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1. Introduction 
 

In many modern branches of engineering, piezoelectric 

(PZT) ceramics have great application in micro- and macro- 

electro-mechanical systems and smart composites. At the 

same time, PZT materials are widely used as sensors or 

actuators under which the layers made from these are glued 

onto the face surface of the basic materials. Moreover, 

under manufacturing of smart composites, there are many 

cases under which the layers made of PZT are alternated 

with layers made from elastic materials. Safety of the 

aforementioned systems depends not only on preventing a 

fracture of each layer’s material separately but also on 

preventing an adhesion strength (or fracture) between the 

PZT and pure elastic layers. Note that the adhesion strength 

is weakened significantly with debonding zones which 

commonly arise between the layers during the assembly 

process of these layers or in consequence of various 

external factors.  It is evident that in the corresponding 

external loading cases the noted debonding zones may  
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cause highly inhomogeneous and concentrated stresses 

around these zones and hence, decrease the strength and 

service life of these expensive electro-mechanical systems. 

For controlling of the debonding interface zones on the 

electro-mechanical behavior of the PZT/Elastic systems, it 

is necessary to make fundamental studies on this influence 

based on the modern theories of piezoelectricity and 

elasticity. Note that in many cases under these studies, the 

debonding zones are modeled as interface cracks, the 

electro-mechanical behavior of which depends also on the 

external loading direction. So that, in the case where the 

external mechanical loading acts in a direction which is 

perpendicular to the cracks' edges, these cracks may cause 

interface fractures of the layers. However, in the cases 

where the external loading acts in a direction which is 

parallel to the cracks' edges, these cracks may cause 

buckling delamination around the cracks (see, for instance, 

Akbarov (2013), Akbarov and Yahnioglu (2013) and other 

ones listed therein). Moreover, the electro-mechanical 

behavior of the cracks also significantly depends on their 

geometries. For instance, in the so-called three-dimensional 

crack problems, penny-shaped, elliptical and other similar 

types of models are used. Thus, according to the foregoing 

brief discussion, it can be concluded that the mathematical 

modelling and theoretical investigations related to the 

electro-mechanical interface crack problems, to which the 

present paper is also concerned, have great significance in 

the fundamental and application sense.  
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For estimation of the development of the investigation 

made in the present work and its significance, amongst 

others, we consider a brief review of related investigations 

and, according to the subject of the paper, analyze mainly 

the works studying the problems regarding penny-shaped 

cracks in piezoelectric materials.    

The first attempt for the study of the fracture problem 

related to the penny-shaped crack embedded in a 

piezoelectric material is made in the paper by Kudryatsev et 

al. (1975) in which a special solution of the stress and 

displacement fields is obtained. Under mathematical 

formulation of the problem, the so-called permeable 

condition on the crack edges is considered, according to 

which, it is assumed that the electrical potential and the 

normal components of the electrical displacements are 

continuous across the crack edge surfaces. In this case, the 

penny-shaped crack is treated as a mathematical cut filled 

with air. The same type of conditions on the crack’s edge 

are also used in the papers by Parton (1976), Yang (2004) 

and other ones listed therein. More detailed analyses of the 

various types of conditions on the crack edges in the 

piezoelectric materials are discussed in the papers by 

McMeeking and Landis (2008) and Fent et al. (2009). 

Moreover, in the paper by Yang (2004), the penny-shaped 

crack problem for the mode I under far-field uniform 

mechanical and electrical loading and under mechanical 

loading on the faces of the crack is studied within the scope 

of the linear piezoelectric fracture mechanics by employing 

the Hankel integral transformation method. For the cases 

under consideration, corresponding expressions for the 

Stress Intensity Factor (SIF) and for the electric 

displacement intensity factor (EDIF) are obtained. At the 

same time, the corresponding analytical expressions are 

determined for the Energy Release Rate (ERR).  

