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1. Introduction 
 

Structural systems in civil engineering are subjected to 

deterioration and damage during their service life. Damage 

is characterized as a weakening of the structure which may 

cause undesirable displacements, stresses, strain or 

vibrations to the structure leading to sudden and disastrous 

results. Damage can severely affect the safety and 

functionality of the structure and identification of it at early 

stage can increase safety and extend its serviceability. Thus, 

identification of damage is one of the most important 

factors in maintaining the safety and integrity of structures 

(Fan and Qiao 2011, Hakim and Razak 2014). 

The structural damages are usually detected by the 

modal parameters of the structure (Boller et al. 2009), 

because not only are modal parameters (modal frequencies 

and mode shapes) functions of the physical parameters 

(mass and stiffness) and the existence of damage may lead 

to changes in the modal properties of the structure, but also 

modal parameters can be measured conveniently and 

accurately. Damage estimation techniques from modal data  
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are often based on methods of model updating. These 

methods rely on a parametric model of the structure and the 

minimization of some objective functions based on the 

errors between the measured data and the predictions from 

the model (Ghasemi et al. 2018, Hakim and Razak 2014). 

The success of the finite element (FE) model updating 

method depends on the accuracy of the FE model, the 

quality of the modal tests, the definition of the optimization 

problem and the capability of the optimization algorithm. 

The use of approximate models known as surrogate 

models with a much lower computational cost instead of 

expensive computer analysis codes (Finite Element Model) 

provides much of today’s engineering design and 

optimization. These models are used to replace the actual 

expensive computer analyses packages, and to facilitate 

multidisciplinary, multi-objective optimization, reliability 

analyses and concept explorations (Ghiasi et al. 2016, Liu 

et al. 2011, Padil et al. 2017).  

In fact detection of damage severity is effectively the 

solution to the inverse problem (Fathnejat et al. 2014, 

Torkzadeh et al. 2016). However, it may be necessary in 

many cases to solve the forward problem to generate data 

for the solution of the inverse problem. Now, since 

generation of data is usually computationally expensive, 

surrogate models may be created to reduce the 

computational cost (Mahmoudi et al. 2016). Simulation of 

efficient surrogate model of finite element (FE) as a 

response of updating damaged structure, could replace 
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expensive numerical simulations while enhancing 

computation efficiency. It employed in the optimization 

loop through an inverse process to ascertain the damage 

severity and location as damage parameters. Torkzadeh et 

al. (2016) proposed solution procedure based on artificial 

neural network (ANN) to reduce the computational time of 

model updating during the process of damage severity 

detection. 

Studies shows that ANNs are capable of providing 

correct damage identification, especially when the structural 

damage and the associated changes in vibration properties 

are simulated numerically and are error free (Ghiasi et al. 

2017, Hakim and Razak 2014). However, in practice 

uncertainties in the FE model parameters and modelling 

errors are inevitable. The existence of error in the FE 

modelling, due to the inaccuracy of physical parameters and 

non-ideal boundary conditions and also finite element 

discretization together with nonlinear structural properties, 

may result in generating the vibration parameters from such 

a FE model not exactly representing the relationship 

between the modal parameters and the damage parameters 

of the real structure (Simoen et al. 2015). On the other 

hand, the existence of measurement error in the measured 

data, normally used as testing data in a surrogate model, is 

also unavoidable. Since the efficiency of a surrogate model 

prediction relies on the accuracy of both components, the 

existence of these uncertainties may result in false and 

inaccurate predictions. Therefore, the impact of 

uncertainties on the reliability of surrogate models for 

structural damage detection needs to be analysed. 

The main objective of this paper is therefore to study the 

influence of uncertainty on damage identification using a 

combination of frequency and mode shape as the input 

variables. To consider the uncertainties in the FE modelling 

(aleatory uncertainty) and the measurement data (epistemic 

uncertainty), a novel approach based on a method 

introduced by Papadopoulos and Garcia (1998) is applied. 

On its basis, the probability of damage existence (PDE) can 

be estimated by comparing the probability distribution of 

the undamaged and damaged models. To consider the effect 

of FE modelling error, a surrogate model is trained with 

vibration data generated from the FE model, smeared 

though with random variations. To include the effect of 

noise in the measurement data, the testing data used as input 

to the surrogate model for damage identification are also 

smeared with random noises. 

The basis of this paper is to introduce a novel technique 

for structural PBDD by correlating some superlative 

metaheuristic optimization algorithms and surrogate 

models. For optimization, three algorithms; Ideal Gas 

Molecular Movement (IGMM) (Varaee and Ghasemi 2017), 

Particle Swarm Optimization (PSO) (Kennedy 2010) and 

Bat Algorithm (BA) (Yang and Gandomi 2012) are 

modified to improve their performance, and for 

metamodeling, Cascade Feed Forward Neural Network 

(CFNN) (Hedayat et al. 2009), Least Square Support Vector 

Machines (LS-SVMs) (Suykens and Vandewalle 1999) and 

Kriging (Dubourg and Sudret 2011) are trained and tested. 

The executed results are the consequences of a just one-

stage proposed algorithm.  

To validate the proposed probability-based damage 

detection method, three examples are presented. In first 

example, the accuracy and the number of function 

evaluations of selected metaheuristic algorithms are 

compared together. In second example the possibility of 

using surrogate model as substitute of finite element 

analysis evaluated by comparison of various surrogate 

model. In third example the two previous part are merged to 

create mechanism for PBDD and this novel procedure is 

evaluated by various index. 

The main contributions of this paper may be 

summarized as follows: 

1. Following the new intelligent health-monitoring 

framework, a one-stage learning method will be proposed in 

this paper for PBDD. This framework consist on three 

interconnected loop: metamodeling loop, optimization loop 

and probability loop. 

2. For metamodeling loop, three prominent surrogate 

model are constructed, trained and tested in order to inspect 

advantages as well as the shortcomings of each algorithm. 

3. For optimization loop, three well-known optimization 

algorithms are chosen and performance of them are 

compared together. Furthermore, efficient schemes are 

implemented on these algorithms to improve their 

performance in handling problems with a large number of 

variables. 

4. And finally, in probability loop to consider the 

uncertainties in the finite element (FE) modelling and the 

measurement data, a novel approach is introduced. Hence, a 

surrogate model is trained and tested with smeared vibration 

data and the statistical properties of Young’s modulus value 

(𝐸) for each segment are obtained by using Monte Carlo 

simulation 

The paper is organized as follows. The brief 

introduction about model updating methodology and 

analytical formulation of damage index presented in Section 

2 and 3. Section 4 and 5 then presents review of the 

metamodels and metaheuristic algorithms. Probability based 

model updating and the proposed damage detection 

procedure is described in Sections 6 and 7. Numerical 

examples are attempted in Section 8 and finally, Section 9 

presents conclusions of the work. 

