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Abstract. An original quasi-3D hyperbolic shear deformation theory for simply supported functionally graded plates is
proposed in this work. The theory considers both shear deformation and thickness-stretching influences by a hyperbolic
distribution of all displacements within the thickness, and respects the stress-free boundary conditions on the upper and lower
surfaces of the plate without using any shear correction coefficient. By expressing the shear parts of the in-plane displacements
with the integral term, the number of unknowns and equations of motion of the proposed theory is reduced to four as against five
in the first shear deformation theory (FSDT) and common quasi-3D theories. Equations of motion are obtained from the
Hamilton principle. Analytical solutions for dynamic problems are determined for simply supported plates. Numerical results are

presented to check the accuracy of the proposed theory.

Keywords:

vibration; functionally graded plate; plate theory; thickness-stretching effect

1. Introduction

Functionally graded materials (FGMs) are a kind of
non-homogeneous composites materials, in which the
material characteristics change smoothly and continuously
from one surface to another. A typical FGM is fabricated
from a mixture of two material phases, for example a
ceramic and a metal. An advantage of FGMs over laminated
structures is that they eliminate the delamination mode of
failure encountered in laminated structures. In addition, the
physical and thermal properties of FGMs can be tailored to
different applications and working environments. This
makes FGMs preferable in many structural applications
such as nuclear reactors, aerospace, mechanical, automotive,
and civil engineering (Eltaher et al. 2013, Ait Amar
Meziane et al. 2014, Ait Atmane et al. 2015, Kar et al. 2016,
Janghorban 2016, Ahouel et al. 2016, Fahsi et al. 2017,
Abdelaziz et al. 2017, Sekkal et al. 2017a).

Since the shear deformation influences are considerable
in advanced composites like FGMs, shear deformation
models such as first-order shear deformation theory (FSDT)
and higher-order shear deformation theories (HSDTS)
should be employed. The FSDT (Nguyen et al. 2008, Zhao
et al. 2009, Hosseini-Hashemi et al. 2010, 2011, Irschik
1993, Nosier and Fallah 2008, Yang et al. 2009, Meksi et al.
2015, Bouderba et al. 2016, Bellifa et al. 2016, Youcef et al.
2018) provides acceptable results, but requires a shear
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correction coefficient that is difficult to determine out
consistently due to dependent on many parameters
considering geometry, boundary conditions, and loading
conditions. To avoid the use of the shear correction
coefficient and find a better prediction of the transverse
shear deformation and normal strains in FG structures,
HSDTs have been developed. In general, HSDTs can be
constructed based on nonlinear variations of the in-plane
displacements (Reddy 2000, Ferreira et al. 2005, Ait
Atmane et al. 2010, Benyoucef et al. 2010, Mantari et al.
2012, Xiang et al. 2011, Xiang and Kang 2013, Thai and
Kim 2013, Sobhy 2013, Bouderba et al. 2013, Ahmed 2014,
Ait Yahia et al. 2015, Belkorissat et al. 2015, Al-Basyouni
et al. 2015, Boukhari et al. 2016, Bounouara et al. 2016,
Baseri et al. 2016, Raminnea et al. 2016, Bousahla et al.
2016, Beldjelili et al. 2016, Janghorban 2016, Aldousari
2017, Bellifa et al. 20174, b, El-Haina et al. 2017, Chikh et
al. 2017, Besseghier et al. 2017, Benadouda et al. 2017,
Rahmani et al. 2017, Menasria et al. 2017, Attia et al. 2018,
Meksi et al. 2018, Bakhadda et al. 2018, Yazid et al. 2018)
or both in-plane and transverse displacements (Chen et al.
20009, Fares et al. 2009, Talha and Singh 2010, Ferreira et al.
2011, Reddy 2011, Natarajan and Manickam 2012, Neves et
al. 2012a, b, Neves et al. 2013, Jha et al. 2013,
Swaminathan and Naveenkumar 2014, Bousahla et al. 2014,
Hebali et al. 2014, Belabed et al. 2014, Fekrar et al. 2014,
Bourada et al. 2015, Hamidi et al. 2015, Draiche et al. 2016,
Akavci 2016, Bennoun et al. 2016, Bouafia et al. 2017,
Sekkal et al. 2017b, Abualnour et al. 2018, Bouhadra et al.
2018, Benchohra et al. 2018) (i.e., quasi-3D theories).
However, HSDTs are highly computational cost due to
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involving in many variables (e.g., theories by Neves et al.
(2012a, b and 2013) with nine variables, Reddy (2011) with
eleven variables, Jha et al. (2013) with twelve unknowns,
Talha and Singh (2010) and Natarajan and Manickam (2012)
with thirteen variables). Thus, needs exist for the
development of quasi-3D HSDTs which are simple to use.