The paper by Li and Lee (2012) studies an axisymmetric 

penny-shaped crack problem for the infinite piezoelectric 

layer in the case where the crack is in the middle plane of 

the layer. On the crack’s edge surfaces the impermeable 

boundary condition model is used. According to this model, 

it is assumed that the electric displacements on the crack’s 

edge surfaces are equal to zero. Moreover, in the paper by 

Li and Lee (2012), a new method is developed for 

determination of the corresponding fundamental solutions 

and by employing this method numerical results related to 

the ERR are presented and discussed.  

The axisymmetric penny-shaped crack problem for the 

infinite piezoelectric layer is also considered in the paper by 

Zhong (2012) in the case where the crack is on the plane 

which is parallel to the face planes of the layer. Moreover, 

in this paper on the crack edges, the energetically consistent 

boundary condition model proposed in the paper by Landis 

(2004) is used. The solution of the corresponding boundary 

value problem for the mode I is made by use of the Hankel 

integral transformation method. Numerical results on the 

ERR and SIF are presented and discussed.  

The energetically consistent boundary condition model 

on the crack’s edges is also used in the paper by Eskandari 

et al. (2010) for investigation of the axisymmetric annular 

crack problem in the infinite piezoelectric material. The far-

field electrical and mechanical loading case for the mode I 

is considered. The analytical solution method, based also on 

the Hankel integral transformation, is employed. Numerical 

results on the ERR, electric displacement etc. are presented 

and discussed.  

The annular interface crack problem between dissimilar 

piezoelectric layers for the mode I is considered in the paper 

by Li et al. (2011) in which an impermeable boundary 

condition on the crack’s edge surface is assumed. As in the 

previous papers, the Hankel integral transformation and the 

integral equation method are employed for solution of the 

corresponding boundary value problem. Numerical results 

on the ERR of the inner and outer crack tips are presented 

and discussed for various problem parameters.  

The paper by Nanta et al. (2003) deals with the study of 

the penny-shaped crack in the piezoelectric infinite cylinder 

under mode I loading. The permeable boundary condition 

model on the crack’s edge surface is considered. The 

aforementioned well-known integral transformation 

solution method is employed and numerical results on the 

ERR, SIF and energy density factor are obtained for the far-

field mechanical and electrical loading cases under various 

values of the problem parameters. Note that these results are 

obtained not only for the permeable, but also for the 

impermeable boundary condition model on the crack’s 

edge. Consequently, as a result of the comparison of these 

results, the effect of the permeability condition on the 

values of the fracture parameters of the penny-shaped crack 

in a piezoelectric material is shown.      

The fracture problem for a penny-shaped interface crack 

between a functionally graded piezoelectric layer and a 

homogeneous piezoelectric layer is investigated in the paper 

by Li et al. (2009). It is assumed that on the crack’s edges 

the impermeable boundary condition is satisfied and on the 

face planes of the bi-layered plate the uniformly distributed 

normal stretching forces and electrical displacements act 

simultaneously. Moreover, the mechanical and electrical 

properties of the functionally graded material are assumed 

to vary continuously along the layer thickness direction and 

this assumption simplifies significantly the solution 

procedures and allows the analytical solution of the 

corresponding boundary value problem to be obtained. The 

traditional solution method indicated above is also used in 

this work and numerical results on the SIF and ERR are 

obtained and discussed for various values of the problem 

parameters.  

In all the works reviewed above it is assumed that the 

penny-shaped crack is embedded completely in a 

piezoelectric material and therefore formulation of the 

permeable, impermeable, energetically consistent, semi-

consistent and other types of conditions for the electrical 

quantities across the crack's edge surfaces, becomes 

necessary. However, in the cases where the penny-shaped 

crack is in the interface between piezoelectric and elastic 

mediums such conditions do not have any meaning. 

