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1. Introduction 
 

The occurrence of failures in buildings, bridges, oil 

platforms and, in general, all structural systems during the 

life of the structure are inevitable. So far, samples of many 

types of faults have been recorded in different structures 

that resulted in considerable damage and mortality. Most of 

these structural failures can be corrected and repaired by 

initial evaluations of the existing state of the structures. This 

prevents the spread of structural damage and collapse of 

buildings. This is particularly true for earthquake-prone 

areas, where the local damage in structural elements can be 

the source of general damage (Walia et al. 2015, 

Mohammadi et al. 2016). Therefore, if damage detection 

becomes possible in structural elements, repair or 

replacement of damaged elements can prevent general 

damage to the structure. Thus, identification and damage 

detection systems can play a very important role in the 

immunization and repair of structures, and, thus, prevent 

financial and material losses caused by the collapse of 

structural systems (Pyayt et al. 2014, Seyedpoor et al. 

2018). Structural damage can generally be caused by 

various factors such as poor construction, improper 

maintenance, overloading, and exposure to chemical agents 

such as sulfates, chloride violets, and atmospheric factors 

such as freezing and watering cycles such as earthquakes. 

Among these factors, earthquakes are the most destructive 

of all, and their destruction mechanism is somewhat  
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different from those of other factors, and since they can 

cause severe damage to a structure within a short time, 

special attention is needed with regard to them (Wenzel 

2009, Zhou et al. 2015). Locally, methods for detecting 

damage such as ultrasonic, radiography, magnetic field and 

penetrating material are time-consuming, costly, and they 

sometimes face accessing difficulties (Kaloop et al. 2016, 

Cao et al. 2017). In order to overcome these disadvantages, 

general deterioration detection methods, based on the 

overall behavior of a structure, have been developed to 

determine the extent of damage and its location. 

Experiments that are performed in general methods to 

detect structural damage can be done using static or 

dynamic loading. In addition, some of the characteristics of 

the behavior of a structure can be measured, such as the 

displacement of certain points, the strain of the members, 

the frequency of the vibration modes, the shape of the 

vibration modes, and other behavioral characteristics. Then, 

based on the results, the presence of damage and its location 

and severity are determined (Ditommaso et al. 2015, Danna 

and Mekonnen 2012). Among the types of damage, cracks 

are one of the most important reasons for structural failures. 

The effect of cracking in a structure usually occurs in the 

form of changes in local stiffness. These changes have a 

significant effect on the dynamic characteristics of 

structures. This phenomenon is significant in changing the 

natural frequencies and mode shapes of structures, and an 

analysis of these changes makes it possible to detect cracks 

(Doebling et al. 1996, Zhou 2008). In the signal techniques, 

changes in structural characteristics are obtained directly 

from the measured time history signals. The signal methods 

are divided into three categories: time-domain methods, 

frequency-domain methods, and time-frequency domain 

methods. In the methods of time and frequency domains, 
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stationary and linear signals should usually be used (Bonato 

et al. 2000, Roy et al. 2012). For example, the AR model 

can be used for stationary signals, and if used to process 

non-stationary signals, self-movement parameters become 

difficult to estimate. The ARMA is often used to process 

stationary signals (Walia et al. 2015, De lautour 2008). The 

use of this method to process non-stationary signals 

increases the computational time. Additionally, the moving 

average autoregressive model satisfactorily processes only 

moderated signals with linear frequency and amplitude 

(Ahmadi et al. 2015). The basis of most of the frequency-

domain methods such as frequency response functions 

(FRF) and spectral power density (SPD) are based on the 

Fourier transform (Neild et al. 2003, Melhem and Kim 

2003). The Fourier transform is used to calculate the 

frequency contents of signals, but cannot determine the 

event time of the frequency components. In other words, the 

Fourier transform is suitable for the processing of signals 

whose frequency contents do not change with time. 

