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1. Introduction 
 

During the past two decades, structural health 

monitoring has gained importance as a potential research 

area for civil engineering. Particularly, the focus of the 

researchers has increased in developing the damage 

detection techniques using the output-only response with 

the help of efficient algorithms. Vast amount of literature is 

available on SHM systems concerned with damage 

diagnostics of structures (Doebling et al. 1998, Das et al. 

2016), including the range of sensors from optical fiber 

sensors (Arhant et al. 2018) to wireless sensors (Tanner et 

al. 2003). Most of the popularly used vibration-based 

damage detection methods are modal based and are global 

in nature, i.e., they use the dynamic properties like natural 

frequencies and mode shapes (Dorvash 2014). These are 

obtained for the entire structure from the input-output data 

using a global structural analysis or through operational 

modal analysis. Other than these modal based methods, 

signal based analysis are gaining popularity for damage 

detection. Techniques based on time-frequency analysis 

(Pnevmatikos et al. 2016, Hsu et al. 2014, Rao and Lakshmi 

2015), multivariate analysis techniques like PCA  

 (Rao et al. 2015) and time series algorithms (Sohn and  
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Farrar 2001, Lakshmi and Rao 2014, Fan et al. 2016) are 

found to be more powerful and promising for damage 

detection. Even though the above-mentioned techniques 

have been proved to be successful in detecting damage in 

various structures and scenarios, it has been shown in later 

section, of this paper, that they failed to detect the 

minor/incipient damage (i.e., subtle cracks) in the structure. 

Nevertheless, the detection of these minor incipient damage 

remains a challenging task for the following reasons.  

i. Feeble changes in few modes: When the incipient 

damage is small like minor cracks, the minor changes in the 

dynamic characteristics of the structures developed in the 

structure, alter only some specific modal responses while 

other modal responses remain unaltered. Hence the damage 

features present in the modal response of specific modes 

due to the minor incipient damage will be insignificantly 

hidden in the overall response (i.e., the measured dynamic 

signature).  

ii. Environmental and operational variability (EOV) & 

measurement noise: The presence of the effect of 

environmental variability which has the capability to alter 

the dynamic characteristics and signature, mask the 

existence of the minor incipient damage from diagnosis. 

The components of the signal that distinguish the various 

damage classes will be masked by features that characterize 

the normal operating condition of the structure, particularly 

when the damage is not yet severe. The effect of 

measurement noise in the signal conceals the minor damage 

in the measured signal making it difficult to detect. Even in 

ideal conditions i.e., there is no variation in normal  
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operating conditions and also measured signal is noise free, 

the subtle damages alter only some specific modal 

responses, keeping others unaltered. In such instances, the 

global measured signal (i.e., the sum of the responses of all 

participating modes) likely to mask the minor variations in 

these limited modal responses. Hence, the general approach 

for overcoming it involves, in broad terms, proper 

preprocessing of the raw vibration data records or of the 

selected characteristic quantity (feature vector), aiming at 

the removal of the effects of uncertainty. 

 

1.1 Influence of modal frequencies and modal 
curvatures with severity and spatial location of damage 

 

A minor/incipient damage like a crack in a beam results 

in reducing mainly the bending stiffness and its effect will 

be larger on high curvature region. Therefore, the combined 

effect of position and severity of damage (i.e., crack depth) 

alter the dynamic characteristics of the structure. For 

instance, in a simply supported beam, a minor crack near 

the mid-span, where the curvature of the first mode is 

maximum and relatively larger crack closer to the support 

exhibits similar characteristics. In other words, the change 

in the harmonic content is high at high modal curvature 

points for minor cracks and can be rather low even for more 

severe cracks located at low modal curvature points. Hence 

it is appropriate to detect the modal effective damage rather 

than the damage itself. This becomes more relevant while 

dealing with more complex structures.  

In order to demonstrate the effect of modal frequencies 

and mode shapes of the structure to subtle damage, we use a 

simply supported beam of span 6 m with cross-sectional 

dimensions as 450 mm X 500 mm. The elastic modulus of 

the material of the beam is 205 GPa with a mass density of 

7950 Kg/m2 and the moment of inertia of 0.000624m4. 

Since our concern here is to detect minor or subtle damages 

at their incipient stage, we have considered only minor  

 

 

damages (varied from 0.5% to 4% damage) in 1/4th span, 

half span and 3/4th span of the beam. Fig. 1 shows the 

variation of modal frequencies with severity and location of 

damage. From Fig. 1, the following observations can be 

made 

i. The change in the natural frequencies is found 

insignificant due to minor damage. The maximum 

change in the frequency for damage levels of 0.5%, 

2.0% and 4.0% are found to be of the order 0.0203%, 

0.1026%, 0.2081% respectively. 

ii. It can also be observed only a set of frequencies are 

altered (even though insignificantly) while remaining 

are largely found to be unaltered. This set seems to 

be consistent with the spatial location of damage 

irrespective of the severity. Hence we can say from 

this study the set of these frequencies altered depends 

rather heavily on the spatial location of damage.  

iii. It is also to be pointed out that the above studies have 

been carried out without considering measurement 

noise. The measurement noise is expected to 

completely mask the above observations. 

 

Similarly, the normalized modal curvatures with varying 

severity of damage and also the spatial location for first 6 

modes is shown in Fig. 2. It can be observed from Figs. 1 

and 2 that the modal frequencies and their corresponding 

modes will not exhibit any deviation when the spatial 

location of damage closer to their respective zero energy 

node. Hence, it can be concluded that the sensitivity of 

modal frequencies as well as mode shapes depends on the 

spatial location of the subtle damage 

Keeping this in view in this paper, we attempt to 

identify modal effective damage rather than damage, by 

isolating the modes affected by the subtle damage in the 

structure. In this paper, we attempt a hybrid approach for 

detecting subtle damages in the structure by preprocessing 

the data in the first stage to isolate the modal responses  
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Fig. 1 Variation of modal frequencies with location and severity of damage 
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which are been affected by the minor damage using a signal 

decomposition and reconstruction technique. In this paper, 

an improved version of Empirical Mode Decomposition 

(EMD) is employed as a preprocessor to identify and isolate 

the affected modes from the noisy signals. The 

reconstructed signal using only the isolated modes (affected 

by damage) and used in time series analysis.  During the 

process of extracting the minor damage, it becomes 

mandatory to any technique to handle the effect of 

environmental variability and measurement noise 

simultaneously. Since we use time series models in the 

present work, the uncertainty due to 

environmental/operational variability can be handled 

effectively using the look-up table approach by 

normalization (Farrar et al. 2001). 

Empirical Mode Decomposition (EMD) (Huang 2014), 

is popularly being employed to decompose the raw 

measured time history signals (dynamic signatures) into a 

finite and often a small number of intrinsic mode functions 

(IMF). The EMD is highly adaptive and efficient as it is 

based on the local characteristic time scale of the original 

data. Therefore, in this paper, we use the empirical mode 

decomposition technique on the cross-correlated signal to 

break down the vibration data into a set of uni-modal 

signals called IMFS. We isolate the IMFs containing 

significant damage features. These isolated IMFs are used 

to reconstruct the signal with enriched damage features.  

 

 

These newly reconstructed signals with enriched damage 

features are then used for damage diagnostics employing 

time series models. 

The time series models are capable of representing the 

dynamic properties of the structures like frequency and 

damping (Pandit and Wu 1983). The coefficients and the 

prediction errors of the time series models are often 

famously used to extract the damage features when there is 

a change in dynamics (Lu and Gao 2005, Mosavi et al. 