Therefore, in later cases on the crack's edge face which 

relate to the piezoelectric medium, the ordinary 

"electrically-open" (or "open-circuit") and "electrically-

shorted" (or "short-circuit") conditions are given. Note that 

the "electrically-open" (or "open-circuit") condition 

coincides with the aforementioned impermeable condition.  
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In connection with this, according to the authors’ 

knowledge, we note that the first attempt to study the 

problem related to the interface penny-shaped crack 

between the piezoelectric layer and half-space is made in 

the paper by Ren et al. (2014). This study is carried out for 

the opening mode in the case where on the crack face, 

which is in the piezoelectric layer, the “open-circuit” 

condition is satisfied. The corresponding problem, as in the 

foregoing papers, is solved with utilizing the Hankel 

transform and singular integral equation methods and 

according to this analytical solution, numerical results on 

the ERR and SIF are obtained and discussed.   

With this we restrict ourselves to consideration of the 

review of the investigations related to the penny-shaped 

crack in piezoelectric materials. Note that under this review 

we have considered mainly the works which have been 

carried out during the last 10 years. A review of the related 

works carried out on earlier dates can be found in the above 

reviewed papers. Moreover, note that a more detailed 

review regarding other investigations can be found in the 

papers by Kuna (2006) and Kuna (2010).  

Thus, it follows from the foregoing review that all the 

investigations carried out for the penny-shaped cracks in 

piezoelectric materials and in the interface between 

piezoelectric and elastic materials have been made within 

the scope of the linear piezoelectric fracture mechanics and 

within the scope of the assumptions that the layers’ 

dimensions are infinite in the plane on which this crack lies. 

It is known that the linear theory of piezoelectricity cannot 

take into consideration the influence of the homogeneous 

normal stresses acting in the directions which are parallel to 

the crack’s edge planes on the fracture parameters such as 

SIF, ERR etc.  Note that the approach for solution of the 

corresponding pure elastic problems is first proposed by 

Guz and the corresponding results of this author and his 

students are detailed in the monograph by Guz (1981). 

Some elements of this approach are also given in the other 

monograph by Guz (1999). Note that this approach is based 

on the so-called three-dimensional linearized theory of 

elasticity, the field equations and relations of which are 

obtained through the linearization of the corresponding 

geometrically non-linear field equations and relations. 

Under these linearized procedures, the stresses acting along 

the laying direction of the cracks’ edges are assumed as 

initial ones and the stress-strain fields caused by the 

additional forces acting on the cracks’ edge surfaces are 

determined through the linearized equations, the 

coefficients of which contain the initial stresses. Namely, 

this statement allows us to take into consideration the 

influence of the initial stresses on the SIF and ERR at the 

cracks’ tips.  

The corresponding linearization procedures are also 

made for the field equations and relations of the theory of 

piezoelectricity (see, for instance, the monograph by Yang 

(2005) and other ones listed therein). However, up to now 

the study of the influence of the initial stress on the SIF and 

ERR at the crack’s tips which are in the piezoelectric 

materials or in the interface between the piezoelectric and 

elastic medium is almost completely absent. To the best 

knowledge of the authors, the first attempt in this field is 

made in the paper by Akbarov and Yahnioglu (2016), in 

which in the plane strain state, the influence of the initial 

stresses on the total electro-mechanical potential energy and 

ERR at the cracks’ tips located on the interface planes of the 

sandwich plate-strip with piezoelectric face and elastic core 

layers, is studied. Note that the corresponding buckling 

delamination problem is studied in the paper by Akbarov 

and Yahnioglu (2013). Moreover, in the paper by Akbarov 

and Turan (2009) the corresponding crack problem in an 

initially stressed orthotropic elastic plate-strip is examined.  

Taking the foregoing statement and the theoretical 

application significance of the related investigation into 

consideration, in the present paper we attempt to develop 

the investigations started in the paper by Akbarov and 

Yahnioglu (2013) to the penny-shaped interface cracks 

which are located on the interface of the circular sandwich 

plate with piezoelectric face and elastic middle layers. 