However, if the frequency contents of the signal changes 

with time, the Fourier transform cannot provide complete 

information about the behavior of the system (Powell and 

Allahabadi 1988, Abdul Awal and Boashash 2016). By 

using the Fourier transforms, the frequency contents of the 

signal is defined as a set of weighted sinusoid functions, but 

other important information such as the change in the 

signal's characteristics is not identified. Owing to these 

limitations, other methods have of late been suggested that 

process signals simultaneously in the time domain and the 

frequency domain (Dung 2013, Pnevmatikos et al. 2016, 

Pnevmatikos and Hatzigeorgiou 2017). 

The basic principles of time-frequency functions have 

been long established, but, so far, the use of square time-

frequency functions has been rarely reported in the 

extraction of the characteristic and the identification of the 

system and, in particular, the detection of damage in bridges 

(Yan et al. 2007, Ghiasi et al. 2016, Obrien and 

Malekjafarian 2016). In this study, the use of square time-

frequency functions is proposed to derive the dynamic 

characteristics of footbridge structures. Usually, structures 

in civil engineering have non-stationary responses and 

sometimes their responses are affected by nonlinear 

behavior. The advantage of the time-frequency functions is 

that they can process all signals including stationary, non-

stationary and non-linear signals (Li and Ou 2016, Nikos et 

al. 2016, Pnevmatikos and Hatzigeorgiou 2017). Often, it is 

difficult to detect signal characteristics by viewing the time-

domain graph, but the use of time-frequency functions adds 

another dimension to the signal diagram, and the frequency 

content is displayed with time and vice versa (Bradford 

2006, Wang et al. 2018). A time-frequency function, by 

giving the frequency content with respect to time variations, 

provides the possibility of optimal signal analysis. Time-

frequency functions are classified into linear, quadratic, and 

nonlinear types (Cohen 1989, Rucka 2011). Using the time-

frequency analysis, it is possible to display the signal 

energy in the time and frequency domains simultaneously 

(Qiao 2009, Elhattab et al. 2016). 

In this study, for the first time, a cone-shaped kernel 

distribution has been used for system identification and 

damage detection in bridges. In this research, a new 

methodology has been proposed to identify damage caused 

to the deck of steel truss pedestrian bridges. Based on the 

proposed methodology, the bridge deck is vibrated with an 

exciting load before and after damage and its response 

signals are recorded. The registered signals are processed 

by cone-shaped kernel distribution and time-frequency 

plans, and matrices are calculated. The results are assessed 

with a new damage index. Finally, using the proposed 

methodology and damage index, faults and their locations 

are identified. 

 

 

2. Cone-shaped kernel distribution 
 

Time-frequency representations have extensively been 

used in the processing of signals in various fields. They 

express the variations of the frequency contents versus the 

signal time. A well-known form of the time–frequency 

representation introduced by Cohen (1966) is given below 

(Cantero and Basu 2015) 
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where 𝑊𝑥(𝑠, 𝜉)  is the Wigner-Ville distribution of the 

signal x(t) (Žibert et al. 2002). The Wigner-Ville 

distribution is the most prominent quadratic time‐
frequency representation. It has good mathematical 

properties and excellent time-frequency resolution, but it 

also produces substantial cross terms. Due to this important 

defect, other time-frequency representations have been 

proposed. It should be noted, most other TFR can be 

derived from the Wigner-Ville distribution, with a suitable 

choice of kernels. The alternative definition of Cohen’s 

class representations can be interpreted as the 2D Fourier 

transform of the ambiguity function Ax(ξ,ז) which is 

multiplied by the kernel k(ξ, ז) as below 
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𝐴𝑥
∗(𝜉, 𝜏)  is the complex conjugate of ambiguity 

function. If 𝐾(𝜉, 𝜏)=1, the result is actually the Wigner-

Ville distribution. If 𝐴𝑥
∗(𝜉, 𝜏) is used as the 𝐾(𝜉, 𝜏) in 

Eq. (2) the spectrogram distribution would be created. The 

spectrogram is the square of the short-time Fourier 

transform and is defined as below 

2
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In order to suppress the cross terms from the basic 

distribution of the Cohen class, some improved distributions 

have been proposed. The cone-shaped kernel distribution 

(CKD) is one the best quadratic time–frequency 

representation for signal processing (Liu 2017). CKD keeps 

the specification of finite time support and can improve 

spectral peaks and reduce cross-terms (Peng and Weng 

2008). On the other hand, CKD significantly improves the 

frequency resolution and provides improved cross-term  
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suppression and higher resolution in the derived spectrum 