2012, Lakshmi and Rama Mohan Rao 2015). Generally, the 

statistical characteristics of the responses are affected by the 

presence of damage. In view of this, the data-driven time 

series methods using the statistical processing techniques 

have gained popularity among the vibration based methods  

(Fassois and Sakellariou 2007, Fassois and Sakellariou 

2009, Das et al. 2016). This class of techniques employ the 

variants of Autoregressive method such as AR (Fugate et al. 

2001, Jayawardhana et al. 2015), ARMA (Nair et al. 2006, 

Hu et al. 2015), ARX (Kopsaftopoulos and Fassois 2015, 

Rosales and Liyanapathirana 2017, Kostić and Gül 2017), 

AR-ARX (Sohn and Farrar 2001, Zhang 2007), ARMAX 

(Xie and Mita 2017, Lakshmi and Rao 2016), VARX 

(Ugalde et al. 2015, Sakaris et al. 2015), VAR (Mosavi et al. 

2012, Lakshmi and Rao 2015, Kraemer 2011), ARMAV 

(Bodeux and Golinval 2001, Foti and Sabia 2010) and time 

frequency autoregressive moving average (TFARMA) 

model (Fan et al. 2016), Functional pooled models (Sakaris 
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Fig. 2 Normalised modal curvature values for different location and severity of damage 
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et al. 2017), LPMAR and TARMA model  (Avendaño-

Valencia and Fassois 2015). In this paper, ARMAX model 

is employed as it has a scalar framework with an advantage 

of the inclusion of the disturbance, unlike the other time 

series models. The cepstral distance between ARMAX 

models is used as the damage indicator.  

A cepstral distance measure of ARMAX time series 

models of pristine and the current condition of the structure 

is used as a damage index to identify the time instant of 

damage and its spatial location on the structure. With the 

proposed approach of enhancing the sensitivity of the 

damage indices by augmenting the EMD to scalar ARMAX 

model, it is shown robust to locate the subtle damages. 

Numerical simulation studies have been carried out to test 

the effectiveness of the proposed algorithm for detecting a 

small incipient crack in the structure with measurement 

noise. Experimental studies are also carried out to 

complement the numerical simulations and also to 

demonstrate its practical applicability. 

 

 

2. Cross-correlation of measured time history signals 
 

The presence of measurement noise is inevitable at any 

measured time history response signal and it cannot be 

avoided. Hence, an effective damage diagnostic method 

must have the ability to provide robust damage 

identification results by extracting suitable features without 

distorting from the noise present in the measured time 

history responses. 

We can express the measured acceleration time history 

response (raw dynamic signatures) at any typical spatial 

location of a structure as follows 

Y t Y t ζ t ( ) ( ) ( )
 

(1) 

in which  T
1 2 3( ) [ ( ),  ( ), ( ),......... ( )]nY t Y t Y t Y t Y t is the 

measured dynamic signatures ( raw acceleration time 

history signals) of length „n‟,  Y t  of the structure. 

These raw signals are obviously polluted with measurement 

noise.  This noise is generally represented by white 

Gaussian noise with zero mean and a standard deviation of 

1 

     nζ t ζ t ζ t ζ t ζ t T
1 2 3( ) [ ( ),  , ,......... ]

 
(2) 

Let us consider two typical spatial locations (sensor 

nodes) on the structure, say r and s and we can evaluate the 

cross-correlation function of the measured dynamic 

signatures (acceleration time history responses) at these two 

spatial locations. 

    

        
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 
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    

    

  

  ( ), ( ),

( ) ,

( ) ( ) 

   

 
(3) 

In Eq. (3), 

           ( ) 0r s s rE y t t E y t t     as the 

white Gaussian noise is independent of the time history 

responses, they are uncorrelated. 

Similarly,      r sE t t   = 0 when,  0 and 

2 , when,  0 .
2 , is the variance of the white 

Gaussian noise and its value is 1 as the standard deviation 

of noise is taken as 1. Apart from the measurement noise, 

the measured dynamic signatures of a structure under 

ambient excitations are usually more complex and rather 

difficult to handle. The majority of output-only damage 

diagnostic techniques are proposed in the literature assumes 

that either the free vibration response or the impulse 

response is available for modal identification. Alternatively, 

in some of the earlier works, it is assumed that the structural 

vibration response obtained is from white Gaussian noise 

excitations.  However, it is impractical to realize free 

vibration or impulse response measurements from civil 

structures as they are usually spatially large with huge mass. 

Even if it is realizable, we need to suspend the normal 

operations on the structure, for example, regular traffic 

needs to be suspended to measure the dynamic signatures.  

Hence special efforts are needed for the investigation of 

damage diagnostic methods based on ambient vibration 

signals. 

In reality, both the components of stationary random 

excitations and nonstationary random excitations will be 

present in the measured dynamic signatures of the civil 

structures with the ambient excitations. As mentioned 

earlier, the ambient excitations on a structure can be 

assumed to be the sum of stationary random excitations and 

nonstationary random excitations. 

 ( ) ( ) ( )st nstf t f t f t
 

(4) 

where ( )stf t  and ( )nstf t  are the stationary and non-

stationary random excitations respectively. 

The nonstationary random excitation ( )nstf t can be 

decomposed further into periodic ( ( )p
nstf t ) and aperiodic 

( ( )p
nstf t ) excitations.  With this, Eq. (4) can be written as 

  ( ) ( ) ( ) ( )p p
st nst nstf t f t f t f t

 
(5) 

If the value of 
2[ ( )]stE f t  is much greater than, 

2[ ( )]nstE f t  then we can assume that the structure is 

subjected to stationary random excitation, otherwise, we 

need to consider that the predominant forces acting on the 

structure are nonstationary. In such situations, we may have 

to resort to appropriate damage diagnostic techniques to 

handle non-stationary structural response signals. 

We can write the structural response at any typical r
th  

and the s
th

 nodes of a structure (with sn  sensor nodes), 

subjected to excitation force f(t), as follows 
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( ) ( ) ( ) ( );

( ) ( ) ( ) ( );

  

  

st p p
r r r r

st p p
s s s s

y t y t y t y t

y t y t y t y t
 

(6) 

where the superscripts „st‟, „p‟, and p  refers to the 

structural response subjected to stationary random 

excitations, periodic and aperiodic force excitations, 

respectively.  

We can write the cross-correlated response of the two 

signals given in Eq. (6) as 

 rs r sy y1 2 1 2R (t ,t ) = E (t ) (t )
 

1 2 1 2 1 2= R (t ,t ) + R (t ,t ) + r (t ,t )st p
rs rs rs  

(7) 

in which 

 st st st
rs r sy y 

 1 2 1 2R (t ,t ) = E (t ) (t )
 

(8) 

 

 p p p
rs r sy y 

 1 2 1 2R (t ,t ) = E (t ) (t )
 

(9) 

 

 1 2 1 2

1 2

1 2

(t ,t ) = E (t ) (t )

                  - E (t ) (t )

                  - E (t ) (t )

 
 

 
 

rs r s

st st
r s

p p
r s

r y y

y y

y y

 (10) 

The cross-correlation under stationary random excitation 

component given in Eq. (8) can be written as 

  
 

R (τ) = E (t) (t + τ)st st st
rs r sy y

 

  
n

- ω (t)τ

j=1
sin ω (t)τ += B e

s j j j
jd

j
rs  

(11) 

where ns  is the number of frequencies excited by the 

stationary random excitation, B j
rs is a coefficient of mode j , 

associated with nodes r and s. ω j
 is the j

th
 natural 

frequency excited due to the stationary random excitations.  

Similarly,  j  , ω j
d  and  j  are the damping ratio, 

damped natural frequency and the phase angle of the j
th

 

mode respectively.  

