very well for the El Centro 

and Hachinohe earthquakes, as two far-field records. 

However, the proposed controllers are effective in reducing 

the maximum responses of the structure subjected to the 

Northridge and Kobe earthquakes, as two near-field 

records. 

In order to quantitatively and accurately assess and 

compare this controller, J1- J6 criteria are used as already 

presented in Table 8. In order to do this, its function was 

compared to those of WNN, GAFLC, COC system (semi-

active) and LQG controller (active) (Karamodin 2007, 

Hashemi et al. 2016). The amounts of these criteria for 

different controllers and under four different earthquakes 

with various intensities are presented in Table 9. 
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Fig. 11 Comparison of the top floor drifts for the 9-story benchmark building: uncontrolled and controlled with ANFIS & 

Fuzzy CoCo controllers 
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Fig. 12 Comparison of the top floor accelerations for the 9-story benchmark structure: uncontrolled and controlled with 

ANFIS & Fuzzy CoCo controllers 
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Table 8 Performance criteria 

Interstory drift ratio Level acceleration Base shear 

 

 

 

 

 

 

  

Normed Interstory drift Normed level acceleration Normed Base shear 

 

 

 

 

 

 

 

  

Table 9 Performance criteria for Fuzzy Cooperative Coevolution (Fuzzy CoCo), Adaptive Neuro-Fuzzy Inference 

System (ANFIS), Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), 

Clipped Optimal Control (COC) and Linear Quadratic Gaussian (LQG) methods 
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J1 

 