(Skeberis et al. 2015). In fact, CKD produces a good 

resolution in time and frequency domains, and reduces 

interference resulting from the cross-terms present in multi 

components signals (Urresty et al. 2009, Maheswari and 

Umamaheswari 2017). Therefore, in this research, CKD 

was used to process the signals. CKD is defined as (Žibert 

et al. 2002, Chen and Zhou 2007) 
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(4) 

ℎ(𝜏)  is the smoothing window. To control the 

bandwidth of low pass filter, finite and smooth function, 

ℎ(𝜏) is selected as the cone function, which is defined as 
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where α is the parameter that is used to adjust the cone 

slopes in the range of 2 . The used support 

region of the cone-shaped kernel is displayed in Fig. 1. 

 

 

3. Bridge analytical models 
 

To evaluate the performance of the methodology and 

proposed damage index, two different structures are 

considered. The first structure is Warren Type steel truss, 

and the second structure is a steel truss footbridge. 

 
3.1 Warren type steel truss 

 

A simple two-dimensional truss was used as the first 

model. The steel truss, shown in Fig. 2, is of the Warren 

Type and has 7 elements and 5 nodes. Warren Type trusses 

are widely used in many structures, including footbridges. 

The length of the truss was 24 meters and its height about 6 

meters. The truss was modeled, and modal analysis results  

 

Fig. 1 The used support region of the cone-shaped kernel 

 

Fig. 2 View of the numerical model of Warren Type steel truss 

 

Fig. 3 A side view of Arregar pedestrian bridge 
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were compared with Mehrjoo et al. (2008) for verification. 

As shown in Table 1, the natural frequencies of the first four 

modes of the model are similar to those of Mehrjoo et al. 

(2008). 

 

3.2 Arregar steel truss footbridge 
 

The second structure considered in this research was the 

Arregar steel truss footbridge. The Arregar pedestrian 

bridge is about 27.36 meters long and 2.1 meters wide. 

 

Table 1 Comparison of natural frequencies of Analytical 

model for Warren Type truss 

modal 

number 

calculated natural 

frequency 

natural frequency from 

Mehrjoo et al. (2008) 

1 13.143 Hz 13.16 Hz 

2 20.611 Hz 20.62 Hz 

3 26.841 Hz 26.84 Hz 

4 41.427 Hz 41.42 Hz 

 

 

 

 

 

 

In addition, the height of the truss is 2.35 meters. The 

bridge is located in the Nezam Pezeshki street of Tabriz. 

The finite element model of the bridge is based on as-built 

details. Fig. 3 shows a side view of the bridge. Its numerical 

model can be found in Fig. 4. In addition, the sections used 

in the bridge deck are displayed in Fig. 5. During the 

construction, the steel used in the bridge was tested in 2015. 

The average yielding stress, and the average ultimate stress 

of steel samples have been calculated, and the results were 

used to update the model. The results are shown in Table 2. 

Furthermore, after the completion of the bridge, its 

condition has been assessed and the finite element model  

evaluated by in situ measurements. 

 

 

4. Bridge analytical models 
 

The assessment of the safety of pedestrian bridges and 

their serviceability is of great importance. Considering the 

importance of the subject, this research proposes a new 

approach to distinguish faults in pedestrian bridges. The  

 

Fig. 4 3D view of the numerical model of Arregar steel truss pedestrian bridge 

 

Fig. 5 The sections used in Arregar deck 

 

Fig. 6 Place of application of cosine stimulus load on the steel truss 
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proposed approach is designed to be easy to use for 

pedestrian bridges and to identify damage. Based on the 

approach, a force with a specific frequency and low 

amplitude was applied to the bridge deck at the middle of 

the length. In this study, a cosine force with an angular 

frequency equal to 𝜋 was used to excite the models. In 

fact, the angular frequency of the excitation load is different 

with the dominant frequencies of the structures. The 

excitation load considered in this research is chosen to be 

applicable to pedestrian bridges. The amplitude of the load 

is considered equal to 50 N, which can be easily produced 

by exciters (Bien and Zwolski 2008). The duration of the 

excitation force was 5 seconds. The deck response was 

recorded on some of the deck’s nodes. In other words, it 

was assumed that the accelerometer sensors were mounted 

at some nodes of the bridge deck, and the vibrations of the 

bridge were recorded. This process was performed before 

and after the faults occurred on the pedestrian bridge. 