 

 

2. Model updating methodology 
 

Model updating methods are widely employed to 

develop a more accurate finite element (FE) model in 

giving the real structure to be used for optimization design, 

damage identification, structural control, and structural 

health monitoring. The basic procedure of a model updating 

is to continuously adjust the elemental parameters (usually 

stiffness properties) so as to predict the model, approving 

the actual measurements, as closely as possible (Xu et al. 

2013). Fig. 1 shows general flowchart of the model 

updating based method for damage detection. 

Features vectors of the real structure and the analytical 

model will be compared together by damage index, a 

detailed of which will be described in the section 3. 

 

562



 

Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study 

Calculate eigenvalues and eigenvectors of the target 
model, which corresponds to measurement data of 

non-destructive test

 Calculate eigenvalues and eigenvectors of the 
optimization model

 Calculate Damage Index which compare two 
dynamic features vectors, from the real structure & 

the analytical model

Converged? End
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Update the design variable (design variables are 
elasticity modulus of  element)

 

Fig. 1 General flowchart of the model updating based 

method for damage detection 
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Fig. 2 Flowchart of the model updating based method for 

damage detection considering surrogate model 

 

 

The conventional model updating procedure is usually 

expensive for a large-scale numerical model in terms of 

computation time and computer memory. For example, Xia 

et al. (2008) carried out a model updating exercise for the 

Balla Balla Bridge in Western Australia, which was 

modelled by 907 elements, 949 nodes and 5,400 degrees of 

freedom (DOFs). Convergence of the optimization took 155 

iterations and cost about 420 hours. The considerable 

burden associated with the model updating method is due to 

two reasons: 1) the large-scale model is represented by large 

size system matrices, and the repeated analysis of the large-

size matrices is a heavy workload. 2) Many uncertain  
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Fig. 3 Flowchart of the model updating based method for 

damage detection considering surrogate model and 

metaheuristic algorithms 

 

 

Parameters need to be adjusted in a large-scale Numerical 

model, which makes convergence of the large-scale 

optimization problem much more difficult. The surrogate 

method was found a promising solution for reducing 

computation load in engineering applications. Therefore, in 

this paper well trained surrogate model will be substituted 

with two block of general flowchart of Fig. 1 as Fig. 2. The 

proposed surrogate models will be described in more detail 

in the section 4 and 7. 

Furthermore, in order to deal with complex, high-

dimensional, non-linear, non-differentiable and ill-condition 

function, used in structural health monitoring (SHM) 

process (Boller et al. 2009), some kind of a global 

optimization algorithm is required. For that purpose, meta-

heuristic search algorithm will be used as the main 

algorithm of model updating process (Fig. 3). More details 

will be described in the section 5. 

 

 

3. Multiple Damage Location Assurance Criterion 
(MDLAC) 

 

Structural damage detection techniques are generally 

classified into two main categories. They include the 

dynamic and static identification methods requiring the 

dynamic and static test data, respectively. Furthermore, the 

dynamic identification methods have shown their 

advantages in comparison with the static ones (Nobahari et 

al. 2017). Among the dynamic data, the modal analysis 

information of a structure such as the natural frequencies 

and mode shapes were widely used for damage detection 

(Ghiasi et al. 2015, Seyedpoor 2012, Shirazi et al. 2013). 

Determination of the level of correlation between the 

measured and predicted natural frequencies or mode shapes 

can provide a simple tool for identifying the location and 

severity of structural damages. When the natural 

frequencies are employed to identify the damage, two 
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parameter vectors may be determined. One parameter 

vector consists of the ratios of the first 𝑛𝑓  natural 

frequency changes ∆𝐹 due to structural damage, i.e. 

∆𝐹 =
𝐹𝑕 − 𝐹𝑑
𝐹𝑕

 (1) 

where 𝐹𝑕 and 𝐹𝑑 indicate the natural frequency vectors of 

the healthy and damaged structure, respectively. Another 

parameter vector can be similarly defined as 

𝛿𝐹(𝐸𝑆𝑉) =
𝐹𝑕 − 𝐹(𝐸𝑆𝑉)

𝐹𝑕
 (2) 

where 𝐹(𝐸𝑆𝑉) is a natural frequency vector that can be 

extracted from an analytic model and elemental stiffness 

vector (ESVs) 𝐸𝑆𝑉𝑇 = ,𝐸1, … , 𝐸𝑖 , . . , 𝐸𝑛- which represents 

a damage variable vector containing the elasticity modulus 

of structural elements (𝐸𝑖 , 𝑖 = 1, … , 𝑛) of all 𝑛 structural 

elements.  

Given the pair of parameter vectors, one can estimate 

the level of correlation in several ways. An efficient way is 

to evaluate a correlation index called the multiple damage 

location assurance criterion (𝑀𝐷𝐿𝐴𝐶) which is expressed in 

the following form(Seyedpoor 2012) 

𝑀𝐷𝐿𝐴𝐶(𝐸𝑆𝑉) =
|∆𝐹𝑇𝛿𝐹(𝐸𝑆𝑉)|2

(∆𝐹𝑇∆𝐹)(𝛿𝐹𝑇(𝐸𝑆𝑉)𝛿𝐹(𝐸𝑆𝑉))
 (3) 

The 𝑀𝐷𝐿𝐴𝐶 compares two frequency change vectors, 

one of which is obtained from the examined structure and 

the other from an analytical model of the structure. The 

𝑀𝐷𝐿𝐴𝐶 varies from a minimum value 0 to a maximum 

value 1. It will be maximal when the vector of analytical 

frequencies equates to the frequency vector of damaged 

structure, i.e. 

𝐹(𝐸𝑆𝑉) = 𝐹𝑑 (4) 

 

 

4. Review of the selected metamodels 
 

Basically, the analysis procedure within the concept of 

SHM, falls into two main classes: parametric (also known 

as model-based) methods and non-parametric (also known 

as model-free or data-driven) methods (An et al. 2015).  

These methodologies follow specific procedures and are 

applicable in distinct contexts. These interpretation methods 

will be preferred over each other based on desired 

objectives. If the objective is to provide a better physical 

conceptualization or developing a prediction model, then 

parametric methods may be better alternatives while 

dependency on behavior model is the main downside 

associated with this type of algorithm (Malekzadeh and 

Catbas 2016).   

Alternatively, non-parametric methods, are superior 

since creating a behavioral model is either time consuming 

or expensive. This aspect is considered as their leading 

advantage over parametric methods (Malekzadeh et al. 

2015, Malekzadeh and Catbas 2016).  