Under these investigations, it is assumed that in the first 

stage on the lateral boundary of the sandwich plate disc, the 

uniformly distributed normal compressing (or stretching) 

forces act in the inward (outward) radial direction and these 

forces at a certain distance from the lateral boundary cause 

corresponding homogeneous stresses in the layers. In the 

second stage it is assumed that on the edges of the penny-

shaped interface cracks, the additional opening normal 

forces are applied. It is required to determine the influence 

of the homogeneous initial stresses which appear in the first 

stage on the ERR caused by the additional normal opening 

forces acting on the cracks' edge surfaces in the second 

stage. Note that the corresponding buckling delamination 

problem is considered in the paper by Cafarova et al. 

(2017). 

 

 

2. Formulation of the problem 
 
We consider a circular sandwich plate with geometry 

illustrated in Fig. 1 and assume that the thicknesses and 

materials of the face layers are the same and piezoelectric, 

and the material of the middle (core) layer is an elastic one. 

Moreover, assume that between the core and face layers 

there are penny-shaped cracks whose locations are also 

illustrated in Fig. 1.  

Associate with the lower face plane of the plate the 

cylindrical coordinate system Or z (Fig. 1), according to 

which, the plate occupies the region 

0 / 2;0 2 ;0      r z h  (h 2h ) F Ch  and  

the penny-shaped cracks occur in  0; Fz h

00 2 r  a n d  i n   0;  C Fz h h 00 2 r . 

Thus, within this framework, we suppose that at first, the 

plate is loaded by uniformly distributed rotationally 

symmetric normal forces with intensity q  (Fig. 1(b)) 

acting on the lateral surface of the circular plate-disc. The 

electro-mechanical state caused with this loading is called 

the initial state. After this initial state appears, i.e., in the 

second stage, we assume that the cracks’ edges are loaded 

by additional uniformly distributed normal opening forces  
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(a) 

(b) 

(c) 

Fig. 1 The geometry of the plate-disc and interface penny-

shaped cracks: (a) the whole sandwich plate-disc, (b) the 

radial section of the plate – disc and its loading in the initial 

state and (c) the radial section of the plate-disc with 

additional loading acting on the crack’s edges 

 

 

with intensity p  (Fig. 1(c)) and assume that the magnitude 

of p  is less significant than that of q . 

Now we consider formulation of the problems for 

determination of the electro-mechanical quantities related to 

the first (initial) and second stages. As we are considering 

the rotationally axisymmetric deformation case, therefore 

under the aforementioned formulation we will use the 

corresponding field equations related to this case. 

Moreover, below we will denote the values related to the 

upper and lower face layers by upper indices (3) and (1), 

respectively, whereas the values related to the core layer are 

denoted by (2). The values related to the first (initial) state 

will be distinguished from those related to the second stage 

with the additional upper index 0. 

 

2.1 For the first stage 
 

We assume that in the first stage, the electro-mechanical 

state in the sandwich plate under consideration appears 

within the scope of the linear theory of piezoelectricity for 

the face layers and the linear theory of elasticity for the core 

layer. According to the monograph by Yang (2005), the field 

equations are: 

Equilibrium and electrostatic equations 
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piezoelectric materials 

( ) ( ) ( )0 ( )( )0 ( )0 ( )0
1111 1122 1133   

k k k kk k k
rr rr zzc s c s c s   

 

( ) ( )( )0 ( )0
111 311

k kk k
r ze E e E   

 

( )0 ( ) ( ) ( )0 ( )( )0 ( )0
2211 2222 2233    

k k k k kk k
rr zzc s c s c s   

 

( ) ( )( )0 ( )0
122 322

k kk k
r ze E e E   

 

( ) ( ) ( )0 ( )( )0 ( )0 ( )0
3311 3322 3333   
k k k kk k k

zz rr zzc s c s c s   

 

( ) ( )( )0 ( )0
133 333

k kk k
r ze E e E   

 

( ) ( ) ( )( )0 ( )0 ( )0 ( )0
1311 113 313  

k k kk k k k
rz rz r zc s e E e E   

 