Owing to the faults, the vibrations of the bridge changed. 

These changes near the damage locations were greater than 

the other structural regions. This is the main idea considered 

in the proposed algorithm. The proposed algorithm is 

designed in such a way that it can specify the changes in 

bridge vibration. The proposed algorithm involves the use 

of CKD to identify the system and the new damage index to 

detect faults in the steel-truss footbridge. 

 

 

5. Confirmation of the proposed algorithm and 
damage index 

 
5.1 Model not damaged 

 

Based on the methodology, a harmonic cosine load was 

applied to the models and its responses were registered after 

a time history analysis. The excitation force was applied in 

the middle of the span of the structures. Figs. 6 and 7 show 

the loading location on the steel truss and the bridge deck 

respectively. 

 

 

 

 

Table 2 Test results of the strength of materials used in 

Arregar steel truss footbridge 

row Material 
Yielding stress of 

steel (MPa) 

Ultimate stress of 

steel (MPa) 

1 steel 237 354 

 

 

Seven sensors, shown in Fig. 8, were considered in the 

Warren Type steel truss to record the vibration of the truss. 

In addition, at the deck level of the footbridge, 8 points 

were considered as the sensor locations in order to measure 

the structure response. These points were the same in all 

damage scenarios. In Fig. 9, the location of the sensors is 

shown on the deck surface of the footbridge. Besides, the 

coordinates of sensor locations are displayed in Table 3. 

 

 

Table 3 Coordinates of sensor locations 

Sensor number X(m) 

1 3 

2 6 
3 9 

4 12 
5 15 

6 18 

7 21 

Arregar steel truss pedestrian bridge 

Sensor number X(m) 

1 4.04 

2 7.08 

3 10.12 

4 13.16 

5 16.20 

6 19.24 

7 22.28 

8 25.32 

 

 

 

Fig. 7 Place of application of cosine stimulus load on the footbridge 

 

Fig. 8 Sensor places at Warren Type truss 

703



 

Hamid Reza Ahmadi and Diana Anvari 

 

 

 
 
5.2 Damaged model 

 

In order to investigate the damage detection method for 

the steel truss and the pedestrian bridge, four and six 

different damage scenarios were considered respectively. 

These failures were considered by reducing by 15%, 30%, 

and 50% the sectional thickness in the numerical models. 

The damage scenarios are presented in Tables 4 and 5.  

 

 

Table 4 The damage scenarios for Warren Type truss 

scenario 
Damaged  

element 
Damage(%) 

1-T 5 15% 

2-T 5 30% 

3-T 5 50% 

4-T 3 - 22 50% 

 

 

Table 5 The damage scenarios for the footbridge 

Damage(%) Damaged element scenario 

15% 4 1-P 

30% 4 2-P 

50% 4 3-P 

15%-50% 5-9 4-P 

30%-30% 5-9 5-P 

50%-50% 5-9 6-P 

 

 

 

 

Besides, the element numbers for Warren Type truss and 

Arregar steel truss footbridge are shown in Figs. 10 and 11 

respectively. Regarding the length of 12 meters of truss 

bottom chord members, each one is divided into 12 

elements of one meter. As seen in Table 4, in damage 

scenario 4-T, damage is considered simultaneously in two 

different elements. Based on Table 5, in damage scenarios 

4-P to 6-P, faults of different intensities in two elements 

were applied simultaneously. 

 

 

 
6. Processing of recorded signals from footbridge 

 

As stated, the response signals of the structures were 

recorded under the influence of cosine loading before and 

after the damage. The cone-shaped kernel distribution, 

which is a square time-frequency representation, was used 

to process Warren Type truss and Arregar steel truss 

footbridge signals. 