Since the response of a linear structure, subjected to 

periodic excitation, ( )p
nstf t , will be periodic, with the 

frequencies same as the excitation frequencies, the cross-

correlation of the structural responses at the node, r and 

node, s , is also periodic and is given as 

   
n +k

h=n +1

- ω (t) τ sin ω (t)τ +R τ = B e
s

s

h h
h

d h

p
rs rs

h ζ
φ

 

(12) 

where  k  is the number of frequencies excited by the 

periodic random excitation , ωh
 is the h

th
 frequency 

excited due to the periodic excitations. Bh
rs  and φh are 

respectively the amplitude and phase angle associated with 

h
th

 mode . 

It can be observed that Eqs. (11) and (12) have similar 

expressions which can be represented in a unified manner 

for  s kn  number of frequencies as 

   
n +k

j=1

- ω (t) τR τ = C e sin ω (t)τ + φ
s j j

j
d j

j ζ
rs

 

(13) 

where C j
rs refers to the amplitude of the j

th
 mode 

corresponding to the cross-correlated response of nodes r 

and s. Using Eq. (13) in Eq. (7), we get 

   

 

n +k

j=1

1 2

-  ω (t) τR τ = C e sin ω (t)τ + φ

              + r t ,t


s j j

j
rs d j

rs

j ζ
rs

 (14) 

We can decompose the cross-correlated acceleration 

response given in Eq. (14) into a series of IMFs, M and a 

residue, r, using empirical mode decomposition as follows. 

 

 

n +k

j=1

n +k n +k
- ω (t) τ

j=1 j=1

1 2

R (τ) = (τ) + r(τ);    

(τ) = C e sin ω (t)τ + φ  

                                   and r(τ) t ,t

where  







 

s

s s
j j

j

rs rs

j j j

rs rs d j

rs

M

M

r

 (15) 

The residual part, r(τ) , consists of measurement noise 

and also the components of the response which do not 

contain the modal information i.e., response under aperiodic 

excitations. From this formulation, It is clear that using the 

cross-correlated responses, the time history response of a 

structure under ambient excitation (consists of both 

stationary and nonstationary random excitations) can be 

decomposed into a series of IMFs using empirical mode 

decomposition. We also notice that non-modal components 

of the response including noise can be conveniently isolated 

to a larger extent using this formulation.   

 

2.1 Empirical mode decomposition 
 

Empirical mode decomposition (Huang 2014) as its 

name suggests is an empirical method. The aim of this 

method is to decompose the complicated (non-linear and/or 

non-stationary) time history response signal into a series of 

oscillating components obeying some basic properties, 

called intrinsic mode functions (IMFs). The basic principle 

in EMD is to decompose a signal y(t) into a set of zero 

mean mono-components called the IMFs. In each IMF 

generated, the number of extreme and the number of zero-

crossings can differ at most by one. Further, at each point in 
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the generated IMF, the mean value defined by local maxima 

and the local minima must be zero. Sifting is the name 

given to the empirical procedure associated with EMD. It 

works as follows: we first identify the local maxima and 

minima of the measured time history response y(t) and 

generate upper and lower envelopes by connecting these 

points through cubic spline interpolation. We later compute 

the mean of the upper and lower envelopes and subtract 

from the time history y(t). The difference between the 

original time history and the mean value, c1, is called the 

first IMF if it satisfies the two basic criteria discussed above. 

We repeat the same sifting process on the new time history 

obtained after subtracting the C1 component from the 

original signal y(t), in order to generate the second IMF. 

This process is repeated to generate rest of the IMFs till the 

residue becomes a monotonic function or less than specified 

convergence level. We can reconstruct the original time 

history y(t) by adding up all the IMFs, IMFn  including the 

residue, IMFr as shown in Eq. (16). 

1

 ( ) ( ) ( )
IMFn

j IMF
j

y t C t r t

 

(16) 

 

2.2 Empirical mode decomposition with intermittency 
 

The IMFs generated through the empirical mode 

decomposition should be complete, adaptive and almost 

orthogonal decomposition of the original time history signal.  

However, the sifting process discussed above, cannot 

produce quality IMFs mainly due to large swings near the 

ends of the signal. The propagation of these swings inside 

corrupt the complete signal and it subsequently results in 

the form of poor IMFS. The large swings near the ends of 

the signal are basically due to the spline fitting process 

associated with the sifting.  

This will be predominant especially when low-

frequency components are present in the signal.  Apart 

from this, in the signals with closely spaced frequency 

components, the modal perturbation phenomena is too 

prominent to be ignored and it results in the poor sifting.  

The IMFs thus generated will generally cover more than 

one modal frequency and can also have some pseudo 

components. In order to overcome these limitations, several 

EMD techniques are proposed in the literature and EMD 

with intermittency criteria is popular among them  

Initially, EMD with intermittency criteria was proposed 

by (Huang 2005) to locate the intermittent components of 

the signal. Alternatively, an approach was proposed by 

(Gao et al. 2008) using the Teager-Kaiser energy operator 

to locate the intermittent components of the signal. 

Subsequently, several other researchers have investigated 

on improving the EMD for generating IMFs. Since our 

objective is to generate the IMFs and to ensure that each of 

the IMF generated, represent the individual modal response, 

we have implemented the EMD with intermittency criteria 

as given below. 

Our objective in the present work is to decompose the 

response signal into IMFs such that each IMF represents 

one single modal response. In order to accomplish this, we 

impose an intermittent frequency in the sifting process in 

order to ensure that each of the IMFs generated to represent 

the modal response contains only one frequency 

component. We use a bandpass filter during the sifting 

process to remove all the frequency components which are 

lower or greater than from an IMF. We can obtain the 

frequency components related to each resonant frequency of 

the structure using FFT. The frequencies corresponding to 

the modal components of the structure present in the 

Fourier spectrum are partitioned into several (say m) 

subdomains. The centre of each subdomain represent the 

resonant frequency 0

kf . The upper and lower limits of 

each subdomain (i.e., 
u

kf  and 
l

kf  (k = 1, 2, 3,. . . , m)  

is defined as (1 ± 5%) 0

kf . Accordingly, the resonant 

frequency band covered in Fourier spectrum will be divided 

into nm sub-domains as follows 

 1| |    1,2, ....    j i jf f f f j m
 

(17) 

We use band-pass filter by considering the boundaries 

of each subdomain as the sweep starting and sweep-ending 

frequency limits, to generate a number of narrowband 

signals from the original signal.   

The generated IMFs will have a very good correlation 

with the original signal as these IMFs contain the frequency 

components of the original signal. Keeping this in view, we 

use the correlation strength as a measure to isolate the true 

IMFs from the other pseudo components.  Accordingly, 

we compute the correlation coefficient, 

, ( 1,2,..., )i IMFi n 
of each of the IMFs with the signal 

as follows. 

1

  ,

1

1


 

   
   

   

N

j A j B

i

j A B

Correlation Coefficient

A B

N

 (18) 

where A is the IMF, B is the original signal, N is the sample 

size,   and   are used to indicate the mean and 

standard deviation respectively.   

We normalize the signal and also the IMFs before 

computing the correlation coefficients, by dividing them 

with their respective maximum values.  This normalization 

helps in retaining some of the low amplitude real IMFs.  In 

order to differentiate the true IMFs from pseudo IMFs, we 

use the correlation coefficients with a threshold  defined 

as, max( ) /     (i=1........ )i IMFn   , where   is an 

assumed empirical factor and should be greater than 1.0. 

We retain the IMFs, if   i  , otherwise, we 

eliminate by adding to the residue. The main objective here 

is to guarantee that the selected IMFs include all the 

resonant modes to be extracted and have no pseudo-

components. In the present work,   is assumed as 10.0.  