Indeed, model-free approaches are free of geometrical 

and material information. Also, interpreting a finite element 

model is not needed for such methods. Their main 

shortcoming however is that having a predictive model 

based on existing data driven methods is not possible.  

The data-driven approaches are generally divided into 

two categories (An et al. 2015): (1) the artificial intelligence 

approaches that include neural network (NN), fuzzy logic 

and new methodologies such as Deep Learning (Al-jarrah et 

al. 2015, Farrar and Worden 2012); and (2) the statistical 

approaches that include the Gaussian Process (GP) 

regression, relevance/support vector machine, least squares 

regression, the gamma process, the Wiener processes, 

hidden Markov model, and new method such as Polynomial 

Chaos expansion NARX models (An et al. 2015, 

Spiridonakos and Chatzi 2015b). Among these algorithms, 

three algorithms mentioned in the introduction are most 

commonly used for SHM, and thus, will be utilized and 

discussed in this paper. 

 

4.1 SVM Summarization 
 

Support vector machine (SVM), a novel machine 

learning method based on statistical learning theory (SLT), 

is a small-sample statistical theory, introduced by Cortes 

and Vapnik (1995). The SVM training process always seeks 

a global optimized solution and avoids over-fitting, so it is 

powerful for the problems characterized by small samples, 

non-linearity and high dimension. In simple terms, the SVM 

can be thought of as creating a line, or hyper-plane between 

two sets of data. Imagine two different class of data, class A 

and class B, as a two-dimensional case that each of them is 

composed of a series of data. The SVM attempts to place a 

linear boundary between the two different classes, and 

orientate it in such a way that the margin is maximized. In 

other words, the SVM tries to orientate the boundary in 

such a way as to ensure that the distance between the 

boundary and the nearest data point in each class is 

maximal (Fig. 4). The optimal hyperplane can be obtained 

as a solution of the constrained quadratic programming 

(QP) optimization problem. 

The boundary is then placed in the middle of this margin 

between the two points. 

 

 

 

Fig. 4 Definition of a unique hyperplane which 

corresponds to a maximal distance between the nearest 

points of the two classes A and B 
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The nearest data points are used to define the margin, and 

are known as support vectors. SVM can be used for multi-

class categorizations and regression problems as well. The 

basic idea of the support vector regression is to map the 

input data into a feature space via a nonlinear map. In the 

feature space, an optimum linear decision function is 

constructed based on the structural risk minimization 

(SRM) principle; then SVM nonlinearly maps the inner 

product of the feature space to the original space via kernels 

(Cortes and Vapnik 1995). SVM has offered promises to 

overcome the conditional neural networks shortcoming such 

as the local minimizing and inadequate statistical 

capabilities (Suykens and Vandewalle 1999).  

For the outstanding learning performance of SVM, it 

has been applied to structure health monitoring (Ghiasi et 

al. 2016). The LS-SVM is a kind of expansion of standard 

SVM. In the LS-SVM, Vapnik’s ε-insensitive loss function 

has been replaced by a sum-squared error (SSE) cost 

function. Moreover, the LS-SVM considers equality type 

constraints instead of inequalities as in the classic SVM 

approach (Suykens and Vandewalle 1999). This 

reformulation greatly simplifies a problem such that the LS-

SVM solution follows directly from solving a set of linear 

equations rather than from a convex quadratic program 

(QP). 

 
4.2 Cascade feed-forward neural network 

 

A common type of feed-forward ANNs is constructed by 

a layer of inputs, a layer of output neurons, and one or more 

hidden layers of neurons. Feed-forward ANNs are used 

typically to parameter prediction and data approximation. 

A cascade type of feed-forward ANNs consists of a layer 

of input, a layer of output neurons, and one or more hidden 

layers. Similar to a common type of feed-forward ANNs, 

the first layer has weights coming from the input. But each 

subsequent layer has weights coming from the input and all 

previous layers. All layers have biases. The last layer is the 

network output. Each layer’s weights and biases must be 

initialized. A supervised training method is used to train 

considered cascade feed-forward ANNs (Hedayat et al. 

2009). The additional connections in cascade feed-forward 

neural network (CFNN) improve the speed at which the 

network learns the desired relationship. The Cascade-

Correlation architecture has several advantages over 

existing algorithms: it learns very quickly, the network 

determines its own size and topology and it retains the 

structures it has built even if the training set changes. 

 
4.3 Kriging 

 

Kriging, which is widely used, is a combination of 

polynomial regression and Gaussian stochastic processes 

(Dubourg and Sudret 2011). The regression model fits the 

samples according to the rule of least-squares estimation. 

The correlation model adjusts the prediction error by using 

maximum likelihood estimation. Kriging is formulated as 

(Xu et al. 2013) 

𝑦̂ = 𝑌(𝑥) + 𝑍(𝑥) =∑𝛽𝑖𝑓𝑖(𝑥)

𝑛

𝑖=0

⏞      
𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

+ 𝑍(𝑥)⏟
𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

 
(5) 

Where 𝑌(𝑥) = ∑ 𝛽𝑖𝑓𝑖(𝑥)
𝑛
𝑖=0  is the regression model, 

which usually adopts polynomials up to the second order to 

represent the global trend of the sample points 𝑍(𝑥) is the 

correlation model, which is a Gaussian process with mean 

value 0 and covariance 𝜎. The correlation model is given 

by 

𝑐𝑜𝑣 .𝑍(𝑥𝑗), 𝑍(𝑥𝑘)/ = 𝜎
2𝑅𝑖𝑗(𝜃, 𝑥𝑗 , 𝑥𝑘) (6) 

where 𝑅𝑖𝑗 is the Gaussian correlation function on the p-

dimensional design space 

𝑅𝑖𝑗(𝜃, 𝑥𝑗 , 𝑥𝑘) =∏𝑒−𝜃𝑖(|𝑥𝑗𝑖−𝑥𝑘𝑖|
2
)

𝑝

𝑖=1

 (7) 

In Eqs. (6) and (7), 𝜃 is the coefficient vector of the 

correlation model. The optimal coefficients 𝜃∗ are found 

for maximum likelihood estimation. It is important to 

choose proper formulations of the regression functions 

which represent the system behavior as precisely as 

possible. Higher-order polynomial regressions have the 

capability of approximating more complex responses, but 

they require more sample points to determine the 

polynomial coefficients. By properly selecting the 

polynomial orders and mixed terms of design variables 

using knowledge of a system, the number of coefficients in 

regression functions can be greatly reduced. 