 
 
7. Methodology used and method of doing research 

 
7.1 Suggested damage index (Θ index) 

 

A new damage index is proposed in the research to 

diagnose damage in the truss footbridge. The time-

frequency matrices, calculated by the cone-shaped kernel 

distribution, were used. H and F are the symbol of Healthy 

 

Fig. 9 Location of sensors in Arregar steel truss pedestrian bridge 

 

Fig. 10 The simple truss element numbers 

 

Fig. 11 The footbridge element numbers 
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matrix and Faulty matrix respectively. On the other hand, H 

represents the time-frequency matrix of the undamaged 

structure and F indicates the time-frequency matrix of the 

damaged structure. The matrix form generated by the cone-

shaped kernel distribution is shown in Fig. 12. The 

subscript h indicates the healthy state that is rewritten as f in 

the damaged condition. 

The formulas and mathematical relationships used to 

calculate the suggested damage index are as follows 
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Similar calculations are made for the F matrix. Finally, 

the following matrix is obtained 
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The proposed damage index is described below 

iF

T

iH
~~   (11) 

Using Θ index, the damage and its location is 

determined. As mentioned, the dimensions of the time-

frequency matrices are proportional to the steps of 

recording the response signals. In this research, the 

registration frequency of the response signal is equal to 

100Hz. In addition, in order to increase the resolution of 

time-frequency plans, the number of time and frequency 

bins equal to the number of steps is considered. However, 

the dimensions of the time-frequency matrices in this study 

are 950 to 950, given that Warren Type truss and the 

footbridge have 3 and 8 sensors respectively. Therefore, the 

number of Θ index for each scenario in the Warren Type 

truss is equal to 3 and in pedestrian bridge it is equal to 8. 

However, in each of the damage scenarios in the simple 

truss, 3 numbers are calculated as Θ1, Θ2 and Θ3. In 

addition, 8 values including Θ1, Θ2 to Θ8 are calculated in 

the pedestrian bridge. If the values of Θ indices are zero, 

they indicate that no damage has occurred in the beam. 

Otherwise, it would mean the occurrence of damage. In this 

case, the indices are normalized, based on a larger index. 

Then, a comparison of the results leads to the detection of 

the damage. A larger value certainly indicates the location 

of the damage. 

 

 

7.2 Calculated results 
 

The calculation of the results done on the basis of the 

proposed algorithm is shown in the Figs. 13 to 22: 

 

 

 

 

Fig. 12 The matrix form of cone-shaped kernel 

distribution 
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Fig. 13 Diagnostic Diagram of damage for Scenario 1-T 

 

 

Fig. 14 Diagnostic Diagram of damage for Scenario 2-T 

 

 

Fig. 15 Diagnostic Diagram of damage for Scenario 3-T 

 

 

Fig. 16 Diagnostic Diagram of damage for Scenario 4-T 

 

 

7.2.1 Calculated results for Warren Type steel truss 
The obtained using proposed methodology and Θ index 

for Warren Type steel truss were shown in this subsection. 

Considering Figs. 13-16, it can be seen that the unhealthy 

element has been correctly distinguished by using Θ index. 

In scenario 1-T, the damage is considered in element 5. In 

fact, the damage is considered in a small element, which is 

difficult to identify because of the long length of the 

member and the small number of sensors. Sensors 1 and 2 

are located on the sides of element 5. As shown in Fig. 13, 

despite the low severity and length of the damage, element 

5 is signally identified as the damaged element using Θ 

index. Regarding Table 4, in scenarios 2-T and 3-T, the 

damage is considered in element 5 with greater intensity. In 

Figs. 14 and 15, it is seen that the proposed index correctly 

diagnoses the damaged element. In addition, with an 

increasing severity of damage, the unhealthy element is 

more accurately identified by Θ index. In scenario 4-T, 

damage is considered simultaneously in elements 3 and 22. 

The damage was likely to be detected at the location of 

sensor 1 and 7, if Θ index were to correctly identify the 

damaged elements. Based on the calculations shown in Fig. 