The proposed quasi-3D HSDT in this work, accounts for
both the transverse shear deformation and thickness-
stretching effects through the use of the integral term into
the in-plane displacements. The present quasi-3D HSDT
contains the same five variables as in the FSDT, but
respects the traction-free boundary conditions on the upper
and lower surfaces of the plate without requiring any shear
correction coefficient. Equations of motion are obtained
from Hamilton's principle. Analytical solutions of simply
supported FG plates are presented. The computed results
are compared with the existing solutions to verify the
accuracy of proposed theory in predicting the dynamic
response of FG plates.

2. Analytical modeling

The plate is graded from aluminum (lower surface) to
alumina (upper surface) as presented in Fig. 1. The
dimensions of the plates are axbxh, where the length is
"a", "b"is width and "h"is thickness of the plate. The
gradation of material characteristics is in the thickness
direction with metal and ceramic being the typical
constituents. ~ Aluminum/Alumina  (Al/AIL0O,) , and

Aluminum /Zirconia (Al/Zr0Q,) are the examples of the
FG plate.

2.1 Material variation laws

The constituent elements of FG plate are changing in
thickness direction from bottom, where it is metal rich to
the top, where the surface is ceramic rich. Macroscopically
the plate is supposed homogenous and isotropic. This
distribution is achieved by varying the volume fraction of
the constituent elements. The volume fraction and hence
material characteristics vary according to power law.
Assume that, except constant Poisson’s ratio, the Young’s

Fig. 1 Geometry of functionally graded plate

modulus E and the mass density o obey the power-law
variation, namely (Tounsi et al. 2013, Zidi et al. 2014, Mahi
et al. 2015, Taibi et al. 2015, Meradjah et al. 2015, Zemri
et al. 2015, Mouffoki et al. 2017)

Py
E(z)=E, +(E,-E, )(%+%) (1a)
p(2)=pn+(p.—p )(1+5jp2 (1b)
m C m 2 h

Where (E., p.)and (E,,p,) are the corresponding
properties of the ceramic and metal, respectively, and p, , p,
are constants. Poisson’s ratio is taken as v =0.3
throughout the analyses. The value of P (p,, p,) equal to
zero represents a fully ceramic plate and infinite P , a fully

metallic plate. The distribution of the composition of
ceramics and metal is linear for p=1 . Typical values for

metal and ceramics used in the FG plate are listed in Table
1.

2.2 Displacement base field

In this article, further simplifying considerations are
made to the conventional HSDTs with thickness stretching
effect so that the number of unknowns is reduced. The
displacement field of the classical HSDTs with thickness
stretching effect is defined by

ow,
U(X, Y Z) = uO (X, y) -z 8_)(0 +f (Z)gox (X, y) (28.)

V(X ¥, 2) = Vo (X, y) ~ z% Pt@e,xy) @)

(2¢)
wW(X,Y,z) =W, (X, Y) + 9(2)e, (X, y)

Where Uy ; Vo3 Wy, @, @, , and @, are six

unknown displacements of the mid-plane of the plate, and
f(z) represents shape function defining the variation of

the transverse shear strains and stresses across the thickness.