 

 

5. Optimization techniques 
 

In order to obtain the most probable values of the model 

parameters, the objective function should be minimized 

through an optimization algorithm. Three meta-heuristic 

search algorithms are used in this study to meet this goal: a 

Particle swarm optimization (PSO), Bat Algorithm (BA) 

and Ideal Gas Molecular Movement (IGMM). PSO and BA 

have been widely used in the area of damage identification 

(Ghiasi et al. 2014, Torkzadeh et al. 2016) and IGMM is a 

relatively new but previously proven very effective in some 

aspects (Ghasemi and Varaee 2017a, b). These three 

algorithms have been chosen to assess the validity of the 

current study and to demonstrate the value of the newly 

presented IGMM over PSO and BA to the SHM 

community. In the following sub-sections, the algorithms 

are described in more details.  

 
5.1 Bat optimization algorithm 

 

Bat algorithm (BA) is a meta-heuristic population-based 

optimization technique, inspired first from the search of 

bats for food (Yang and Gandomi 2012). Bats send some 

signals to the environment and then listen to their echoes, 

called echolocation process. BA is mainly constructed by 

the use of three main ideas (Yang and Gandomi 2012). 
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All bats use echolocation to sense distance, and they 

also “know” the difference between food/prey and back- 

ground barriers; a bat 𝑏𝑖 flies randomly with velocity 𝑣𝑖 
at position 𝑥𝑖  with a frequency 𝑓𝑖 , varying wavelength 

𝜆 and loudness 𝐴𝑖  to search for prey. They can 

automatically adjust the wavelength (or frequency) of their 

emitted pulses and adjust the rate of pulse emission 

𝑟𝑖 ∈ ,0,1- , depending on the proximity of their target; 

Although the loudness can vary in many ways, (Yang and 

Gandomi 2012) assumed that the loudness 𝐴𝑖 varies from 

a large (positive) 𝐴0  to a minimum constant value 

𝐴𝑚𝑖𝑛 .For more detail information on process of BA 

algorithm, readers are referred to original papers (Yang and 

Gandomi 2012, Ghiasi et al. 2018) 

 
5.2 Particle swarm optimization 

 

The PSO has been inspired by the social behavior of 

animals such as fish schooling, insect swarming and bird 

flocking (Eberhart and Kennedy 1995). It involves a 

number of particles, which are initialized randomly in the 

search space of an objective function. These particles are 

referred to as swarm. Each particle of the swarm represents 

a potential solution of the optimization problem. The 

particles fly through the search space and their positions are 

updated based on the best positions of individual particles 

in each iteration. The fitness values of particles are obtained 

to determine which position in the search space is the best. 

In 𝐾𝑡𝑕 iteration, the swarm is updated using the following 

equations 

𝑉𝑖
𝑘+1 = 𝜌𝑘𝑉𝑖

𝑘 + 𝑐1𝑟1(𝑃𝑖
𝑘 − 𝑋𝑖

𝑘) + 𝑐2𝑟2(𝑃𝑔
𝑘 − 𝑋𝑖

𝑘) (8) 

 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1 (9) 

where 𝑋𝑖  and 𝑉𝑖  represent the current position and 

velocity vectors of the 𝑖th particle, respectively; 𝑃𝑖  is the 

best previous position of the 𝑖th particle and 𝑃𝑔 is the best 

global position among all the particles in the swarm; 𝑟1 

and 𝑟2 are two uniform random sequences generated from 

interval [0,1]; 𝑐1  and 𝑐2  are the cognitive and social 

scaling parameters, respectively and 𝜌𝑘  is the inertia 

weight used to discount the previous velocity of particle 

preserved. The inertia weight 𝜌𝑘 may be defined to vary 

linearly from a maximum value 𝜌𝑚𝑎𝑥 to a minimum value 

𝜌𝑚𝑖𝑛 . Velocity vector 𝑉𝑖  is limited to a lower bound 

𝑉𝑙  and an upper bound 𝑉𝑢. For more detail information on 

process of PSO algorithm, readers are referred to original 

paper (Eberhart and Kennedy 1995). 

 

5.3 Ideal gas molecular movement 
 
The behavior of gas molecules in an isolated medium 

shows that they disperse rapidly in different directions and 

cover all the space inside. The essence of such manner lies 

on two factors; the high speed of ideal gas molecules and 

their collisions. Recently the conventional IGMM was 

introduced by the Varaee and Ghasemi (2017) and its 

application in solving engineering problems was assessed 

then (Ghasemi et al. 2017a, b, Ghasemi and Varaee 2017a, 

b). The algorithm utilizes the governing equations for speed 

and collision of molecules in order to determine their new 

location. The speed of molecules thus is proportional to the 

temperature and inversely proportional to its mass. Besides 

they collide with each other with a certain probability, 

increasing gradually with their motions. Ideal gas molecules 

have fully elastically collisions and elastic collision 

governing equations can be used to determine the new 

position of gas molecules after collision. For more detail on 

fundamental steps of the IGMM algorithm readers are 

referred to original paper (Varaee and Ghasemi 2017).  

 
5.4 Efficient reduction of variables 
 
In some optimization problems, the number of variables 

is very large. For example, in an optimization based damage 

detection problem, damaged elements and damage extents 

are searched through an optimization process until the 

response of hypothesized damaged structure equals those of 

a real damaged structure. When a real structure is largely 

scaled, the number of elements, being as variables, will 

increase (Torkzadeh et al. 2013). Hence, when the 

optimization method tries to minimize the objective 

function, it must handle a huge bunch of variables which 

decreases the convergence speed of the algorithm. In this 

situation the commonly used method in literatures divides 

the damage detection process into two steps. In the first 

step, suspected damaged elements are detected using 

various index such as MDLAC or modal strain energy-

based index (MSEBI) (Fathnejat et al. 2014). In the second 

step, severity and exact locations of damage are obtained 

using various search algorithms such as PSO, genetic 

algorithm (GA), etc. (Nobahari et al. 2017b). Meanwhile 

these procedures are time consuming and in most cases high 

noise level makes them inaccurate and unreliable. Hence, in 

this paper innovative scheme is implemented to develop a 

one-stage method for a noise resistant damage 

identification. 

In damage detection process, after generating the initial 

population as the first stage, each molecule/particle/bat has 

a velocity vector that represents its speed in an n-

dimensional space. Each variable of this vector represents 

elasticity modulus of structural elements.   

In the proposed method, first, the number of variables in 

first stage of the search algorithm is considered as the total 

number of elements. Then, all the intact elements are 

eliminated along each stage carried and the algorithm 

converges to the exact locations and severity of the true 

damaged elements. Zero values for the variables signifies 

that the 𝑖-th element of the structure is intact and a non-

zero value refers to the damaged element. To reach to this 

goal, if the variables with near zero values 

(𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑛 (𝑆𝑅𝐹𝑖) ≤ 0.05) do not alter 

for 10 iteration, this variable will be eliminated. This 

scheme is implemented for three aforementioned algorithm. 