LQG(Active) 0.809 0.869 0.958 0.845 0.941 0.868 1.093 1.049 0.863 1.089 0.938 

COC 0.583 0.807 0.853 0.621 0.709 0.786 0.891 0.963 0.805 1.307 0.832 

GAFLC 0.342 0.459 0.599 0.303 0.396 0.571 0.841 1.115 0.441 0.913 0.598 

WNN 0.327 0.437 0.559 0.300 0.373 0.529 0.835 1.118 0.433 0.845 0.576 

ANFIS 0.332 0.445 0.581 0.294 0.384 0.554 0.816 1.082 0.428 0.886 0.580 

Fuzzy CoCo 0.273 0.377 0.492 0.250 0.334 0.478 0.713 0.909 0.382 0.816 0.503 

J2 

LQG(Active) 0.739 0.82 1.024 0.882 0.887 0.915 1.013 1.021 1.00 0.984 0.929 

COC 0.743 0.856 1.017 0.836 0.813 0.961 0.993 1.064 0.970 1.093 0.935 

GAFLC 0.676 0.580 0.820 0.570 0.570 0.816 1.002 0.888 0.779 0.906 0.761 

WNN 0.668 0.541 0.768 0.529 0.571 0.808 1.028 0.861 0.745 0.867 0.739 

ANFIS 0.656 0.563 0.795 0.553 0.553 0.792 0.972 0.861 0.756 0.879 0.738 

Fuzzy CoCo 0.563 0.505 0.714 0.516 0.538 0.736 0.904 0.820 0.697 0.782 0.678 

J3 

LQG(Active) 0.801 0.948 0.953 0.865 0.945 0.954 0.987 0.996 0.979 0.986 0.941 

COC 0.716 0.965 1.022 0.635 0.871 0.990 1.056 0.993 0.880 1.029 0.916 

GAFLC 0.388 0.624 0.925 0.418 0.505 0.909 0.930 1.042 0.650 0.879 0.727 

WNN 0.375 0.584 0.902 0.417 0.499 0.854 0.924 1.035 0.647 0.851 0.709 

ANFIS 0.376 0.605 0.897 0.405 0.490 0.882 0.902 1.011 0.631 0.853 0.705 

Fuzzy CoCo 0.347 0.545 0.809 0.379 0.459 0.799 0.856 0.911 0.589 0.768 0.646 

J4 

LQG(Active) 0.808 0.945 1.052 0.989 0.990 1.150 1.027 1.071 0.506 1.001 0.955 

COC 0.419 0.606 0.981 0.613 0.786 0.917 0.752 1.038 0.660 1.303 0.887 

GAFLC 0.228 0.318 0.554 0.291 0.454 0.488 0.590 1.167 0.183 1.277 0.555 

WNN 0.227 0.298 0.453 0.283 0.417 0.457 0.534 1.153 0.174 1.022 0.502 

ANFIS 0.221 0.308 0.537 0.282 0.440 0.473 0.572 1.132 0.178 1.239 0.538 

Fuzzy CoCo 0.191 0.260 0.441 0.240 0.378 0.408 0.472 0.944 0.159 1.203 0.470 

J5 

LQG(Active) 0.728 0.779 0.766 0.910 0.960 0.966 0.979 0.964 0.802 0.952 0.881 

COC 0.586 0.571 0.597 0.820 0.787 0.855 0.741 0.777 0.648 0.809 0.719 

GAFLC 0.727 0.491 0.496 1.095 0.720 0.726 0.709 0.759 0.697 0.736 0.716 

WNN 0.434 0.389 0.444 0.547 0.512 0.654 0.546 0.707 0.435 0.674 0.534 

ANFIS 0.691 0.466 0.471 1.040 0.684 0.690 0.674 0.721 0.662 0.699 0.680 

Fuzzy CoCo 0.416 0.384 0.449 0.532 0.516 0.660 0.548 0.694 0.443 0.676 0.532 

J6 

LQG(Active) 0.923 1.023 0.957 0.983 1.006 0.958 0.938 0.921 0.981 0.922 0.961 

COC 0.504 0.702 0.768 0.692 0.835 0.899 0.686 0.746 0.652 0.816 0.730 

GAFLC 0.474 0.516 0.685 0.529 0.585 0.750 0.517 0.718 0.581 0.783 0.614 

WNN 0.466 0.500 0.666 0.507 0.552 0.718 0.545 0.710 0.544 0.771 0.598 

ANFIS 0.460 0.501 0.664 0.513 0.567 0.728 0.501 0.696 0.564 0.760 0.595 

Fuzzy CoCo 0.407 0.453 0.609 0.451 0.516 0.665 0.506 0.641 0.498 0.698 0.544 

J1 = max  
El Centro 

Hachinohe 

Northridge 
Kobe 

 

𝑚𝑎𝑥𝑡 𝑖
 𝑑𝑖(𝑡) 
ℎ𝑖

𝛿𝑚𝑎𝑥
 

J2 = max  
El Centro 
Hachinohe 

Northridge 

Kobe 

 

𝑚𝑎𝑥𝑡 𝑖 𝑥 𝑎𝑖(𝑡) 

𝑥 𝑎𝑖
𝑚𝑎𝑥  

J3 = max  
El Centro 

Hachinohe 
Northridge 

Kobe 

 

𝑚𝑎𝑥𝑖  𝑚𝑥 𝑎𝑖(𝑡)𝑖  

𝐹𝑏
𝑚𝑎𝑥  

J4 = max  
El Centro 

Hachinohe 

Northridge 
Kobe 

 

𝑚𝑎𝑥𝑡 𝑖
‖𝑑𝑖(𝑡)‖

ℎ𝑖
𝛿𝑚𝑎𝑥

 

J5 = max  
El Centro 

Hachinohe 
Northridge 

Kobe 

 

𝑚𝑎𝑥𝑡 𝑖‖𝑥 𝑎𝑖(𝑡)‖

𝑥 𝑎𝑖
𝑚𝑎𝑥  

J6 = max  
El Centro 

Hachinohe 

Northridge 
Kobe 

 

𝑚𝑎𝑥𝑖‖ 𝑚𝑖𝑥 𝑎𝑖(𝑡)𝑖 ‖

‖𝐹𝑏
𝑚𝑎𝑥‖
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In Table 9, four controllers of Active, COC, GAFLC and 

WNN have been listed for comparison purposes. Active 

stands for the active LQG controller. In this model, three 

actuators are utilized on the first floor, two on the second 

floor, and one on each of the third to ninth floors, as shown 

in Fig. 8. COC is a semi-active controller in which the 

classical algorithm of clipped optimal is used. GAFLC is a 

semi-active control model in which conventional genetic 

algorithm is used for training the structure of fuzzy system 

(Karamodin 2007). WNN is a semi-active control model 

combining the learning ability of neural networks and the 

capability of wavelet decomposition (Hashemi et al. 2016). 

The J1 criterion shows the inter-story drift ratio. The 

mean amount for this criterion in different earthquakes is 

calculated as 0.503 for the Fuzzy CoCo controller which is 

lower than the amounts calculated for other controllers. 

This shows that the performance of this controller in the 

field of reducing inter-story drift ratio is better than other 

controllers. 

 

 

The performance of ANFIS and WNN are close together 

and have a better performance than GAFLC and other two 

controllers. ANFIS and WNN controller respectively 

showed 3, 38 and 30% reduction J1 compared to the 

GAFLC, LQG and COC controller. Also, Fuzzy CoCo 

controller respectively showed 16, 46 and 39% reduction J1 

compared to the GAFLC, LQG and COC controllers. 

The mean amount of J2 (level acceleration) criterion is 

0.678 for Fuzzy CoCo controller which is lower than those 

for the other controllers. This value is obtained for ANFIS 

controller 0.738. ANFIS and WNN controller respectively 

showed 3, 20 and 21% reduction for J2 compared to the 

GAFLC, LQG and COC controller. Also, Fuzzy CoCo 

controller showed 20% reduction for J2 compared to the 

LQG and COC controllers. 