Table 1 Material properties used in the FG plate
Metal

Ceramic
Properties Aluminum Alumina Zirconia
(Al) (Al20) (2r0y)
E (GPa) 70 380 200
1% 0.3 0.3 0.3
L0 (kgim®) 2702 3800 5700
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In this article a novel displacement field with 5 unknowns is
proposed, by considering that ¢ = j@(x, y)dx and

= I@(X, y)dy , the displacement field of the present
theory can be written in a simpler form as

oW,
U, YD) =Up (X, Y) =22k F@O(x V)X (3a)

V06 .2) =006 Y) -2 4y T @ 0 0xy)ay

(3c)
W(X! y’ Z) = WO(XI y) + g(z)(pz (X! y)

The coefficients Kk, and K, depends on the geometry
and expressed as follows
k, =a’ k, = ? (4)

In this article, the present original HSDT is obtained by
setting

3 df
f(2) = ftanh( j a2 andgp)-9@
h' ) 3h?cosh(1)? dz

The linear strain relations obtained from the displacement
model of Egs. (3(a)-3(c)), are as follows

x| |ex ky ks
&y 1= 53 +1 k;f + f(2){ ky
0 b
7xy 7/xy I(xy k:y (6)
y 7S
{ yZ}=9(Z){ (yf}, £, =0'(@)e¢
Vx Vx
Where
%y _ %W,
£, Ox K? ox’
0l % , ko L 0°w, ,
4 X Y] ay?
o) |y Vg | [k 32w,
&y X 2y |
ks k,0
kS b= k,0 ’
kS 9 9
y klayjedmkz aXjedy
op
0 k,|0dy+—=
¥%:zj d e (7b)
T kljedx+ e
OX

The integrals used in the above equations shall be
resolved by a Navier type solution. The following relations
can be obtained

b ,aze 826
jedx A' jed _B'867 “
oy

Where the coefficients A" and B' are adopted according
to the type of solution employed, in this case by using

Navier. Therefore, A' and B' are expressed as follows

A= —iz , B'=- 12
a B
Where « and g are defined in expression (24).
For the FG plates, the stress—strain relation-ships for
plane-stress state can be written as

' 9)

ox| [Cuu Crz Ciz 0 0 0 ]fe&
oyl [Ciz Cp Cz 0 0 0 [gy
;1 [Cla Cs Cix 0 0 0 |le
g0 0 0 G 0 0 ||| @
el |0 0 0 0 Cx 0 |
Ty i 0 0 0 0 0 C44_ Vyz

Where (0,,0,,0,,7,,7,,7,) and (5x,£y,52,7xy,7yz,7xz)

are the stress and strain components respectively. The C;
expressions in terms of engineering constants are given
below:

Ife, =0, then Cij are the plane stress-reduced elastic

constants
E(2)
Cll = CZZ = , 11a
1,2 (11a)
v E(2)
Cypp = , 11b
1- v2 (11b)

E(2)
Cy4 =Cs5 =Cq =G(2) = ,
44 =Cs5 =Cgp =G(2) 20+ 0) (11c)
Ife, 0, then Cj; are 3D elastic constants, given as
follows
1-v
C11=Cp =Cgs ~4=v) > )/1(2) (12a)

C12 =C13 =Cy3 = A(2), (12b)
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Ca4 =Cs5 =Cg =G(2) = u(2) = Z(El(jl) , (12c)
With
__VE@® _ _ E@®
Az) = 217 H(2) =G(2) = 201 v) (12d)

Where A(z)and g(z)are the Lamé’s coefficients.
The modulus E(z) and the elastic coefficients C,(z)
vary through the thickness, according to Eq. (1).

2. Equation of motion

Hamilton’s principle is used herein for the free vibration
problem of FG plate. The principle can be stated in
analytical form as (Attia et al. 2015, Larbi Chaht et al.
2015, Hachemi et al. 2017, Khetir et al. 2017, Klouche et
al. 2017, zidi et al. 2017, Kaci et al. 2018, Belabed et al.
2018, Zine et al. 2018)

t
0=[(sU -5 K)dt (13)
0
Where U is the virtual strain energy and o K is the
variation of Kinetic energy.
The variation of strain energy of the plate is given by

ou :Ho‘xésx+Gy6£y+azész+rxy6yxy+ryzz3;/yz +1ﬂ5yxz]dv
v
:[[Nx(sgg+Ny553+NZ§g$+NXy5~/Qy+M§’5kE+M§5k§+M§y5k3y (14)
A

dA=0

MRSk +MSky + My 5Ky +5,,8 73 +5,00 73
Where A is the top surface and the stress resultants
(N,M and S) are given by