As far as the objective function is concerned, it is 

defined here as an unconstrained optimization problem as 

follows 
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𝐹𝑖𝑛𝑑: 𝐸𝑆𝑉𝑖 = *𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑛+ 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐹(𝐸𝑆𝑉) = ‖1 − 𝑀𝐷𝐿𝐴𝐶‖2 
𝑊ℎ𝑒𝑟𝑒: 𝐸𝑚𝑖𝑛 ≤ 𝐸 ≤ 𝐸𝑚𝑎𝑥 

(10) 

Where 𝐹(𝐸𝑆𝑉) is the minimization problem and 𝐸𝑚𝑖𝑛  

and 𝐸𝑚𝑎𝑥 are the lower and upper bounds of the damage 

vector, respectively. It is necessary that the bounds represent 

the physical behavior of the structure. Using an 

optimization algorithm and solving Eq. (10), the damage 

variables are determined. 

 

 

6. Monte Carlo simulation for probability based 
model updating 

 

Since uncertainties like noises inevitably exist in the 

measured vibration data, the updated ESV (𝐸) is subjected 

to uncertainty as well. As mentioned before, the 

uncertainties in the measured modal data are assumed as 

independent normally distributed random variables with 

zero means and particular covariance. In this regard, the 

eigenvalues and mode shapes can be expressed as (Wang et 

al. 2013) 

𝜆𝑖
𝐸 = 𝜆𝑖,0

𝐸 (1 + 𝑋𝜆𝑖) 

𝑖 = 1,2, … , 𝑛𝑚 
(11) 

 

𝜙𝑖
𝐸 = 𝜙𝑖,0

𝐸 (1 + 𝑋𝜙𝑖) 

𝑖 = 1,2, … , 𝑛𝑚 
(12) 

Where 0 represents the true values, 𝑋𝜆𝑖  and 𝑋𝜙𝑖  

denote relative random noises in the measured frequencies 

and mode shapes, respectively. The mean value of vector 𝑋 

is zero and the standard deviation represents the noise level. 

The statistics (mean value and standard deviation) of 𝐸 

can then be calculated by the perturbation method (Hua et 

al. 2008) or Monte Carlo simulation (MCS). The latter 

method can also give statistical samples of the updated 

ESVs, from which the statistical distribution can be 

obtained. Studies have demonstrated that the statistical 

distribution of the ESVs in the updated model is also 

normal (Hao and Xia 2002), verified by the goodness-of-fit 

test (Kottegoda and Rosso 1997). Again when the measured 

modal data in both undamaged and damaged states are 

available and the model updating method is employed, the 

statistics of ESVs in both states (𝐸𝑕  and 𝐸𝑑 ) can be 

calculated. 

The PDE can be estimated from statistical distributions 

of the stiffness parameters of the undamaged and damaged 

models. For example, if the stiffness parameter (𝛼𝑗) of the 

undamaged segment 𝐽 is normally distributed with mean 

𝐸(𝛼𝑗)  and standard deviation 𝜎(𝑎𝑗) , the probability 

density function can be obtained as illustrated in Fig. 5, 

where 𝐿𝛼𝑗 is the lower bound of the healthy parameter. 

In this study, the confidence level is set to 95%, thus the 

lower bound is 𝐿𝛼𝑗 = 𝐸(𝛼𝑗) − 1.645𝜎(𝛼𝑗) , which 

indicates that there is a probability of 95% that the healthy 

stiffness parameter falls in the range of ,𝐸(𝛼𝑗) −

1.645𝜎(𝛼𝑗),∞-. Similarly, for the stiffness parameter of 

segment 𝑗 in the damaged state (𝛼𝑗
′), the distribution is 

again assumed as normal with mean 𝐸(𝛼𝑗
′) and standard 

deviation 𝜎(𝛼𝑗
′), and the corresponding probability density 

function is also plotted in Fig. 5. The PDE is defined as the 

probability of not being 𝛼𝑗
′  within the 95% confidence 

healthy interval. Thus the PDE of segment 𝑗 is 

𝑃𝑑
𝑗
= 1 − 𝑝𝑟𝑜𝑏 .𝐿𝑎𝑗 ≤ 𝑥𝑎′ ≤ ∞/ 

= 𝑝𝑟𝑜𝑏(−∞ ≤ 𝑥𝑎′ ≤ 𝐿𝑎𝑗) 
(13) 

PDE is a value between 0 and 1, and if the PDE of a 

segment is close to 1, then it is most likely that the element 

is damaged. If the PDE is close to 0, damage existing in the 

element is very unlikely (Bakhary et al. 2007, Padil et al. 

2017). It should be noted again that the stiffness parameters 

of the undamaged and damaged state have normal 

distributions because the random variations in (11) are 

assumed as zero mean normally distributed random 

variables. 

In most surrogate applications for damage detection, the 

training data are obtained from FE analysis, which involves 

generating large number of damage cases based on an initial 

baseline FE model. Once the surrogate model is well-

trained, the testing data are applied to the model to obtain 

the locations and severities of any damages. In most of the 

previous studies, both training and testing data are assumed 

to be free from modeling and measurement error. In 

practice, however, modeling error and measurement noise 

are inevitable. 

According to Xia et al. (2002), the inaccuracy due to 

modeling and measurement error can be overcome by 

taking into account the uncertainties through a statistical 

method. In this study, modeling error and measurement 

noise are assumed to be normally distributed with zero 

means and specific variance. The noise is applied in terms 

of coefficient of variations (COV). The statistical properties 

of 𝐸 value for each segment are obtained by using Monte 

Carlo simulation. This is followed by calculation of the 

PDE of 𝐸 values for each segment. 

 

 

 

Fig. 5 Probability density functions for 𝛼𝑗  and 𝛼𝑗
′ and 

probability of damage existence 𝑃𝑑
𝑗
 

 

 

 

567



 

Ramin Ghiasi and Mohammad Reza Ghasemi 

 

Fig. 6 General flowchart of the proposed PBDD 

 
 
7. Main steps for proposed damage detection 
method 

 

For the clarity, the general flowchart of the proposed 

PBDD method is depicted in Fig. 6. It consists of three 

interconnected loops. A more detailed flowchart is shown in 

Fig. 7. 

The main steps for the proposed PBDD method using 

surrogate model and metaheuristic optimization algorithm 

are summarized as follows: 

Step 1: Generate failure scenarios with the damage 

severity range between 0.05 and 0.40 with the pace of 0.05 

Step 2: Develop FE model which computes the natural 

frequencies of the structure and finally the MDLAC 

corresponding to the failure scenarios that have been 

defined in the previous step. 