Apart from this, we use the signal extension method 

employing time series to eliminate the end effects of IMFs 
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generated. As mentioned earlier, the end effects of sifting 

disturb the EMD process quite significantly. In order to 

handle these end effects, several distinct approaches are 

suggested in the literature. We can classify them broadly as 

signal extension approaches with or without damping and 

extrema extension techniques (Shen et al. 2005). However, 

most of these techniques suggested to handle the end effects 

associated with periodic or quasi-periodic signals. They are 

not found to be effective for non-stationary and transient 

signals. Keeping this in view, in this paper, we use a signal 

extension technique based on the autoregressive model.  

The details of the signal extension technique are as follows: 

Let [ ( ), ( ),...., ( )] 1 2 nY y t y t y t be a time series of 

size ,  and [ ( ),...., ( )]  1 eext n n nn Y y t y t , the 

extrapolated signal of size en  can be computed as follows: 

Shift the mean of the signal, ,Y  to zero, according to 

the average calculated with the last p points as  sY Y , 

where [ ( ), ( ),...., ( )]    1n p n p nmean y t y t y t  is an 

average of the last p points. Then the extrapolated points 

extY are calculated recursively using the two preceding 

points as 

 

( ) . ( ) . ( )

,

   

 

s i s i s i

e

y t  y t  y t   

i (n+1),...,n+n

1 1 2 2
 (19) 

 

( ( ), ( )...., ( ))

     ( ( ), ( )...., ( ))

  

  



 

e

e

ext n n n n

s n s n s n n

Y y t y t y t

y t y t y t y

1 2

1 2

 (20) 

where the coefficients 1  and 2  can be computed as 

( )
; ;




 



  

   

  

s

t

t t

t 2

1 2
2

2

1

1 1
2

2
 (21) 

s is the pulsation of the sinusoidal extension and it is 

determined using the time scale defined by the nearest local 

extrema as 

    if 

  otherwise


 


  


 

4

4

s

T t
T

t

 (22) 

where T is the difference between the two-time instants of 

last two extrema in the time series, t  is the time step 

length i.e., 2 1t t- .   is the damping coefficient taken 

as 0.001. It should be mentioned here that s  is 

calculated based on the suggestion of (Coughlin and Tung 

2005). However, T should be greater than four times the 

time step to prevent the auto-regressive time series model 

from diverging to infinity. Hence, if T is less than 4 t , T 

is taken as 4 t  in the  Eq. (22). It is appropriate to 

mention here that the phase and the amplitude of the 

sinusoidal extension are automatically adjusted by the auto-

regressive model. This technique is found to be appropriate 

to flatten the envelopes without creating any artificial 

periodicity in the low-frequency IMFs. 

Under the minor/early damage circumstances, among all 

the true IMFs, only a few IMFs contain the information of 

damage as only a few modes are affected by the damage. In 

order to isolate the IMFs related to the modes, which are 

really affected by the damage, an automated algorithm is 

used in this work and is described below. 

 

2.3 Automated algorithm to choose the IMFs for 
damage diagnosis 

 

The IMFs extracted by EMD process are the mono-

component responses of the original signal. The sum of all 

the IMFs and the residue gives the original measured time-

history response. Therefore, every true IMF is expected to 

have a good correlation with the measured time-history 

response as it is a part of the total response. When a current 

signal from the damaged state of the structure is measured 

and subjected to EMD, the extracted IMFs, which are 

mono-component signals, are expected to correlate well 

with the measured current signal, but not with any other 

healthy baseline signals. This feature is exploited to choose 

the relevant IMFs which can reflect on the altered dynamic 

properties due to damage.  

The following steps are adopted to isolate the IMFs 

containing the damage information among the true IMFs.  

i. The dynamic signatures i.e., acceleration time 

history responses, obtained from the current state 

of the structure, y(t) (i.e., with damage) are 

decomposed into M IMFs using EMD. The IMFs 

obtained are denoted as ( ), ( 1,2,...., )i IMFC t i n   

ii. Similarly, the reference dynamic signatures x(t), 

i.e., responses from a healthy state of the structure, 

chosen using the matching technique discussed 

earlier are also decomposed into IMFs and are 

denoted as ( ), ( 1,2,...., )i IMFR t i n .  

iii. Compute the correlation coefficients  

, ( 1,2,...., ; 1,2,..... ) j
i IMF si n j n  of the 

current IMFs, ( )iC t  and measured time history 

responses x(t)   of the reference condition. 

iv. Similarly compute the correlation coefficients j
i , 

of the current IMFs, ( )iC t and measured time 

history responses y(t) of the current state. 

v. Compute the difference in the corresponding 

correlation coefficients  for all sensors, sn   

1, 2,

1, 2,...
;



  
   

 

I

s

MFj

i

j j
i i

j n

i n
    (23) 

vi. Compute damage feature(DF) index of each 

current IMF  
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(i) ( );
1

1, 2,

, 2,...

 




 
 
 

j

i

M

s

I F
DF MA

n

i
X

n

j
  (24) 

 

vii. Sort the DF vector and choose the sorted top few 

modal time history responses with higher values of 

damage feature index, based on user-defined cut-

off. A cut-off value of 0.8 is defined for all the 

numerical studies.  

viii. Similarly, reconstruct the reference  and current 

time history responses, ( )and  y (t)i ix t  (i = 1,2, 

3.. sn ) by choosing the modal time history 

responses of the  modes chosen in step (vii) 

ix. Use these reconstructed current time history data, 

( )y t  and reference time history data,  ( )x t  for 

computing the spatial damage in the structure 

using the ARMAX model. 

 

The details of ARMAX model and the cepstral distance 

measure are given in Appendix-A for readers‟ benefit and 

hence not explained in this section. 

 

 

3. Damage detection methodology 
 

A damage detection technique combining EMD and 

time series analysis is proposed to detect the damage in the 

structural system at its earliest stage of incipience. The 

proposed technique is an output-only damage detection 

method and utilizes the acceleration time-history data from 

the sensors placed on the structure of interest. The process 

of damage detection is carried out in two phases namely: 

preliminary phase and testing phase.  

The proposed damage diagnostic algorithm is carried 

out by following the step by step procedure as given below: 

 

Preliminary Phase: 

1. The measured vibration data, X (i.e., acceleration 

time-history responses) recorded for time, ‘t’, from 

all the sensors placed on an undamaged (healthy) 

structure, is segmented into blocks of data of finite 

duration, whose elements are denoted by 

ij sx (t); i 1,...,n ; j 1,...,M= =
, where sn is the 

number of sensors and M is the number of data 

blocks. Populate a database with these baseline 

signals. 

2. Fit an ARMAX model shown in Eq. (A.1) to the 

subsets of the baseline data for all i and j  

 

Testing Phase: 

 

3. Obtain new acceleration signal (current data), Y 

for time „t‟, from a potentially damaged structure 

for all the sensors and segment it into finite blocks 

of data, whose elements are denoted by 

ij sy (t); i 1,....n ; j 1,...,M= =
  ( similar to step 

1). 

4. Fit an ARMAX model to the current data ( similar 

to step 2) 

1

1

1

y( ) y( )

       ( )

       ( ) ( )





  







 

  

  







p

i

i

q

i k

i

b

i

i

t t i

u t n i

t i t

 (25) 

5. Perform normalization by matching: 

For each sensor i, every data-block of the current 

data is matched with a data-block of the signal in the 

baseline pool using the minimization of the value 

“Difference” as given below. 

 
p 2

yx
k k

k 1

  Difference

 

(26) 

Choose the data segment, q of the baseline data, 

x(t)  whose AR coefficients match closely with 

the AR coefficients of the current data (i.e., the 

„Difference‟ in Eq. (26) is minimum) and use it 

for all the subsequent computations  

6. Perform empirical mode decomposition on the 

matched subsets of baseline and current data and 

obtain the IMFs independently. Choose the IMFs 

with rich damage sensitive features through the 

automated algorithm defined in section 2.3. 