Ny, Ny, Nyyo| 2 1
MR My, MRi= [(oxoymy) 2 2 (g5
M3, My, Mg,.| "2 f(2)
h/2
N, = jazg'(z)dz (15b)
—hy2
h/2 (15¢)
(s;,s;z)z [ 7y)0(2)dz
—h/2

The variation of kinetic energy of the plate can be written as
GK = [lagu+vov+Ws ] p(z) dv
\
j{|0[ﬂ05ﬂ0 +V0§V0 +W05W0]

~lyfp—+ 0 o

060 00
klA U07+f(5U0] (sz)[VOWH*’%‘SVO]] (16)

[u i CWO o 5 [ 00 dig j
+\]1[

g 0 iy azvo 06y 30050 00056
+|z[ ] Kz[(kﬂ)(dx &] +(koB )(A\/W]J

Jz[ awoaaa 690(3W0] vl B)[awooae aeaﬁwoj]

X o X o PR

+] (Vigdg + pdiig) + K2¢5¢}HA

Where  dot-superscript ~ convention  indicates  the
differentiation with respect to the time variable t; and p(z)

is the mass density given by Eq. (1); and (1,,J;,3° K; ,K})
are mass inertias expressed by
h/2

(Ig,13,1,) = I (1,z,zz)p(z)dz

2 (17a)

h/2
j (f.21, %) p()0z (17b)

-h/2

(311321K2):

h/2 (17¢)
(37K = [@a@)a(2)p(2)dz
—h/2
Substituting Eq. (7) into Eq. (10) and the subsequent results
into Eq. (15), the stress resultants can be expressed in terms
of generalized displacements (U,,V,,W,,0,¢,) as

aug
X
. . g
Ny Ay Ap 0 By Bp 0 By B, 0 Xy o
Ny | [A2 Axp 0 By Bp 0 B, By 0 Xy Cu—0+af—°
Ny| |0 0 Ag 0 0 Bg 0 0 By 0 ‘Nazw‘”‘
ME By B, 0 Dy Dp 0 DY DS, 0 Y - 6X2°
My| [Bip Bp 0 D Dp 0 Dj D; 0 Yy 22w
My[ |0 0 Bg O O Dg O 0 D O 70y20 (18a)
Mg| |BS, B, 0 Dj D Hyy Hp Y 2
s 11 12 11 12 11 12 13 2 3l Wo
My B By 0 Dj Dy 0 Hy Hj 0 Yy oxoy
My| [0 o0 By 0 0 D 0 0 HE 0 kg
Nol X X3 0 Vg Yo 0 VS VS 0 Zy) ka0 s
, NG
(k1A+kZB)@
(2]
.00 09,
s2] [a;, o07%B
=l e o oy (18b)
M 0 A, . 00 99,
KA —+—=
é’x OX
Where
" (1,9%2),2,2% f(z
(Au'AiJ'BIJ’Du’BIi’DIi’HS)_ ,[ ; () @) z (19a)
f f? (2)
a2 2 1(2),
h/2
(X.,,Y Yi§ Zij ) [z, 1(2),9'(2))g'(2)C;;dz  (19b)
—h/2

By employing the generalized displacement—strain
expressions (Egs. (6) and (7)) and stress—strain expressions
(Eg. (10)), and integrating by parts and applying the
fundamental lemma of variational calculus and collecting
the coefficients of su,,dVv,, sw,, 66, and s¢, in Eq.