Step 3: Use finite element (FE) model of the structure in 

order to generate training and testing datasets for 

development of surrogate model that is used in the 

optimization process of damage detection. 

Step 4: Create MCS samples based on section 6 and set 

the initial number of design variables equal to the total 

number of elements.  

Step 5: Engage directly the surrogate model by the 

optimizer to evaluate the objective function to be minimized 

to determine the damage of elements. (Apply surrogate 

model). 

Step 6: Find 𝑖  as 𝑋𝑖 = 0  for all components of 

damage vector and determine the total number of intact 

elements. 

Step 7: Remove the intact elements from the damage 

vector. Thus reduce number of variables from the 

optimization problem. 

Step 8: Perform optimization algorithm once again 

based on the new optimization size from step 7. 

Step 9: Check the convergence criterion by computing 

1 −𝑀𝐷𝐿𝐴𝐶  from Eq. (10). If two response vectors are 

almost indifferent, save the results and terminate the 

optimization process then go to step 4, otherwise, go to the 

step 6. 

 

Step 10: Calculate PDE of elements using the statistics 

(mean value and standard deviation) of 𝐸 that calculated 

based on result of step 9. 

 

In this study, in order to generate failure scenarios which 

completely span the design space, Latin Hypercube 

Sampling (LHS) method has been applied. LHS generates a 

sample of plausible collections of parameter values from a 

multidimensional distribution. The LHS was presented by 

McKay in 1979 (Iman, 2008). 

 

 

8. Numerical results of damage detection 
 

In this study, three structures are selected as the 

numerical examples to reveal the robustness and the degree 

of accuracy of the proposed damage detection method. 

These structures are:  

(1) 72-bar space truss problem 

(2) 120-bar Dome Truss problem 

(3) Five-Story, Four-Span Frame 

In first example, the accuracy and robustness of selected 

metaheuristic algorithms are evaluated based on statistical 

results. In second example the possibility of using data 

driven methods as substitute of finite element analysis 

evaluated by comparison of various surrogate model. The 

third example will merge the two previous parts together to 

create a mechanism for PBDD and this novel procedure is 

evaluated by various indices. Therefore, a 72-bar spatial 

truss is chosen as the first numerical example based on 

conveniently of implementation of its FE code in MATLAB 

for using it as core model for comparison the performance 

of metaheuristic algorithms.  

A 120-bar dome truss is considered as the second 

example to show robustness of proposed method in 

substitution with FE model in larger structure. Finally The 

third example is a five-story, four-span frame, which is 

selected for demonstrate the capability of proposed method 

for damage detection of various structural configuration, in 

example 1 and 2, 3D truss structures which has only 

compression-tension members is examined and in last 

example frame structure that has flexural members with 

rigid connection is considered. 

The mass matrix is assumed to be constant and the 

damage in the structures is simulated as a relative reduction 

in the elasticity modulus of individual element. Stiffness 

reduction ratio (SRF) is defined as 

𝑆𝑅𝐹𝑖 =
𝐸 − 𝐸𝑖
𝐸

, 𝑖 = 1,… , 𝑛 (14) 

Where 𝐸 is the original modulus of elasticity and 𝐸𝑖 is 

the final modulus of elasticity of the 𝑖-th element. Due to 

the stochastic nature of optimization algorithm, twenty 

independent runs for each problem are carried out. Number 

of molecules/particles/bats was fixed to 50 for each run 

with a maximum of 200 iterations allowed. The number of 

maximum function evaluations is, therefore summed to 

10,000. The mean values and standard deviations of 𝐸 for 

estimating PDE is calculated from 500 samples, based on 

the Monte Carlo simulation framework. 

Metamodelling 
Loop:Deterministic 
Damage Detection 
Procedure 

Optimization Loop: 
Model Updating 
Procedure 

Probability Loop: 
Monte Carlo 
Framework 
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Table 1 Properties of 72-bar space truss 

𝐸,modulus of 

elasticity(N/m2) 

𝜌, material 

density(kg/m3) 

Added 

mass (kg) 

𝐴, cross-

sectional area of 

the 

members(m2) 

6.98 × 1010 2770 2270 0.0025 

 
 

8.1 The 72-bar space truss 
 
A 72-bar spatial truss is considered as the first numerical 

example, shown in Fig. 8. Four non-structural masses of 

2270 kg are attached to the nodes 1–4. This structure has 

also been investigated as an example in the field of 

structural optimization under frequency constraints, by 

different researchers (Dizangian and Ghasemi 2016, Kaveh 

and Zolghadr 2014). As it can be seen from Fig. 8, the 

structure has 48 degrees of freedom. Table 1 represents the 

properties for this example. 

Two cases of damage are assumed for this structure: 

Damage case 1: 15% of damage in element 55; (15% of 

damage in each of the vertical members of the first story 

will result in the same set of natural frequencies). 

Damage case 2: 10% of damage in element 4 and 15% 

of damage in element 58; (90, 180, and 270 degrees rotation 

along the z axis will result in the same set of natural 

frequencies). 

In this section, the validity of IGMM in dealing with 

PBDD problems will be investigated, and a comparison of 

results with some available metaheuristic algorithms will be 

presented. The convergence measure applied for 

engineering optimization problems is based on the 

proximity of the fit-test design in the current iteration with 

that of 20 iterations before. Thus, if the difference between  

 

 

these two values is less than a small allowable tolerance 

value, it is recorded as converged. The desired value for this  

example is set to 10−3. If not converged, the algorithm will 

be terminated by implementing a maximum number of 

iterations set fixed. The statistical data on 20 independent 

runs for damage cases of 1 and 2 are presented in Tables 2 

and 3. 

 
 

 

Fig. 8 72-bar spatial truss 
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Fig. 7 Detailed flowchart of the proposed PBDD Method 
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Table 2 Statistical results of different approaches for 

damage case 1 of the 72-bar truss 

  PSO BA IGMM 

Damaged Element 55 55 55 

Actual Damage Severity 0.15 0.15 0.15 

Best 0.156 0.151 0.15 

Mean 0.152 0.157 0.153 

Worst 0.12 0.139 0.142 

SD 0.02 0.011 0.007 

Success % 90 100 100 

NFEs 950 660 400 

Rank 3 2 1 

 
 
Table 3: Statistical results of different approaches for 

damage case 2 of the 72-bar truss 

 
PSO BA IGMM 

Damaged 

Element 
4 58 4 58 4 58 

Actual Damage 

Severity 
0.1 0.15 0.1 0.15 0.1 0.15 

Best 0.09 0.15 0.10 0.15 0.10 0.15 

Mean 0.09 0.15 0.10 0.15 0.10 0.15 

Worst 0.06 0.18 0.07 0.13 0.08 0.16 

SD 0.01 0.01 0.01 0.01 0.01 0.00 

Success % 90 100 100 

NFEs 1250 960 650 

Rank 3 2 1 

 
 
 

 

Fig. 9 Comparison of IGMM, PSO and BA for PBDD of 

72-bar truss 
 
 

The statistical data presented in Table 2 and 3 indicate 

that the standard deviation of IGMM-based optimum 

solutions is the lowest among other selected algorithm, 

showing its robustness compared to other techniques. 