7. Add up all the selected modal responses to obtain 

reconstructed time history responses, i(t)y  (i = 

1,2, 3.. sn ) corresponding to current data,  with 

damage rich features. The number of modal 

responses considered for reconstruction can be 

from one to maximum of m modes. Similarly, 

reconstruct the reference time history responses, 

using the modal time history responses chosen in 

step 6. 

8. Fit ARMAX model to the new reference and 

current data subsets and evaluate the damage index 

using the cepstral distances of the two models, 

described in section 2.5. 

9. Plot the cepstral distance damage index for every 

sensor, to visualize the spatial location of damage. 

The sensor nodes which indicate the highest 

magnitudes of the damage index reveal the 

location of damage precisely.  For the benefit of 

the reader, a flowchart of the proposed 

methodology is presented in Fig. 3. 
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4. Validation studies 
 

The effectiveness of the proposed EMD augmented 

ARMAX model is demonstrated with an example of a 

simply supported elastic beam. Transverse elasto-plastic 

cracks are generated on the beam on loading and a cracked 

beam finite element analysis is used to obtain the time 

history responses. The initiation of cracks are perceived as 

the incipience of damage and the proposed EMD-ARMAX 

technique is applied to identify the spatial location. Apart 

from the numerical simulation studies, an experimental 

verification is also carried out using an RCC beam inflicted 

with cracks due to static loads. 

 

4.1 Numerical verification using a simply supported 
beam   

 
The simulated numerical example used for validation 

studies is a simply supported beam girder, with dimensions 

of 10000 mmx450 mmx550 mm, which is in a healthy state 

initially. The simply supported beam with the material 

properties is shown in Fig. 4(a). The beam is discretized 

into 20 elements for the simulation studies. The beam is 

assumed to carry accelerometers on 19 nodes, eliminating 

the nodes at the supports. 

 

4.1.1 Generation of baseline data: 
A stochastic random dynamic loading is simulated for 

exciting the beam. Newmark‟s time marching scheme is 

used in finite element analysis to compute the acceleration 

time history response with a sampling rate of 2000 Hz.  

 

 

Initially, 12s long acceleration time history data are 

generated with random loads and normal operational 

conditions. A time-history of a typical random load and its 

frequency spectrum are shown in Figs. 4(b) and 4(c) 

respectively.  

Most of the structural damage diagnostic techniques 

show great sensitivity to noise when they are applied to real 

situations. Therefore, the performance of the proposed 

technique has to be verified with respect to the immunity 

towards measurement noise. In order to investigate the 

effect of measurement noise, we have contaminated the 

computed time history measurements with zero mean white 

Gaussian noise. The noisy measurements have been 

obtained by adding a normal random component to the 

computed noise free acceleration time history response as 

)x~(Nx~x~ noisepm   (27) 

where p  is the percentage noise level, noiseN is the 

standard normal distribution vector with zero mean and unit 

standard distribution, )x~(  is the standard deviation of 

the noise-free measured ( computed) time history response. 

The random noise levels of 5%, are considered in the 

present investigations. Severe experimental conditions are 

simulated by maintaining the correlations of noisy 

sequences of different nodes as low as possible. This 

healthy data generated with 5% measurement noise is 

segmented into 50 subsets with 1000 samples in each. 

 

 

 

 

Fig. 3 Flowchart of the proposed technique 
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4.1.2 Generation of test data: 
Similarly, the acceleration data for the current state of 

the structure, with the simulated damage as shown in Table 

1, by introducing cracks of a specified length, on selected 

elements are generated and segmented into subsets. The 

formulations of the finite element analysis of the cracked 

beam, proposed by (Krawczuk et al. 2000), are used in the 

present work to obtain the vibration responses after damage. 

The formulations of stiffness and mass matrices are given in 

Appendix –B for the benefit of the readers. 

By using Eqs. (B.1)-(B.3), the acceleration responses are 

generated to form the current data in a way that initially, the 

structure is healthy and the damage is initiated after few 

instants of time. To simulate this scenario, the damage is 

introduced after 3 seconds (i.e., in the 7
th
 current subset 

data). 

 

 

Table 1 Test cases for damage detection of simply 

supported beam 

Test case 

Depth 

of 

crack 

Location of crack 
Time instant  
of damage 

1. Single crack 10 mm 
2/3rd length of the 
6th  element 

6000th time step 

2. Multiple cracks 

10 mm 
(i) 2/3rd length of 
the 6th element 10000th time 

step 
15 mm 

(ii) Middle of the 
15th element 

 

 

 

 

 

4.1.3 Detection using existing popular techniques 
Initially, the ability of the existing popular vibration-

based damage detection techniques to detect subtle cracks 

in the structure is investigated in this section, using the 

subsets of the test case-1 shown in Table 1. For this purpose, 

selected popularly used damage detection techniques are 

considered. The techniques employed in the present 

investigation here are: Principal Component Analysis (PCA) 

(Golinval 2017), Hilbert Huang Transform (HHT) (Rao and 

Lakshmi 2015), Wavelet transformation (Pnevmatikos 2010) 

and finally time series models using AR-ARX model 

(Lakshmi and Rao 2015) and ARMAX model (Lakshmi and 

Rao 2016). We have presented the curvature of the PCA 

modes in Fig. 5. It is clear from the first three PCA modes 

(chosen based on energy criteria) shown in Fig. 5, that there 

is no abnormality in the form of a sudden spike at the 

spatial location of damage and also there is no visible 

variation between the healthy structure and the one with 

minor crack (test case-1 shown in Table1). We further 

demonstrate here that the Hilbert Huang transform also fails 

to detect the minor incipient cracks in the structure. Fig. 6 

shows the instantaneous envelope of the beam for the first 

two IMFs. As reported in the Rao and Lakshmi (Rao and 

Lakshmi 2015), the instantaneous envelope is expected to 

show a large spike at the exact time instant of damage. In 

the present example, the acceleration time history data 

before and after simulation of the damage (i.e., data realized 

at 3
rd

 and 4
th

 sec) in the form of minor crack is considered 

as one data set. 

 

 
Elastic Modulus = 205 GPa;      Cross sectional Area = 0.248 m

2 

Mass Density = 7850 Kg/m
3
;   Moment of Inertia = 0.000624 m

4
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(b) (c) 

Fig. 4 (a) A Simply supported beam, (b) typical load time-history and (c) Fourier spectrum of load time-history 
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Empir ica l  mode decomposi t ion (EMD) wi th 

intermittency criteria is used in the present investigations to 

generate the intrinsic mode functions (IMFs) from the time 

history response. Hilbert transform is applied on each of the 

IMF and the instantaneous envelopments are plotted. It can 

be easily verified from the plots shown in Fig. 6 that there 

are multiple smaller spikes all through the time history and 

no visible major spike to distinguish the exact time instant 

of damage is observed as popularly reported in the literature. 

Wavelet analysis is performed on the same data  

 

 

 

 

set considered earlier for HHT. We have employed 

Daubechies wavelet db4 by varying the scale from 1 to 10. 

The wavelet coefficients for various scale are shown in Fig. 