(13), the governing equations are determined as
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N, oN i j
Suy: Mo Doy Mo gy a0

X oy oX X

N, oN oW j
vy 6W+WV:IOVO—I1§°+J1KZB'%

X

sz 0ZM: azMn P "
swy: IMe 8 (T g[S Ko

x? oy oyl oy

S s
+J2(k1A'ZX—f+kZB'gy—f]—IZVZWO+Jf¢5
*M as° as: (20)
501 -k M; -k, M; —(k,A'+k, B)——L+k, A% +k, B'—2
oxy x
ai ov o o
S N P A AT U L B Tl
x oy o oy’
2 020 2 020
‘Kz[(k1A)zaxfz+(sz)2?]
S; ;
SN, +—2 42 = 33, + K3
4 AP o 1 Wo 2P

Substituting Eq. (18) into Eq. (20), the governing equations
of the present quasi-3D hyperbolic shear deformation
theory can be expressed in terms of displacements (U, , v ,

Wy, 0, @,)as

Alldlluo + A66 d22u0 + (A12 + Aﬁﬁ)dlzvo + X13d1¢z - Blldlllwo
- (812 + ZBss)dizzWO + (Bge (kiAl"’kz BI)) d122‘9 + (Blslkl + B152 kz) d1‘9 (213)
=1l — 1,0, W, +J,k,A'd,d

Ayy ooV + Age Vo + (A, + Agg) dipUy + X a0,
=B, dypWy — (Blz + ZBse) dyg W,
+(Bg (k,A+k, BY)) d,,,0 + (B3,k, + Bk, ) d, 0

= 1,9, — 1,d W, + J,k,B'd,d

(21b)

Biidil + (BIZ + ZBss)duzuo + (Blz + ZBse)dquo
+ By UppaVp + Y13 01000, + Y53 Ao, — Dy Wo
- 2(D12 + 2Dse) duzzWo - Dzz dzzzzwo + (D151 k1 + D152 kz ) dn‘g
+ 2( Dss (klA'+k2 B)) i, 0+ (Dlszkl + Dzszkz) d,,0
= 1y + 1, (d iy + 0,7, ) - 3, (k, A'd, 6+ k,B'd,,6)

—1,(dy W, +d,,W,) + I ¢

(21c)

- (Blslkl + Bf2k2>d1u0 - (Bsse (klA'+sz'))d122u0
- (Bgs (kiA'+kZB‘)) dyy Vo — (szkl + stzkz)dzvo
-kYip, — K.Yy, + (D151k1 +Drk, )duWo
+2 ( D;s (klA‘+kZB'))d1122WO + (szk1 + Dzszkz)dzzwo
“HEKE 0-HE, K20-2H3 K k0~ ((k Ak B HE, )d, 0
+ A (kB 0+ A5 (k AY 0+ A (k,BY) dy, + A(k,A) d,,
==, (k A0ty +K,B" dy¥ )+ 3, (K A dy Vi + K, B d Vi)
+ K, (kA )2 dy 0 + (k,B')d,,0)

(21d)

- X13d1uo - X23 dzvo - Z33§0z +Y13 d11W0 +Y23 dzzwo
+ (Al = Y52) (K;B')d,0 + (A5 - Y13) (k, A0 (21e)
+ ALy, + Asdyp, = 30V + Ko

Where d;. dy and dijlm are the following differential
operators
02 o3 ot
dj = oeon djj=——— Gijm=—
XiOXj OXiOXOX) OX{0X jOX) OXpy 22)
0
di=—, (i,j,l,m=12).
i o (i,] )

3. Solution procedure

Consider a simply supported rectangular plate with

length & and width b .The Navier solution procedure is
employed to determine the analytical solutions for which
the displacement variables satisfying the above boundary
conditions and can be written in the following Fourier series

u) |V et cos(ar x)sin(B y)
Vo | |V €“"sin(a x)cos(By)
Wy ¢ =W €'®sin(a x)sin(B y) (23)
0 X e sin(a x)sin(8y)
2 @ €' sin(a X)sin(B y)

Where (U ,V ,W , X ,®) are unknown functions to be
determined, o is the frequency of free vibration of the

plate, Vi=-1 the imaginary unit.
Where

a=rxla andB=r/b (24)