Furthermore, the maximum numbers of function 

evaluations presented in Tables 2 and 3 show that the 

IGMM requires much less computational cost to determine 

the global optimum against PSO and BA. 
 

8.2 120-bar dome truss 
 
A 120-bar dome truss, shown in Fig. 10 is considered as 

the second example (Kaveh and Talatahari 2009). In this 

example, three metamodel are constructed, trained and 

tested to evaluate their performance in PBDD in civil 

structures. The variation of running time, mean square error 

(MSE), and the accuracy in the prediction of PDE for each 

element is calculated in order to inspect pros and cons of 

each algorithm. 

The diameter and the height of the dome are 31.78 m 

and 7 m, respectively. The material is a seamless steel pipe 

with a modulus of elasticity equal to 30,450 ksi (210,000 

MPa) and the material density is 0.288 lb/in3 (7971.810 

kg/m3). The external diameter of the pipes is 0.2 m and the 

thickness is 0.006 m. For generating training and testing 

datasets of the FE program, OpenSees (Mazzoni et al. 

2006) is used for structural analysis. Different damage 

scenarios are considered as shown in Table 4.  

Using the trained surrogate model with 2% and 15% 

random errors (COV) in frequencies and mode shapes, and 

the testing data with the same level of noise, the mean 

values and standard deviations of structural stiffness 

parameters corresponding to the two damage scenarios are 

estimated based on proposed procedure. From the normally 

distributed probability density function of the damaged and 

undamaged states, the PDEs can be calculated. The reason 

of difference between level of noise in frequencies vs. mode 

shapes is that modal frequencies can be measured from just 

a few accessible points on the structure and are less 

vulnerable to experimental noise than mode shapes 

(Nobahari et al. 2017a, b). 
It is worth noting, because the established surrogate 

model is trained based on data generated from the FE model 

and tested with the measured data, the existence of errors in 

the FE model and noise in the measured data provide more 

significant contributions to the failure in detecting damage 

rather than significant changes in modal data (Padil et al. 

2017). 

 
 
Table 4 Different damage scenarios for the 120-bar Dome 

Truss 

Case 1 Case 2 

Element Number SRF Element Number SRF 

12 0.30 4 0.35 

38 0.20 30 0.20 

53 0.25 51 0.35 

79 0.2 58 0.25 

  89 0.2 

  105 0.40 
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(a) Plan view 

 
(b) Section view 

Fig. 10 120-bar dome truss 

 
 
Therefore, it is essential to consider the existence of 

uncertainties in both the FE model and the measured data 

when performing damage detection using an surrogate 

model. Based on the proposed approach, the uncertainties in 

the FE model and the measurement data are considered. 

The PDEs for scenarios 1 and 2 are depicted in Tables 5 

and 6, respectively. There is illustrated the comparing 

results between the solution methods in terms of 

computational speed and accuracy. To compute process 

time when using a surrogate model, data generation time, 

the training and testing time and the IGMM implementation 

time are all considered together. (core™ i7 2.67 GHz CPU). 
From Tables 5 and 6, one may observe that in scenario 1 

and 2, the PDEs of damaged element is very high and the 

PDEs of the other elements are low. These results show that 

using the proposed LS-SVM surrogate model, coupled with 

IGMM, the damages are detected with high confidence and 

undamaged segments are less likely to be falsely identified. 

Moreover, in these tables, the improved algorithm’s 

capability to find all the global optimal solutions (damage 

states) is apparent.  

Furthermore, engaging IGMM by efficient surrogate 

model, maintains the acceptable accuracy of damage 

detection. Meanwhile, in comparison with the kriging and 

CFNN models, the LS-SVM model gives a better 

performance and has higher PDEs for damaged elements 

and lower PDEs at the undamaged elements. 

 

Table 5 Probability of damage existence for damage case 1 

of the 120-bar Dome Truss 

Element 

Number 

Actual 

Damage 
(PDE)% 

FE 

Model 
(PDE)% 

LS-SVM 

(PDE)% 

CFNN 

(PDE)% 

Kriging 

(PDE)% 

10 0.00 2.00 9.00 11.00 3.00 

11 0.00 0.00 1.00 0.00 0.00 

12 100.00 98.00 94.00 94.00 96.00 

13 0.00 0.00 2.00 1.00 1.00 

36 0.00 0.00 5.00 8.00 5.00 

37 0.00 0.00 4.00 3.00 0.00 

38 100.00 95.00 94.00 90.00 90.00 

39 0.00 10.00 14.00 10.00 11.00 

51 0.00 0.00 1.00 2.00 2.00 

52 0.00 0.00 0.00 2.00 1.00 

53 100.00 100.00 100.00 100.00 98.00 

54 0.00 0.00 0.00 0.00 1.00 

77 0.00 0.00 0.00 1.00 1.00 

78 0.00 3.00 2.00 10.00 5.00 

79 100.00 98.00 96.00 98.00 95.00 

80 0.00 0.00 1.00 1.00 1.00 

Total 

time 
- 3510 

251 200 990 

MSE* - 
6.00e-
04  

2.02e-03 4.11e-03 
1.02e-
02 

*MSE:  Mean squared error 

 
 

This due to that LS-SVM was very effective for sparse 

and high dimensional data. Furthermore, LS-SVM have 

better generalization abilities than the ANN (CFNN). The 

major drawback of using ANN was computational cost for 

the potentially large size of the hidden layer which could be 

equal to the size of the input vector. 

Thirdly, it is found that, relatively speaking, model 

construction is time-consuming for kriging. Kriging 

requires a 𝑘  dimensional optimization to find the 

maximum likelihood estimates of the parameters used to fit 

the model, which can become computationally expensive 

when the problem scale and the sample size are large.  

As can be considered, using proposed solution 

procedure contributes to a substantial reduction in the 

number of FE structural analysis which shows itself in 

damage detection of large-scale structures. 

By this proposed solution method, computation time of the 

proposed procedure is reduced to one-tenth of the former 

time. Therefore, using LS-SVM model in process of 

damage detection carried by optimization algorithm 

accelerates this process besides for maintaining the 

acceptable detection accuracy. 
 