16, the use of the proposed methodology and damage index 

identified elements 5 and 24 as unhealthy. Although the 

damage was considered in small elements and two elements 

were damaged simultaneously, Θ index correctly and 

accurately identified the faults. 

 
 

 

Fig. 17 Diagnostic Diagram of damage for Scenario 1-P 

 
 

 

Fig. 18 Diagnostic Diagram of damage for Scenario 2-P 
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7.2.2 Calculated results for Arregar steel truss 
footbridge 

The results obtained for Arregar steel truss footbridge 

are shown in Figs. 17-22. Based on the results, the 

algorithm and suggested damage index identified the 

affected location in the pedestrian truss bridge correctly. In 

scenarios 1-P, 2-P and 3-P, the damage with different 

intensity is considered in element 4. As shown in Figs. 9 

and 11, sensors 3 and 4 are located on the sides of the 

element 4. However, damage was likely to be detected at 

the location of sensors 3 and 4, if Θ index were to correctly 

diagnose the faults. In other words, Θ index was to show 

results nearly 100% in the locations of sensors 3 and 4. 

It can be seen in Figs. 17-19 that the damage was 

accurately detected at the location of sensors 3 and 4. 

Scenarios 4-P, 5-P, and 6-P, too, which simultaneously 

caused two faults, the algorithm could correctly detect 

them. Elements 5 and 9 were damaged due to various 

intensities in the scenarios. Element 5 is located between 

sensors 4 and 5 and element 9 is located between sensor 8 

and right bearing. According to Table 5, in scenario 4, the 

damage extents considered simultaneously in elements 5 

and 9 are equal to 15% and 50% respectively. This scenario 

is a difficult test to evaluate the performance of the 

suggested damage index. After the calculation, in location 

of sensor 9, the value of Θ index was equal to 100%. 

Besides, the magnitude of the damage index in sensors 4 

and 5 was significantly higher than in sensors 1, 2, 3, 6 and 

7. However, despite the two faults of varying intensities, Θ 

index correctly identified them and their locations. 
 

 

Fig. 19 Diagnostic Diagram of damage for Scenario 3-P 

 
 

 

Fig. 20 Diagnostic Diagram of damage for Scenario 4-P 

 

 

Fig. 21 Diagnostic Diagram of damage for Scenario 5-P 

 
 

 

Fig. 22 Diagnostic Diagram of damage for Scenario 6-P 

 
 
In scenarios 5-P and 6-P, damage is considered 

simultaneously in elements 5 and 9. As shown in Table 5, 

the damage in scenarios 5-P and 6-P are assumed to be 

equal to 30% and 50% respectively. Figs. 21 and 22 show 

that the damaged elements have been accurately detected at 

the locations of sensors 4 and 5, as well as 9. 

Therefore, it is apparent from the results that the 

proposed algorithm and damage index show a very good 

performance in detecting damage and identifying its 

location. 

 
 
8. Conclusions 

 

There are many pedestrian bridges around the world. 

Some of these bridges have been damaged due various 

reasons such as a relatively high lifetime, corrosion, fatigue 

and so on. Considering the number of footbridges, it is 

important to have methods that can easily and quickly 

detect damage with high precision. This research, for the 

first time, presents the application of a cone-shaped kernel 

distribution for detecting damage and identifying its 

location in a steel pedestrian bridge. As shown, the 

proposed algorithm is constructed in such a way that it is 

not necessary to construct a bridge analytical model. Based 

on the existing experience in structural health monitoring, 

the algorithm is output-only and does not require the 

measurement of input loading. Another feature of the 
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proposed algorithm is its ability to simultaneously identify 

damage at several points. The performance of the new 

methodology and proposed damage index was evaluated on 

Warren Type steel truss and Arregar steel truss pedestrian 

bridge. For this purpose, different damage scenarios were 

defined. Based on the calculated results and using the 

methodology and Θ index, the defined damage was detected 

and its location accurately determined. In addition, if some 

elements are simultaneously damaged, the proposed 

algorithm and index are able to detect the damaged 

elements with high precision. Therefore, due to the 

simplicity of the proposed algorithm and the features and 

characteristics of the proposed method, it can be used for 

monitoring the health of steel pedestrian bridges. 
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