Substituting Eq. (23) into Eg. (21), the following problem is
obtained

Sll SlZ 813 814 815 mll le m13 m14 m15 U 01
512 SZZ 823 SZ4 SZS le mZZ m23 m24 m25 V 0
513 523 533 534 535 _wz m13 m23 m33 m34 m35 W = 0 (25)
314 SZ4 834 SM 845 m14 m24 m34 m44 m45 X 0
815 SZ5 S35 S45 355 m15 m25 m35 m45 m55 (D 0
Where
S (o2 2
11=—(a" A1+ B Pgp)
S12 =—af(A2 + Ase)
3 2
S13 =+a”By1 +aff” (B +2Bgg)
) . .
S14 =+a(k By +KoBih) — a8 Bis (kA +k;B) 26)

S15 = X13
2 2
Sop =—(a” Aes + B Agp)

Sp3 =+a’ B (Byp +2Bgg) + 5By,
Saa =+B(kqB, +kaB3) +a’ (kA +koB)Bgs
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So5 =L X3

S33 =—(a*Dyy + B*Dyy +20° *(Dyy +2Dgp))
Sgp = _(‘7‘2k1[)151+(k20‘2 + klﬂz )Dy,
+ ,szzDzsz —2a° B( klA + sz' )Dgs )

2 2
S35 =—(a" Y13+ BY23)
Su= (_klelsl + kzszsz +2kik,Hy,
+azﬁz(k1Al +sz‘ )2H56+a2(klA )2A§5+ﬁ2(szl )2 Al)

Sa5 = —(KaYes + koY53 + a2k A ASs + f2koB AYy)

S5 = —(a? A5 + BZ Ay + Z33)

mp=-lp . Mp=0, ma=al;

Mg =—JikiA'cr ,Mhy5 =0,

Mp=—lg, Myz=p11, My=—kB' SJ;,

M5 =0,

Mgz = —(lp + 12(” + %)) ,
M3y =J2 (kl A'O!2 +k2 B'ﬂz), M35 :—\]f,

M4 =K> ((kl AV o +(ky B')Zﬂz) mg5 =—K3,

4. Numerical results and discussion

In this part the accuracy of the present quasi 3D type
HSDT with only five unknowns is evaluated, the free
vibration analysis for simply supported functionally graded
plate is studied. The theory is formulated in such way that
the thickness stretching influence is considered. Various
numerical examples for functionally graded and
homogeneous plate with different values of the power
indices, geometry ratios and aspects ratios for two types of
functionally graded plate I/ Al,0; and Al/ZrO,.

Table 2 shows the fundamental frequencies parameters
Q=wh/p,/E. Of the simply supported square

aluminum/alumina plates in function of the thickness to
length ratios (a/h=5,10and20) for different values of
power law index p (p=p;=p,=0,05,1,4,10 and o). The
present results are compared with solutions based on the
both FSDT and 2D HSDT developed by Matsunaga (2008),
FSDT obtained by Zhao et al. (2009) and Hosseini-Hashemi
et al. (2010) and RPT proposed by Benachour et al. (2011).
The results shows that the present theory, which taking into

account transverse normal deformation (¢, =0), predicts

the non-dimensional fundamental frequencies slightly large
than the results obtained by other theories (Matsunaga
2008, Zhao et al. 2009, Hosseini-Hashemi et al. 2010,
Benachour et al. 2011), which neglect the thickness
stretching effect (¢, =0) , where the latter underestimate

frequency parameter compared to the present theory.

Table 3 present the comparison of present frequency
parameter = ga? /pc/Ec/hWith those given with FSDT