7. We could not observe any distinguishable spike like 

feature in any one of the scales presented here as popularly 

reported in Pnevmatikos (Pnevmatikos 2010). Hence it can 

be concluded from these investigations that neither the 

multivariate analysis nor the time scale or time-frequency 

analysis is not been able to detect subtle cracks in the 

structure.  
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(c) 

Fig. 5 Curvature of the first three PCA modes (test case-1) 

0 500 1000 1500 2000 2500 3000 3500 4000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
m

p
lit

u
d

e

Time steps

 IMF -1

 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
m

p
lit

u
d

e

Time steps

 IMF- 2

 

 

 
(a) (b) 

Fig. 6 Damage detection of test case-1 using HHT: (a) Instantaneous envelope of IMF-1 and (b) Instantaneous envelope of 

IMF-2 
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A similar exercise has been carried out using time series 

models also. The damage indices obtained for test case-1 

given in Table 1, using AR-ARX model based on the 

technique outlined in Lakshmi and Rao (Lakshmi and Rao 

2015) is shown in Fig. 8(a). Similarly, the damage indices 

using ARMAX model using Cepstral distance measure 

(Lakshmi and Rao 2016) as damage index are shown in Fig. 

8(b). It is clear from the plots shown in Fig. 8 that time 

series analysis using either AR-ARX or ARMAX models 

also fails to detect the minor crack simulated in the structure. 

The investigations presented so far on test case-1 clearly 

indicates that the sensitivity of the popular damage features 

i s  no t  suff ic ient  enough to  cap ture  the  minor  

 

 

 

changes/damage and to reflect them in their indices, even 

under the normal conditions (i.e., without the environmental 

variability). 

 

4.1.4 Detection using the proposed technique 
In the proposed technique, in order to improve the 

sensitivity of the time series models, to capture the minor 

damage, initially, the acceleration time history data (signal) 

is pre-processed using the EMD with intermittency 

algorithm, to extract the uni-modal responses, IMFs. It may 

be noted that the acceleration time-history response is 

generated afresh with the temperatures, varied from -15 to 

50°C, to simulate the effects of environmental variations  
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Fig. 7 Wavelet analysis of a subset of test case-1 
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(a) AR-ARX model (b) ARMAX model 

Fig. 8 Damage detection using Time series techniques: (a) AR-ARX models and (b) ARMAX models 
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(a) (b) 

Fig. 9 EMD of the response at node-6 of simply supported beam-Test Case-1: (a) IMFs of healthy data and (b) FFT 

spectrum of IMFs of healthy data 

 
 

(a) (b) 

Fig. 10 EMD of the response at node-6 of simply supported beam-Test Case-1: (a) IMFs of current data with damage and 

(b) FFT spectrum of IMFs of current data 
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and to test the proposed technique in handling the 

variability. The details of the IMFs, of both the dynamic 

signatures obtained from the healthy structure (baseline) 

and their fast Fourier spectrum(FFT) plots, are shown in 

Figs. 9(a) and 9(b) respectively. Similarly, the IMFs of the 

dynamic signatures obtained from the current state of the 

structure and their FFT plots are shown in Figs. 10(a) and 

10(b) respectively.  

From the extracted IMFs, damage enriched IMFs are 

selected using the automated procedure presented in the 

earlier section. The new current time series is reconstructed 

using these damage enriched IMFs. In the similar fashion, 

the new baseline time series is also reconstructed using the 

already selected IMFs. The typical reconstructed signals of 

sensor node-6 (i.e., node closer to crack location) using the 

selected IMFs of the current and healthy signals based on 

the presence of damage rich features of the current data are 

shown in Fig. 11(a). 

Once the current data subset and the baseline subset are 

reconstructed using the extracted IMFs, ARMAX model is 

used to compute the damage indices using cepstral distances  

 

 

 

 

to locate the damage as shown in Fig. 11(b). The results 

presented in Fig. 11, clearly indicates that the proposed 

method based on EMD-ARMAX is effective in detecting as 

well as locating the spatial damage present in the structure 

in the form of minor crack. Using the count of the current 

dataset being analyzed, we can arrive at the exact time 

instant of damage. In this example, the time instant of 

damage is found to be 3s. 

Similarly, the second test case of this numerical example 

is considered and the results of the investigations are shown 

in Fig. 12. The spatial location of the two cracks can be 

easily identified from Fig. 12(b), from the increased damage 

indices. 

From the results, shown in Figs. 9-12, it can be clearly 

seen that the proposed technique combining EMD and 

ARMAX model is capable of identifying the location of 

minor damage like cracks, even in the presence of 

variability due to environment, operational conditions and 

measurement noise. 

 

0.0 0.5 1.0 1.5 2.0 2.5

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

A
c

c
e
le

ra
ti

o
n

 (
g

)

Time(s)

 Reconstructed healthy data

 Reconstructed current data

 

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

C
e

p
st

ra
l D

is
ta

n
ce

Sensor Number

 

 

 

(a) (b) 

Fig. 11 Damage diagnosis of simply supported Beam-Test case-1: (a) Reconstructed signals of healthy and current data of 

Sensor-6 and (b) Damage index evaluated using cepstral distances of ARMAX models 

0.0 0.5 1.0 1.5 2.0 2.5

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

A
c

c
e
le

ra
ti

o
n

 (
g

)

Time(s)

 Reconstructed healthy data

 Reconstructed current data

 

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5
C

e
p

st
ra

l D
is

ta
n

ce

Sensor Number

 

 

 
(a) (b) 

Fig. 12 Damage diagnosis of simply supported Beam-Test case-2: (a) Reconstructed healthy and current data at node-15 

and (b) Cepstral distance measure of the reconstructed data 
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4.1.5 Damage detection using limited measurements 

Generally, in practical applications, the sensors 

available to place on the structure will be limited for the 

reasons of issues related to cost of the sensory systems and 

their accessibility. Therefore, it becomes mandatory to 

place the sensors at optimal limited locations to capture the 

essential responses from the structure with the minimized 

cost of SHM system. Mallardo and Alibadi (2013) have 

proposed various optimal sensor placement techniques. 

Effective independence (Efi) approach (Kammer 2005, 

Rama Mohan Rao and Anandakumar 2008) is one of the 

popular optimal sensor placement techniques and it is 

adopted in the present study to locate the sensors on the 

simply supported beam. The final locations of sensors is 

obtained from Efi and the acceleration time history 

responses are generated for testcase-1 for those set of sensor 

nodes with varied temperatures and measurement noise. 

Considering 11 and 7 numbers of monitoring points, the 

optimal placement locations on the simply supported beam, 

identified by Efi, are shown in Table 2. 

The damage diagnosis using the proposed technique is 

carried out with the limited sensor measurements on the 

optimal locations identified using Efi. The damage indices 

of the testcase-1 are shown in Figs. 13(b) and 13(c), for 11 

and 7 numbers of optimally placed sensors respectively. 

 

 

Table 2 Optimal locations of sensors on simply supported 

beam identified using Efi 

Number of optimally 

located sensors 

Optimal locations of sensors 

11 [1,3,5,7,8,9,10,11,13,15,17,19] 

7 [3,5,7,10,13,15,17] 

 

 

 

 

It can be seen clearly from Fig. 13, that the cepstral 

distances of sensor number 7, placed near the exact damage 

location (i.e., element no. 6), show the higher magnitude, 

which indicates the spatial location of damage. Hence, it is 

proved from this study that the proposed technique can 

exactly capture the location of the minor cracks with limited 

number of measurement points located on the structure, 

handling the effects of temperature variations and the 

measurement noise. 

 

4.2 Experimental verification: 
 

Laboratory experimental studies are conducted on a 

simply supported RCC beam to verify the efficiency of the 

proposed damage detection algorithm using EMD-ARMAX 

model combined with cepstral distances to locate the minor 

damage like cracks.  