( ) ( ) ( )0 ( )( )0 ( )0 ( )0
111 122 133
k k k kk k k

r rr zzD e s e s e s      

 

( ) ( )( )0 ( )0
11 13 

k kk k
r zE E   

 

( ) ( ) ( )0 ( )( )0 ( )0 ( )0
311 322 333
k k k kk k k

z rr zzD e s e s e s   
 

( ) ( )( )0 ( )0
31 33 
k kk k

r zE E
 

( )0
( )0 

 


 k
k

rE
r

 , 
( )0

( )0 
 



 k
k

zE
z  

(2)0 (2) (2)0 (2) (2)02   rr rrs s  

(2)0 (2)0(2) (2)0 (2)2    s s
 

(2)0 (2) (2)0 (2) (2)02zz zzs s     

(2)0 (2) (2)02 rz rzs  

(2) 

 

262



 

The influence of initial stresses on energy release rate and total electro-mechanical potential energy… 

(2)0(2)0 (2)0 (2)0  rr zzs s s s , k=1,3 (3) 

Strain-displacement relations 
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In (1)-(4) the following notation is used: 
( ) j
rr ,…, 

( ) j
rz  

and 
( )j
rrs ,…, 

( )j
rzs  are the components of the stress and 

strain tensors, respectively, 
( )j
ru and 

( )j
zu  are the 

components of the displacement vector, ( )k
rD  and ( )k

zD  are 

the components of the electrical displacement vector, ( )k
rE  

and ( )k
zE  are the components of the electrical field vector, 

( )0 k
 is the electric potential,  (2) and 

(2)  are Lame 

constants of the core layer material, and 
( )k
ijkl

c , 
( )k
nije  and 

( )


k
nj ( 1,2,3)k  are the elastic, piezoelectric and dielectric 

constants, respectively. 

Note that the piezoelectric material exhibits the 

characteristics of orthotropic materials with the 

corresponding elastic symmetry axes and becomes 

electrically polarized under mechanical loads or mechanical 

deformation placed in an electrical field. According to the 

monograph by Yang (2005) and other related references, the 

polled direction of the piezoelectric material will change 

according to the position of the material constants in the 

constitutive relations in (2). In the present paper, under 

numerical calculations, it is assumed that the O z  axis 

direction is the polarized direction. Moreover, we introduce 

the following notation. 
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Thus, Eqs. (1)-(5) complete the field equations for the case 

under consideration. Now we consider the formulation of 

the boundary and contact conditions:  

Boundary conditions on the cracks’ edges 
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Contact conditions between the layers in the areas which 

are out of the cracks 
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Boundary conditions on the face planes of the plate 
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(1)0

0
0


 zr

z
, (3)0

2
0

 


F C
z

z h h
D ,

(1)0

0
0


z

z
D

 

for 0 2 r  

(8) 

Conditions on the lateral boundary of the plate 

( )0

2
  j

rr
r

q , 
( )0

2
0


j

z
r

u , for 1,2,3j ;
 

( )0

2
0


 k

r
 for 1,3k , under 0 2  F Cz h h  

(9) 

This completes the full system of field equations for 

determination of the quantities related to the first (initial) 

state. 

 

2.2 For the second stage 
 

First of all, we note that in many references (see, for 

instance, references Guz (1981), Guz (1999) and Yang 

(2005), the second stage is called the perturbed state. 

Moreover, the field equations and relations obtained for this 

state are called the linearized equations and relations. Thus, 
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according to the monographs by Guz (1981), Guz (1999) 

and the monograph by Yang (2005), the linearized field 

equations and relations for the case under consideration are 

obtained as follows.   