(Zhao et al. 2009 and Hosseini-Hashemi et al. 2010) and
with the theory based on HSDT developed by Benachour et
al. (2011) for the both FGM
(FGM | : Al/ Al,05 and FGM 11: Al/ Zr0,) Squares plates with
thickness ratio (a/h=10) for the different values of material
index (p=0,05,1,2,58,and10) , Results are in good
agreement with the published of Benachour et al. (2011). As
is indicated in the above section, the small difference noted
between the results obtained by the present theory and
Benachour et al. (2011) is due to the effect of thickness
stretching which is omitted this latter (Benachour et al.
2011), It can be observed also that there is a remarkable
difference between the non dimensional frequencies of
Zhao et al. (2009) and those of high shear deformable plate
theory (Benachour et al. 2011) and the present model. A
reason of this difference is due to the fact that Zhao et al.
(2009) utilized a numerical solution to determine the natural
frequencies of the FG plates. It should be also noted that the
difference between the present results and those reported by
Zhao et al. (2009) and Hosseini-Hashemi et al. (2010) is
due to the used theory in these later references which is
FSDT. However, FSDT and HSDT (Benachour et al. 2011)
neglect the thickness stretching effect. It can be concluded
from Table 3 that the observed the difference between the
tabulated results is due to the thickness stretching effect
which is more pronounced in thick plates (n/a=01). Thus,
the proposed theory is improved comparatively to the other
theories FSDT (Zhao et al. 2009 and Hosseini-Hashemi et
al. 2010) and HSDT (Benachour et al. 2011) because it
considers the thickness stretching effect.

Table 4 shows a comparison of fundamental frequencies
Q:mzm of simply supported Aluminum/Zirconia
squares FG plates for (h/a=0.05, 0.1and0.2) when
(pp=pp =1) in the first part and (p; =p, = p=2,3and5)
when (h/a=0.2) in the second part. The obtained results
(quasi 3D) are compared with those given by the FSDT
(Hosseini-Hashemi et al. 2010), 2D HSDT (Matsunaga
2008) and HSDT of (Pradyumna and Bandyopadhyay 2008
and Benachour et al. 2011). It can be seen that the present
results are in good agreement with other theories. In
addition, it should be indicated that the small difference
observed is due to the effect of the transverse normal
deformation included by the present theory.
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Table 2 Comparison of fundamental frequency parameter ¢ — n.[p /E. simply supported Al/Al,0,square plates

Power indices (P)

a’h Theories

0 0.5 1 4 10 0
Benachour et al. (2011) 0,01480  0,01254  0,01130 0,00980 0,00940 -
20 Hosseini-Hashemi et al. (2010) 0,01480  0,01281  0,01150 0,01013 0,00963 -
Zhao et al. (2009) 0,01464 001241  0,01118 0,00970 0,00931 -
Present (&, #0) 0.01485  0.01267  0.01151 0.01005 0.00953 -

Benachour et al. (2011) 0,05769  0,04900  0,04417 0,03804 0,03635 0,02936

Matsunaga (2008) 0,05777  0,04917  0,04427 0,03811 0,03642 0,02933

10 Hosseini-Hashemi et al. (2010) 0,05769  0,04920  0,04454 0,03825 0,03627 0,02936
Zhao et al. (2009) 0,05673  0,04818  0,04346 0,03757 0,03591 -
Matsunaga (2008) 0,06382  0,05429  0,04889 0,04230 0,04047 .

Present (&, #0) 0.05797  0.04953  0.04502 0.03901 0.03688 0.02950

Benachour et al. (2011) 0,2112 0,1806 0,1628 0,1375 0,1300 0,1075

Matsunaga (2008) 0,2121 0,1819 0,1640 0,1383 0,1306 0,1077

. Hosseini-Hashemi et al. (2010) 0,2112 0,1806 0,1650 0,1371 0,1304 0,1075
Zhao et al. (2009) 0,2055 0,1757 0,1587 0,1356 0,1284 -
Matsunaga (2008) 0,2334 0,1997 0,1802 0,1543 0,1462 -

Present (&, #0) 02130 01832  0.1665 0.1413 0.1321 0.1084

Table 3 Comparison of fundamental frequency parameter ( Q = wa?, /pc [ E; /'h) for simply supported square FG plates
whenh/a=0.1

Power indices (P)

FGMs Theories

0 0.5 1 2 5 8 10
Benachour et al. (2011) 57694 4,9000 4,4166  4,0057 3,7660 3,6831 3,6357
AUALOS Hosseini-Hashemi et al. (2010) 57693 4,9207  4,4545  4,0063 3,7837 3,6830 3,6277
Zhao et al. (2009) 56763 4,8209 43474  3,9474 3,7218 3,6410 3,5923
Present (&, #0) 57967 4.9532 45015  4.1147 3.8524 3.7458 3.6883
Benachour et al. (2011) 57694 54380 53113 52923 5,3904 5,3950 5,3783
Matsunaga (2008) 5,7769 - 5,3216 - - - -
Al/zrO, Hosseini-Hashemi etal. (2010) 57693 53176 52532 53084 5,2940 5,2312 5,1893
Zhao et al. (2009) 56763 51105 48713  4,6977 4,5549 4,4741 4,4323