8.3 Five-story, four-span frame 
 

The third example is a five-story, four-span frame, as 

illustrated in Fig. 11 (Kaveh et al. 2014). The sections used 

for the beams and columns are (W12×87) and (W14×145), 

respectively. The material density is 7780 kg/m3 and the 
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modulus of elasticity is 210 GPa. Different damage 

scenarios are considered, as shown in Table 7. Table 8 show 

the performance of the proposed method for damage 

scenario 1. 

 
 
Table 6 Probability of damage existence for damage case 2 

of the 120-bar Dome Truss 

Element 
Number 

Actual 

Damage 

(PDE)% 

FE 

Model 

(PDE)% 

LS-

SVM 

(PDE)% 

CFNN 
(PDE)% 

Kriging 
(PDE)% 

2 0.00 0.00 3.00 2.00 1.00 

3 0.00 1.00 2.00 1.00 4.00 

4 100.00 99.00 96.00 95.00 92.00 

5 0.00 0.00 1.00 3.00 1.00 

30 100.00 100.00 100.00 92.00 98.00 

31 0.00 1.00 0.00 1.00 0.00 

32 0.00 4.00 9.00 8.00 7.00 

33 0.00 0.00 1.00 0.00 0.00 

50 0.00 7.00 7.00 4.00 9.00 

51 100.00 100.00 100.00 100.00 100.00 

52 0.00 0.00 2.00 6.00 6.00 

56 0.00 0.00 1.00 2.00 2.00 

57 0.00 0.00 0.00 0.00 1.00 

58 100.00 97.00 95.00 90.00 97.00 

87 0.00 0.00 0.00 5.00 5.00 

88 0.00 5.00 4.00 0.00 0.00 

89 100.00 94.00 94.00 92.00 92.00 

90 0.00 7.00 9.00 8.00 11.00 

103 0.00 0.00 0.00 1.00 0.00 

104 0.00 1.00 2.00 5.00 1.00 

105 100.00 100.00 99.00 99.00 100.00 

106 0.00 7.00 18.00 15.00 15.00 

Total 
time 

- 4000 
360 300 1200 

MSE - 5.02e-04  2.08e-03 5.16e-03 1.21e-02 

 
 

 

Fig. 11 A four-span five-story frame 

Table 7 Different Damage Scenarios for Planar Frame 

Case 1 Case 2 

Element Number SRF Element Number SRF 

10 0.25 14 0.35 

30 0.20 28 0.30 

40 0.25 38 0.35 

 
 
Table 8 Mean value of SRF for damage scenario 1 

(𝜉𝜆 = 10%) 

Damaged 

Element 
10 30 40 

MSE of 

surrogate 

Model 

Time 

(s) 

Actual Damage 0.25 0.2 0.25 - - 

LS-SVM+PSO 0.254 0.2 0.26 3.87E-05 412 

LS-SVM+BA 0.249 0.186 0.26 9.90E-05 350 

LS-

SVM+IGMM 
0.25 0.195 0.252 9.67E-06 300 

CFNN+PSO 0.21 0.198 0.22 8.35E-04 320 

CFNN+BA 0.23 0.212 0.22 4.81E-04 290 

CFNN+IGMM 0.24 0.21 0.24 1.00E-04 250 

Kriging+PSO 0.19 0.17 0.21 2.03E-03 560 

Kriging+BA 0.22 0.187 0.21 8.90E-04 500 

Kriging+IGMM 0.23 0.196 0.24 1.72E-04 430 

 
 
Table 9 Mean value of SRF for damage scenario 2 

(𝜉𝜆 = 10%) 

Damaged 

Element 
14 28 38 

MSE of 

surrogate 

Model 

Time 

(s) 

Actual Damage 0.35 0.3 0.35 - - 

LS-SVM+PSO 0.301 0.29 0.32 1.13E-03 561 

LS-SVM+BA 0.32 0.26 0.33 9.67E-04 510 

LS-

SVM+IGMM 
0.368 0.304 0.364 1.79E-04 480 

CFNN+PSO 0.3 0.28 0.29 2.17E-03 521 

CFNN+BA 0.31 0.3 0.37 6.67E-04 501 

CFNN+IGMM 0.33 0.32 0.35 2.67E-04 450 

Kriging+PSO 0.28 0.25 0.301 3.27E-03 900 

Kriging+BA 0.29 0.27 0.32 1.80E-03 861 

Kriging+IGMM 0.33 0.299 0.33 2.67E-04 600 

 
 

The results demonstrate the fact that coupled IGMM 

with LS-SVM could effectively explore the correct 

locations and severity of the damages. For a larger noise 

level, that is 𝜉𝜆 = 10% , the statistics of SRF for damage 

scenario 2 are presented in Table 9. In comparison to the 

lower uncertainty level, the proposed method shows larger 

errors, but it can still acquire accurate mean values and 

small standard deviations of the SRFs. All these results 

demonstrate that the proposed one-stage method for damage 

identification, using IGMM as the main algorithm for 

model updating and LS-SVM as surrogate model, is robust 

to measurement noise. Also, these tables illustrate that the 
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proposed method is very efficient for multiple structural 

damages, even though the damage severity is low. 

The numerical results reveal the high level of reliability 

in the performance of the proposed method for accurately 

detecting the location and the severity of various damage 

scenarios. The probability-based damage detection (PBDD) 

methods lead to higher SRF values at the damaged elements 

and give lower SRF values for the undamaged elements. 

 

 

9. Numerical results of damage detection 
 

This paper provides a comprehensive comparison of 

coupling metamodelling techniques with metaheuristic 

optimization algorithm for probability-based damage 

detection of structures. As common prognostics algorithms, 

LS-SVM, CFNN and kriging are coupled with IGMM, PSO 

and BA. They were then employed for case studies to 

discuss their attributes, pros and cons and applicable 

conditions. Furthermore, efficient schemes are implemented 

on optimization algorithms to improve their performance in 

damage detection of large scale structure.  

The present work performs a surrogate method that 

accounts for the inevitable FE modeling error (aleatory 

uncertainty) and measurement noise (epistemic uncertainty) 

for structural damage detection. Monte Carlo simulation 

framework is used to derive the statistical surrogate model 

and to identify the structural condition. Both the modeling 

error and measurement noise are assumed to have normal 

distribution and zero means. Using this method, the 

probability of damage existence can be estimated.  

The numerical and experimental results demonstrated 

that, the computational time of damage detection using 

IGMM coupled with LS-SVM model as a surrogate of FE 

model, is significantly reduced about ten times when 

compared with direct FE model utilization based on IGMM. 

This solution procedure contributes to a substantial 

reduction in the number of FE structural analysis which is 

further highlighted in damage detection of large-scale 

structures. 

However, further investigation needs to be conducted in 

order to investigate the applicability of proposed PBDD 

framework for real-time damage monitoring of in-service 

structures. 
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