The test structure considered is a simply supported RCC 

beam with dimensions: span length-300 cm, Width-16.5 cm 

and Depth-20 cm as shown in Fig. 14. The bottom 

longitudinal reinforcement was 2# 16 and the upper was 2# 

12 with 25# 6 stirrups. The first four natural frequencies of 

the beam are 28Hz, 112 Hz, 252 Hz and 448 Hz. 

Instrumentation of the beam consists of 16 micro-

electromechanical systems (MEMS) accelerometers, placed 

spatially at equal distances along the beam to record the 

acceleration time history data. The excitation of the beam is 

performed using a modal shaker of sine peak force capacity 

of 200N. Tests are carried out using both harmonic as well 

as random excitations. The loading frequencies, as well as 

the amplitude, is varied during each set of measurements to 

simulate operational variability. The time-history of a 

typical random loading and its frequency spectrum are 

shown in Figs.16 (a) and 16(b) respectively. To simulate the 

environmental variability, small masses are arbitrarily  
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Fig. 13 Damage diagnosis with limited sensor measurements: (a) S.S. beam idealized with complete set of 19 sensors, (b) 

damage indices of optimally located 11 sensors and (c) damage indices of optimally located 7 sensors 

NOTE: The optimal sensor locations are shown in the X-axis of Figs. 13(b)-13(d) and the corresponding original locations 

with full set of sensors are shown within the brackets 
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placed on the beam for each set of measurement. The top 

view of the beam with added masses is shown in Fig. 15. 

The experimental setup is named as “Test setup-1”. The 

tests are repeated several times by varying the mass 

locations in order to simulate environmental variability and 

also varying the loading on the beam to simulate 

operational variability. 

Initially, acceleration responses of the beam are 

measured at all the 16 sensor nodes for the undamaged state 

of the beam. This scenario is named as „Healthy‟. Each 

signal is measured for 19 sec and is sampled at 3000 Hz.  

The damage is inflicted at approximately one-third span 

from the left side support of the beam (i.e., in element no. 5).  

 

 

 

 

 

 

For this purpose, the beam is mounted on a loading frame 

and in order to inflict cracks at 1/3 span of the beam, the 

span of the beam is reduced to 2/3rd of the total length of 

the beam by placing supports on the loading frame 

accordingly. A hydraulic jack is used to apply static load. 

The complete experimental arrangement (Test setup-2) with 

a hydraulic jack, load cell, dial gauge to measure 

displacements at mid-span (i.e., at the 1/3 span length of the 

full beam) are shown in Fig. 17. 

The static load is applied in small increments. The 

minor cracks appear at mid-span (i.e., approximately at the 

1/3 of the overall span) when the static load applied is 

12KN.  

 

Fig. 14 Simply supported RCC beam girder represented schematically 

 

Fig. 15 Top view of „Test setup-1‟ with added masses for environmental variability 
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(a) (b) 

Fig. 16 Experimental verification: (a) Typical load time history and (b) Fourier spectrum of load time-history 
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The beam is unmounted from the loading frame at this stage 

and shifted back to the experimental set-up shown in Fig. 

15. At this stage, the beam is having minor cracks 

developed approximately at 1/3rd span from the left side of 

the beam and is shown in Fig. 18. The experiment with 

dynamic excitation force (as discussed earlier for healthy 

beam) is performed to create test data (acceleration  

 

 

 

 

 

response) of the beam with minor damage and is referred to 

as „Damage1‟. Similarly, in order to inflict multiple 

damages on the test specimen, the damage is inflicted using 

the similar procedure outlined earlier (experimental 

testsetup_1 ) at 1/3rd span from right side support (element 

No: 11) as shown in Fig. 19 and the time history 

measurements recorded are referred to as „Damage2‟. 

 

Fig. 17 Test setup-2 

 

Fig. 18 Scenario of Damage_Type1 

 

Fig. 19 Scenario of Damage_Type-2 
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4.3 Damage diagnosis: 
 

The acceleration data of „Healthy‟ is used as the 

baseline data and the minor damage scenarios – Damage-

Type-1 and Damage-Type-2 are used as the current data 

after the damage has been inflicted. The cross-correlated 

signals of the measured acceleration time history data of 

Healthy and Damage-Type-1 are fed to the EMD with 

intermittency and the IMFs are extracted. The reconstructed 

signals using the selected IMFs of the current and healthy 

signals based on the presence of damage rich features of the 

healthy and current data are shown in Fig. 20(a). The 

ARMAX models of the reconstructed signals are used to 

obtain the cepstral distances to locate the damage as shown 

in Fig. 20(b). The cepstral distance damage indices of 

ARMAX, for the first damage scenario (single crack at the 

left 1/3rd span), shown in Fig. 20(b), clearly reflect the 

spatial location of damage (at one-third of the beam). 

 

 

 

 

 

 

Similarly, the IMFs, for the multiple( i.e., two)  minor 

damage scenarios, are obtained and the reconstructed 

signals are shown in Fig. 21(a). The damage indices 

obtained from all the sensors are shown in Fig. 21(b). It can 

be seen clearly from the Fig. 21(b) that the proposed 

technique can identify the multiple minor damages at the 

1/3rd and 2/3rd span of the beam.  

The efficiency of the proposed technique is also 

validated with the limited measurements, obtained from the 

optimally located measurement points, using Efi. The 8 

numbers of optimal sensor locations, identified by Efi, from 

the original sensor set, are shown in Table 3. The 

acceleration responses from the optimally located sensor 

nodes are measured and used for further processing using 

the proposed technique combining EMD with ARMAX 

model . 
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Fig. 20 Damage diagnosis of RCC beam-Single Damage: (a) Reconstructed healthy and current data and (b) Damage 

index based on Cepstral distances of ARMAX models 
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Fig. 21 Damage diagnosis of RCC beam-Multiple Damage: (a) Reconstructed healthy data and current data and (b) Damage 

index based on cepstral distances of ARMAX models 
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Table 3 Optimal locations of sensors on RCC beam 

obtained using Efi 

Number of 

optimally 

located sensors 

Optimal locations of 

sensors 

8 [2,4,6,8,10,12,14,16] 

 
 

The cepstral distance of ARMAX models are evaluated 

using the optimally placed 8 numbers of sensors and are 

shown in Fig. 22, for single damage and multiple damage 

scenarios. The damage indices of sensors 3 and 6 of the 

optimally arrived sensor set can be observed to have higher 

magnitudes, indicating the location of the minor cracks, 

near those sensor locations. It can be noted in Fig. 22, that 

the optimal sensor locations are shown in the x-axis and the 

original sensor node number is shown within the brackets. 

From the results of Fig. 22, it can be clearly seen that the 

proposed damage diagnosis technique, can identify the 

precise spatial location of the minor damages, using limited 

number of sensors and also handling the influences of 

variability due to environment/operational conditions and 

measurement noise.  

 

 
5. Conclusions 
 

It is shown in this paper that the minor changes in the 

dynamic characteristics of the structures, due to the minor 

cracks developed in the structure, alter only some specific 

modal responses while rest of the modal responses 

contributing to the overall response will not get altered. 

Hence, the damage features present in the modal responses 

of specific modes which are affected by the minor incipient 

damage will be hidden in the overall response (i.e., the 

measured dynamic signature), which is basically the 

summation of all contributory modal responses. Apart from 

this, noise also masks the minor incipient damages present 

in the structure. Keeping this in view, an attempt has been 

made to isolate these damage sensitive modal responses and  

 

 

reconstruct the signal accordingly using an automated 

algorithm, based on EMD. 