Present (gz #0) 5.7967 5.4828 5.3761 5.3705 5.4520 5.4428 5.4208
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Table 4 Comparison of fundamental frequency parameter Q = wh?, | P | E,, for simply supported square FG plates

' p=1 h/a=0.2
Theories h/a=005 h/a=01 h/a=02 p=2 p=3 p=5
Benachour et al. (2011) 0,0158 0,0618 0,2270 0,2249 0,2255  0,2266
Matsunaga (2008) 0,0158 0,0618 0,2285 0,2264 0,2270  0,2281
Pradyumna and Bandyopadhyay (2008) 0,0157 0,0613 0,2257 0,2237 0,2243  0,2253
Hosseini-Hashemi et al. (2010) 0,0158 0,0611 0,2270 0,2249 0,2254  0,2265
Pradyumna and Bandyopadhyay (2008) 0,0162 0,0633 0,2323 02325 10,2334  0,2334
Present (¢, # 0) 0.0160 0.0626 0.2309 0.2293 0.2298  0.2302
The variation of the non dimensional fundamental
frequency is shown in Figs. 2 and 3 for aluminum/alumina 8
plate in function of geometry ratio (a/h) . The results . — Present (5.~ 0) -

illustrate that the frequency parameter increase with
increasing (a/hyratio when(a/h<20). It can be seen that
the non-dimensional frequency found to be independent of
the length thickness ratio (a/h) when(a/h>20). As is
indicated in the Figs. 2 and 3, the neglect of the transverse
normal deformation underestimate the non-dimensional
fundamental frequency.

p,=10

Frequency parameter

— Present (¢, = 0)
-= - Present (g,# 0)

T T T T

T T
40 50 60 70 80 90 100

Fig. 2 Variation of frequency parameter of Al/Al,0, plate
with a/h ratio and p, index. (a/b=05and p, =1)

3,25

3,00

2,754

Frequency parameter

— Present (g,= 0)

2504 -=- Present (g, # 0)

T T T T T
50 60 70 80 90 100

ah

Fig. 3 Variation of frequency parameter of Al/Al,05 plate
with a/h ratioand p, index.(a/b=05andp =1)

----= Present (g, # 0)

Frequency parameter

Fig. 4 Variation of frequency parameter of /A0, plate
with a/b ratioand p, index.(a/h=2and p,=1)

44

— Present (g,= 0)
-= - Present (g, = 0)

Frequency parameter

Fig. 5 Variation of frequency parameter of Al/Al,0, plate
with a/h ratioand p, index. (a/h=2andp, =1)

It is illustrate from Figs. 2 and 3 that the effect of p,is to
make the plate stiffer when this gradient index is reduced.
However, decreasing the second power law index p, |,
make the plate soften as presented in Fig. 3.

The dynamic behavior of plate (Al/Al,05) is shown in
Figs. 4 and 5. It can be noted that the frequency parameter
is in direct correlation relation with the aspect ratio (a/b).
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For scale reason, only curves with (p, =0,05and 10) are

presented in Fig. 5. It should be noted that the non-
dimensional frequency decreases with increasing the first
power index p (Fig. 4). However, it increases with

increasing p, (Fig.5).

5. Conclusions

This work present a free vibration analysis for simply
supported functionally graded plate using an original quasi
3D HSDT with only five unknowns. The theory accounts
for the stretching and shear deformation effects without
requiring a shear correction factor. The equations of motion
are derived by using the Hamilton’s principle. These
equations are solved via Navier’s procedure. The results
where compared with solutions of several theories such as
FSDT and HSDT. In conclusion, it can be said that the
present theory is not only accurate but also efficient in
predicting fundamental frequency of functionally graded
plates.
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