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1. Introduction 
 

The application of sandwich structures in many 

industries is rising due to their excellent properties such as 

high strength, low weight and resistance to fatigue. One of 

the special types of these structures is truncated conical 

shell with application in aerospace, marine and automobile 

industries. Due to their practical interest, sandwich 

structures have been the subject of numerous works.  

In the field of sandwich structures, Shariyat (2009) 

studied the dynamic buckling of piezo laminated plates 

under thermo-electro-mechanical loads. Pandit et al. (2010) 

proposed a finite element model for bending and vibration 

analysis of laminated sandwich plates. The analysis of 

bending, buckling and free vibration response of laminated 

plate was presented by Ferreira et al. (2011). Malekzadeh 

and Shojaee (2013) investigated the buckling behavior of 

quadrilateral laminated plates reinforced by carbon 

nanotubes (CNTs). Malekzadeh and Zarei (2014) performed 

free vibration analysis of quadrilateral laminated CNTs 

reinforced plates based on FSDT. Marjanović and 

Vuksanović (2014) carried out free vibration and buckling 

analysis of laminated composite and sandwich plates. Li et 

al. (2015) researched the dynamic buckling behavior of 

laminated composite plates under an axial step load. Li et 

al. (2016) performed the analysis of the buckling and vibro-

acoustic response of the laminated composite plates in 

thermal environment. The post-buckling analysis of bi-

axially compressed laminated nanocomposite plates was 

presented by Zhang et al. (2016). Large amplitude vibration 

problem of laminated composite spherical shell panel under 

combined temperature and moisture environment was  
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analyzed by Mahapatra et al. (2016a). The nonlinear free 

vibration behaviour of laminated composite spherical shell 

panel under the elevated hygrothermal environment was 

investigated by Mahapatra and Panda (2016b). Mahapatra et 

al. (2016c) studied the geometrically nonlinear transverse 

bending behavior of the shear deformable laminated 

composite spherical shell panel under hygro-thermo-

mechanical loading. Nonlinear free vibration behavior of 

laminated composite curved panel under hygrothermal 

environment was investigated by Mahapatra et al. (2016d). 

Nonlinear flexural behaviour of laminated composite 

doubly curved shell panel was investigated by Mahapatra et 

al. (2016e) under hygro-thermo-mechanical loading by 

considering the degraded composite material properties 

through a micromechanical model. Moradi-Dastjerdi and 

Malek-Mohammadi (2016) studied bi-axial behavior of 

nanocomposite sandwich plates reinforced by CNTs Fan 

and Wang (2016) carried out nonlinear bending and post-

buckling analysis of hybrid laminated plates containing 

CNTs reinforced composite layers in thermal environments. 

Yu et al. (2016) studied free vibration and buckling 

response of laminated composite plates with cutouts. Free 

vibration analysis of anti-symmetric laminated composite 

and soft core sandwich plates was studied by Sayyad and 

Ghugal (2017). Zhao et al. (2017) proposed a finite element 

formulation on basis of piecewise shear deformation theory 

to assess vibrational behavior of laminated composite and 

sandwich plates in thermal environments. Pramod et al. 

(2017) appraised static and free vibration response of cross-

ply laminated plates with simply supported boundary 

conditions. Lei et al. (2017) presented a geometrically 

nonlinear analysis of CNTs reinforced laminated composite 

plate using meshless method. Zhang and Selim (2017) 

focused on free vibration analysis of CNTs reinforced thick 

laminated composite plate according to Reddy’s higher 

order shear deformation theory. Hajmohammad et al. 

(2017) investigated dynamic buckling of laminated 
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viscoelastic sandwich plate with CNT-reinforced layers and 

viscoelastic piezoelectric layers at the top and bottom face 

sheets. Wave propagation in a piezoelectric sandwich plate 

with viscoelastic nanocomposite core subjected to a 

magnetic field and viscoelastic piezoelectric layers 

subjected to an electric field was studied by Kolahchi et al. 

(2017a). In another work by Kolahchi et al. (2017b) 

Optimization of embedded piezoelectric sandwich 

nanocomposite plates for dynamic buckling analysis was 

presented based on Grey Wolf algorithm. The flexural 

behaviour of the laminated composite plate embedded with 

two different smart materials (piezoelectric and 

magnetostrictive) and subsequent deflection suppression 

were investigated by Dutta et al. (2017). Shokravi and Jalili 

(2017) presented nonlocal temperature-dependent dynamic 

buckling analysis of embedded sandwich micro plates 

reinforced by functionally graded carbon nanotubes (FG-

CNTs). Suman et al. (2017) studied static bending and 

strength behaviour of the laminated composite plate 

embedded with magnetostrictive (MS) material numerically 

using commercial finite element tool. Vibration and 

buckling analysis of laminated sandwich truncated conical 

shells with compressible or incompressible core were 

presented by Nasihatgozar and Khalili (2018). Shokravi 

(2018) studied dynamic buckling of the smart subjected to 

blast load subjected to electric field.  