Empirical mode decomposition is performed on the 

cross-correlated acceleration time history response. In order 

to obtain IMFs without mode mixing and also handle the 

systems with closely spaced modes in the signal, EMD 

procedure with intermittency criteria is also proposed in this 

paper.  The damage enriched signals isolated by EMD are 

further used for damage diagnosis using the ARMAX model. 

Numerical simulation studies have been carried out by 

considering a simply supported beam with minor cracks. 

Laboratory experimental studies have been carried out by 

considering an RCC beam to complement the numerical 

simulations and also demonstrate its practical applicability. 

The following conclusions are drawn based on the 

investigations carried out and presented in this paper. 

i. EMD with intermittency criteria, performed on 

the cross-correlated signals is found to be effective for the 

problems considered in this paper. 

ii. An approach to automatically identify and isolate 

the modal responses with damage rich features is found to 

be effective. 

iii. Numerical and experimental studies carried out 

and presented in this paper clearly indicate that the 

proposed damage diagnostic method is highly immune to 

noise and can robustly identify smaller cracks developed in 

the structure at their incipient stage. 

iv. In civil engineering structures, the environmental 

and operational variabilities often mislead the damage 

diagnostic process, especially when the damages present in 

the structure are subtle. Hence, the changes in the dynamic 

features due to the effect of variability and the minor 

structural damage need to be distinguished. In this paper, it 

is shown through numerical and experimental investigations, 

that, while, the ARMAX model with matching procedure 

can effectively isolate the effects of environmental and 

operational variability, the hybrid damage diagnostic 

procedure combining EMD with ARMAX model can 

identify the change in the dynamic features due to 

minor/subtle cracks in the structure. 
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Fig. 22 Results of the experimental studies using RCC beam with limited sensors(8 numbers)  (a) Single Damage 

scenario and (b) Multiple Damage scenario 

NOTE: The optimal sensor locations are shown in the X-axis of Figs. 22(a) and 22(b) and the corresponding original locations with full 

set of sensors are shown within the brackets 
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v. The proposed hybrid damage diagnostic 

algorithm combining EMD with ARMAX is highly 

amenable for online monitoring of structures. 
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Appendix-A 
 

 

ARMAX model 
 
The ARMAX model is preferred in this proposed 

technique because it includes the dynamics of the 

disturbance also unlike the other time series models. An 

ARMAX process of a healthy data, x(t) is given below. 
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 (A.1) 

where   is the error between the measured signal and the 

output from the prediction model and kn  is the time delay, 

which, in this case, is set to 1. 
i ,

i  and 
i , are the 

parameters of AR, exogenous input(u) and MA models 

respectively. p , q  and b  are the orders of AR 

exogenous and MA parts respectively. The input series, u, is 

the acceleration time history signals of adjacent sensor 

nodes while fitting an ARMAX model to the data from a 

sensor node. 

 

Cepstral distance based damage index 
 

The damage index is based on the cepstral distances 

between the ARMAX models of the healthy and current 

data subsets reconstructed using the selected few IMFs. The 

cepstral distance is the weighted Euclidean distance 

between the power cepstrum of ARMAX models of the two 

subsets.  

The power cepstrum is nothing but the logarithm of the 

power spectrum P(z), subjected to inverse Fourier transform  

(Oppenheim and Schafer 1975)  

  2 1
log log{ H( )H(z )}

             ( )











k

k Z

P z z

cc k z
 (A.2) 

Where ( )cc k  are the cepstrum coefficients, 
2 is the 

variance of the white noise process possessing zero-mean 

and (z)H  is the transfer function of the system. 

An ARMAX process at time „k‟ is represented as 

follows 

       

   keqC

nkuqBkxqA

x

k

1

11
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




 (A.3) 

In Z domain, the transfer function of the system‟s 

ARMAX process can be represented in the following form  

(Dosiek and Pierre 2013) 

 

 

-1 -1( ) [ ( ) ( ) ( ) ( )]H Z A Z B Z A Z C Z  (A.4) 

 1 1
  ( ) ( )

( )
where A q adj A q

A q
  ; 

 

na
naqA...qAI)q(A   1

1 is the AR polynomial 

matrix; 
nb

nbqB...qBB)q(B   1
10  is the input 

polynomial matrix and 
nc

ncqC...qCI)q(C   1
1

is the MA polynomial matrix with orders  na , nb and nc  

respectively.   

A close look at the second part of the transfer function 

shows the AR and MA components of the system. If these 

components are in terms of poles α(i) and zeros β(i), the 

transfer function resembles that of a stable, minimum 

ARMA process in the Z-domain as 
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 (A.5) 

 

Therefore, now, for any two ARMAX models 
1,AM and 

2,AM , with the corresponding cepstrum coefficients 
1( )cc n  

and 
2 ( )cc n , the cepstral distance becomes the Euclidean 

distance between the cepstrums 

22

1, 2 1 2

1

( ) ( ) ( )




 
n

d AM AM n cc n cc n  (A.6) 

where ( )cc n  are the coefficients of the cepstrum given in 

terms of poles and zeros  
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 (A.7) 

 

This measure of distance evaluated from Eq. (A.6) is 

used for damage localization and is calculated for all the 

sensor nodes independently. Once the damage index 

(cepstral distance) of the subset for all the sensor nodes are 

obtained, it is investigated for the location of damage. The 

cepstral distance increases with the increase in the 

difference between any two signals considered for 

investigation. Therefore, the value of higher damage index 

at a sensor node is considered to be an indication of the 

existence of damage near that node on the structure. Also, 

the time instant of damage can be calculated from the subset 

index number. Therefore, this damage detection 

methodology combining EMD and ARMAX model using 

the cepstral damage index can act as a good localization 

metric, which gives a picture of change of state of the 

structure under each sensor signal without the correlations 

of excitations spatially. 
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Appendix-B 
 
 

Formulations of stiffness and mass matrix for a 
cracked beam 

 

A beam of cross-section B and D, with a crack of 

length `L‟ in a selected element of length `l‟ , is show

n in Figure B.1. For the cracked element, there are thr

ee different parts, namely, left uncracked segment, crac

k segment and right uncracked segment.  

 

 

 

Fig. 1 Finite element of a cracked beam 

 
 
The left and right segments are modelled as non-cracked 

beams with length L/2 and the crack segment is modelled as 

a spring with zero mass and length. Every beam element 

hasa transverse displacement and a rotation in each node. 

Elasto-plastic fracture mechanics (EFEM) is used to model 

the crack where the effect of plasticity at the crack tip is 

also considered (Krawczuk et al. 2000).The effect of the 

local flexibility which arises due to the existence of crack is 

also modelled in the stiffness of the torsional spring. At the 

cracked cross-section of the beam, the flexibility can be 

written as 
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 (B.1) 

Where; 
4( ) 0.923 0.199[1 ( )]

;
( )

tan L 2D sin L 2D
C

L 2D cos L 2D

   


 
   

 is the applied nominal stress,  is the yield strength 

of the material and E is Young‟s modulus.     

The mass matrix of the cracked element is given as 


   rI ,

420
t

c e e

Al
M M lM  (B.2) 

where 
t
eM  represents the portion of inertia matrix related 

to the transverse motion and 
r
eM  is the portion of inertia 

matrix related to the rotation motion given as 
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Where K EIF; I  represents the geometrical 

moment of inertia of the cross-section of the beam and A is 

the area of the cross-section of the beam. It can be seen that 

at the crack location, the elements of the inertia matrix is a 

function of the flexibility coefficient K  and when the 

inertia matrix is similar to the non-cracked element.  

The element stiffness matrix is given by 
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(B.3) 

It can be seen from the above equation of the stiffness 

matrix of the element that, when 0K  , the stiffness 

matrix becomes the same as that of the non-cracked element. 
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