The mean amount for J3 (base shear) criterion in 

different earthquakes is calculated as 0.705 and 0.646 for 

ANFIS and Fuzzy CoCo controllers respectively. ANFIS 

and WNN controller showed respectively 3, 25 and 23%  

  

  

  

Fig. 13 Comparison of performance criteria J1–J6 of Fuzzy Cooperative Coevolution (Fuzzy CoCo), Adaptive Neuro-

Fuzzy Inference System (ANFIS), Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic 

algorithm (GAFLC), Clipped Optimal Control (COC) and Linear Quadratic Gaussian (LQG) methods 
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reduction in J3 compared to the GAFLC, LQG and COC 

controller. Also, Fuzzy CoCo controller showed 

respectively 11, 31 and 29% reduction in J3 compared to the 

GAFLC, LQG and COC controllers. 

The mean amount for J4 (normed inter-story drift), J5 

(normed level acceleration) and J6 (normed base shear) 

criterions in different earthquakes is calculated as 0.470, 

0.532 and 0.544 using Fuzzy CoCo controllers respectively. 

Fuzzy CoCo controller showed respectively 41, 31 and 29% 

reductions in J4, J5 and J6 compared to the GAFLC, LQG 

and COC controllers. 

The mean amounts for J4, J5 and J6 criteria using ANFIS  

controllers under different earthquakes are calculated as 

0.538, 0.680 and 0.595 respectively. ANFIS controller 

respectively showed 33, 12 and 23% reductions in J4, J5 and 

J6 compared to GAFLC, LQG and COC controllers. 

One can conclude that despite the fact that ANFIS and 

Fuzzy CoCo controller is not trained for reducing 

acceleration and base shear, it can somewhat reduce the 

acceleration and base shear of the structure. When 

compared to other controllers, one can conclude that Fuzzy 

CoCo controller performs better. 

 

 

6. Conclusions 
 

Different control algorithms have been studied in 

structures. Among these algorithm, neural network based 

methods and fuzzy logic show higher efficacy in structural  

 

 

control with adaptability taking into consideration non-

linear responses and uncertainties. While having simplicity, 

understandability, and no need to complex mathematical 

relationships, they are more suitable than other control 

algorithm. Using a combination of neural networks with 

fuzzy logic can provide benefits of these two methods and 

cover their deficiencies. Also, combination of fuzzy systems 

and evolutionary algorithms can be an effective way to 

efficient and optimized training fuzzy control. 

In this paper, in order to improve the seismic behavior 

of structures, a semi-active control of a 9-story benchmark 

building was studied using Magneto Rheological (MR) 

damper. To determine input voltage of MR dampers, 

Adaptive Neural-Fuzzy Inference System (ANFIS) and 

Fuzzy Cooperative Coevolution (Fuzzy CoCo) control were 

utilized. Genetic Algorithm (GA) was used to train and 

optimize the performance of controllers. The floors 

accelerations being the inputs of the Fuzzy CoCo and the 

floors accelerations and drift being the inputs of the ANFIS 

and the output being the voltage to the MR dampers so that 

they are able to provide optimum force responses for the 

structure. The ability and efficiency of the proposed 

controllers were illustrated in terms of drift, acceleration, 

and base shear reduction under four types of the 

earthquakes applied to the structure. The proposed 

controllers were compared to Wavelet Neural Network 

(WNN), fuzzy logic controller optimized by genetic 

algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and 

Clipped Optimal Control (COC) systems.  

 

  

(a) El Centro (b) Kobe 

Fig. 14 Profiles of various peak response values for uncontrolled and controlled benchmark structure subjected To full-

scale earthquakes: (a) El Centro and (b) Kobe 
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Based on the results of the study, the proposed 

controllers in particular Fuzzy CoCo were more effective in 

reducing all criteria than the other controllers. ANFIS 

controller respectively showed 31 and 29% reductions in J1-

J6 compared to the LQG and COC controllers. Fuzzy CoCo 

controller respectively showed 38 and 36% reductions in J1-

J6 compared to the LQG and COC controllers. The results 

show that the Fuzzy CoCo controller has more efficiency 

than the ANFIS controller on average about 10%. The 

proposed controllers perform very well under far-field 

earthquake records while they are effective in reducing the 

maximum responses of the structure subjected to near-field 

earthquake records. 

The optimization has been performed for the El Centro 

earthquake (far-field) and other earthquake records have 

been used for testing the performance of the controller. For 

future research, it is suggested to use an earthquake 

supervisor to improve the performance of the proposed 

controller under the near-field earthquakes. 
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