To the best of authors’ knowledge, this paper is the first 

to investigate the buckling analysis of the nanocomposite 

plates coated by magnetostrictive layer. The mathematical 

model is developed on the basis of the FSDT and using 

Hamilton’s principle. The Navier method is applied to 

obtain the buckling load of the system. The effects of 

various parameters like geometric constants, volume 

fraction and agglomeration of CNTs and magnetic field on 

the buckling load of the structure are examined. 

 

 

2. Formulation 
 
Fig. 1 shows a nanocomposite plate reinforced by 

agglomerated CNTs coated by magnetostrictive layer. The 

length and width of the struature are a and b, respectively 

and thickness of the nanocomposite and magnetostrictive 

layers are indicated by 
nh and 

mh , respectively. 

 

 

 

Fig. 1 A nanocomposite plate reinforced by agglomerated 

CNTs coated by magnetostrictive layer 

 

 

2.1 FSDT 
 
There are many new theories for modeling of different 

structures. Some of the new theories have been used by 

Tounsi and co-authors (Bessaim 2013, Bouderba 2013, 

Belabed 2014, Ait Amar Meziane 2014, Zidi 2014, Hamidi, 

2015, Bourada 2015, Bousahla et al. 2016a ,b, Beldjelili 

2016, Boukhari 2016, Draiche 2016, Bellifa 2015, Attia 

2015, Mahi 2015, Ait Yahia 2015, Bennoun 2016, El-Haina, 

2017, Menasria 2017, Chikh 2017).  

Based on FSDT, the displacement fields can be written 

as (Reddy 2002) 
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where u0, v0 and w0 are mid-plane displacements and   as 

well as   indicate the rotations. The strain relations of the 
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2.2 Basic relations 
 

The stress relations for the nanocomposite and 

magnetostrictive layers can be expressed as 
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where ijQ  and ijC are stiffness constants of the 

nanocomposite and magnetostrictive layers, respectively; 
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ije  are magnetic constants and 
zh

x





 is the magnetic 

field. Mechanical analysis of nanostructures has been 

reported by many researchers (Zemri 2015, Larbi Chaht 

2015, Belkorissat 2015, Ahouel 2016, Bounouara 2016, 

Bouafia 2017, Besseghier 2017, Bellifa 2017, Mouffoki 

2017, Khetir 2017). The stiffness constants of the 

nanocomposite layer (
ijQ ) can be obtained based on Mori-

Tanaka model as (Shi and Feng 2004) 
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where K and G are bulk and shear modulus which can be 

defined as 
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where   and   are agglomeration parameters and 
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where rC  are volume percent of CNTs and 
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where kr،lr،nr،pr،mr are Hill constants and 
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2.3 Governing equations 
 

Utilizing energy method, the potential energy can be 

given as 
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where the stress resultants are 
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where 
'k  is shear correction factor. The external work due 

to the in plane loads are 
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where 
m

xN  and 
m

yN  are in plane loads in the x and y 

directions, respectively. Applying Hamilton's principle, we 

have the following governing equations 
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3. Solution method 

 

Based on Navier method, we have (Samaei et al. 2011) 
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Substituting Eqs. (32)-(36) into Eqs. (27)-(31) yields 
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(37) 

Setting the determinate of the Eq. (37) yields the buckling 

load. 

 

 

4. Numerical results 
 

In this section, a polymeric plate is assumed with 

Young's modulus of 0.8mE GPa  which is reinforced by 

CNTs with Young's modulus of 1rE TPa  and coated by 

magnetostrictive layer with Young's modulus of 

20magnetE GPa . The length to width of the sandwich 

structure is / 2a b  .  

At the first, the results are validated with neglecting the 

CNTs and magnetostrictive layer. As shown in Table 1, the 

buckling load a plate with different solution methods is 

presented. It can be found that the results of this work are 

the same as those reported by Guo et al. (2015). 

The second validation is about buckling of plates reinforced 

by CNTs without magnetostrictive plate. The dimesionless 

buckling load of the simply supported nanocomposite plate 

is illustrated in Table 2. It is observed that the results are 

math with those reported by Lei et al. (2013). 

 

 

Table 1 Validation of this work with Guo et al. (2015) 

Buckling load Solution 

4.000 Exact (Guo et al. 2015) 

4.011 Finite element method (FEM) 

 (Guo et al. 2015) 

4.041 Boundary element method (BEM)  

(Guo et al. 2015) 

3.999 Dual reciprocity method (DRM) 

 (Guo et al. (2015)) 

4.000 Spline finite strip method (SFSM)  

(Guo et al. 2015) 

4.000 Spline finite strip method (SFSM)  

(Guo et al. 2015) 

4.017 Radial point interpolation method (RPIM)  

(Guo et al. 2015) 

3.997 Differential quadrature element method 

(DQEM) (Guo et al. 2015) 

4.011 Discrete singular convolution (DSC)  

(Guo et al. 2015) 

4.006 Present 

 

 

 

 

Table 2 Validation of this work with Lei et al. (2013) 

Present Lei et al. (2013)  Mode 

14.1068 14.1073  1 

23.3143 23.3149  2 

25.6501 25.6506  3 

27.0491 27.0498  4 

 

 

 

 

Fig. 2 (a) axial and circumferential first modes (b) axial 

first and circumferential second modes (c) 

circumferential first and axial second modes (d) axial 

and circumferential second modes 

 

 

 

Fig. 3 The effect of CNT volume percent on the 

dimensionless buckling load versus length of the sandwich 

structure 

 

 

Figs. 3 and 4 illustrate the effects of CNT volume percent 

and agglomeration on the dimensionless buckling load 

versus length of the structure. It can be found that with 

enhancing the sandwich structure length, the dimensionless 

buckling is decreased due to reduction in the stiffness of the 

structure. With increasing the CNT volume percent, the 

dimensionless buckling load is increased. In addition, 
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considering agglomeration of CNTs leads to reduce the 

dimensionless buckling load. It is due to this fact that with 

increasing the CNTs volume percent, the stiffness is 

increased and with assuming agglomeration, the stability 

and rigidity of the sandwich structure decreases. 

The effect of magnetic field on the dimensionless buckling 

load versus length of the sandwich structure is shown in 

Fig. 5. It can be observed that with increasing the magnetic 

field, the dimensionless buckling load is improved. It is 

since with increasing the magnetic field, the stiffness of the 

structure increases. 

Figs. 6 and 7 demonstrate the effect of nanocomposite and 

magnetostrictive layers thickness on the dimensionless 

buckling load versus length of the sandwich structure, 

respectively. It is found that with enhancing the 

nanocomposite and magnetostrictive layers thickness, the 

dimensionless buckling load is increases. It is because with 

enhancing the nanocomposite and magnetostrictive layers 

thickness, the stiffness of the structure increases. 

 

 

 

Fig. 4 The effect of CNT agglomeration on the 

dimensionless buckling load versus length of the sandwich 

structure 

 

 

 

Fig. 5 The effect of magnetic field on the dimensionless 

buckling load versus length of the sandwich structure 

 

 

Fig. 6 The effect of nanocomposite layer thickness on the 

dimensionless buckling load versus length of the sandwich 

structure 

 

 

 

Fig. 7 The effect of magnetostrictive layer thickness on the 

dimensionless buckling load versus length of the sandwich 

structure 

 

 

 

Fig. 8 The effect of lateral to axial load ratio on the 

dimensionless buckling load versus length of the sandwich 

structure 
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The effect of lateral to axial load ratio on the dimensionless 

buckling load versus length of the sandwich structure is 

presented in Fig. 8. It is shown that with increasing the 

lateral to axial load ratio, the dimensionless buckling load is 

decreased. 

 

 

5. Conclusions 
 

Buckling analysis of the nanocomposite plate coated by 

magnetostrictive layer was presented in this work. The 

nanocomposite plate was reinforced by CNTs considering 

agglomeration based on Mori-Tanaka model. Based on 

FSDT, the governing equations were derived considering 

coupling of mechanical displacements and magnetic field. 

Utilizing Navier method, the buckling load was calculated 

and the effects of CNTs volume percent and agglomeration, 

geometrical parameters and magnetic field were shown. The 

results show that with increasing the CNT volume percent, 

the dimensionless buckling load was increased. In addition, 

considering agglomeration of CNTs leads to reduce the 

dimensionless buckling load. It can be observed that with 

increasing the magnetic field, the dimensionless buckling 

load was improved. It was found that with enhancing the 

nanocomposite and magnetostrictive layers thickness, the 

dimensionless buckling load was increases. 
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