Equilibrium and electrostatic equations 

( ) ( )
( )( )1

( ) 0
 

   
  

j j
jjrr zr

rr

t t
t t

r z r  

( ) ( )
( )1

0
 

  
 

j j
jrz zz

rz

t t
t

r z r
, 1,2,3j  

( ) ( )
( )1

0

k k
kR Z

R

D D
D

r r z

 
  

 
, 1,3k  

(10) 

where 

( )
( ) ( ) ( )0

j
j j j r

rr rr rr
u

t
r

 


 
  

( )
( ) ( ) ( )0

j
j j j ru

t
r    

 

( ) ( )j j
zr zrt , 

( )
( ) ( ) ( )0  


 

j
j j k z

rz rz rr

u
t

r  

( ) ( )j j
zz zzt , 1,2,3j

 

( ) ( )
( ) ( ) ( )0 ( ) 

  
 

k k
k k k kr r

r r zR

u u
D D D D

r z  

( ) ( )
( ) ( ) ( )0 ( )0 

  
 

k k
k k k kz z

z z rZ

u u
D D D D

z r
, 1,3k  

(11) 

Note that the relations in (11) are written for the case where 
( )0 0 j
zz  and ( )0 0 j

rz  which, as will be shown below, 

takes place for the problem under consideration. 

The electro-mechanical constitutive relations in (2), 

elasticity relations in (3) and the strain displacement 

relations in (4) also remain valid for the quantities of the 

second (perturbed) state. Note that under using the relations 

(2)-(4) for the second stage it is necessary to omit the upper 

index 0 in these relations. Thus, we have the complete 

system of field Eqs. (10), (11), (2), (3) and (4) for 

determination of the values related to the perturbed state.  

Now we write the corresponding boundary and contact 

conditions.  

Boundary conditions on the cracks’ edges 

(3)

0
0

  


F C
zr

z h h
t , 

(3)

0  
 

F C
zz

z h h
t p

 

(2)

0
0

  


F C
zr

z h h
t , 

(2)

0  
 

F C
zz

z h h
t p  

(2)

0
0

 


F
zr

z h
t , 

(2)

0 
 

F
zz

z h
t p

 

(12) 

(1)

0
0

 


F
zr

z h
t , 

(1)

0 
 

F
zz

z h
t p  

(3)

0
0

  


F C
Z

z h h
D , 

(1)

0
0

 


F
Z

z h
D

 

for 00 2 r  

Contact conditions between the layers in the areas which 

are out of the cracks 

(3) (2)

   


F C F C
zz zz

z h h z h h
t t

 

(3) (2)

   


F C F C
zr zr

z h h z h h
t t

 

(3) (2)

   


F C F C
z z

z h h z h h
u u

 

(3) (2)

   


F C F C
r r

z h h z h h
u u

 

(2) (1)

 


F F
zz zz

z h z h
t t , 

(2) (1)

 


F F
zr zr

z h z h
t t  

(2) (1)

F F
z z

z h z h
u u

 
 , 

(2) (1)

 


F F
r r

z h z h
u u

 

(3)
0

 


F C
Z

z h h
D , 

(1)
0




F
Z

z h
D  for 0 2 2 r

 

(13) 

Boundary conditions on the face planes of the plate 

(3)

2
0

 


F C
zz

z h h
t , 

(3)

2
0

 


F C
zr

z h h
t , 

(1)

0
0


zz

z
t

 

(1)

0
0


zr

z
t , 

(3)

2
0

 


F C
Z

z h h
D , 

(1)

0
0


Z

z
D

 

for 0 2 r  

(14) 

Conditions on the lateral boundary of the plate 

( )

2
0


j

rr
r

t , 
( )

2
0


j

z
r

u , for 1,2,3j ; 

( )

2
0


 k

r
 for 1,3k , under 0 2  F Cz h h

 

(15) 

This completes consideration of the field equations and 

boundary conditions related to the perturbed state and the 

mathematical formulation of the problem under 

consideration.  

Now we consider the determination of the quantities 

related to each state. 

 

 

3. Method of solution 
 

 We consider the determination of the sought quantities 

related to the initial and perturbed states separately. 

 

3.1 Determination of the values related to the   
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first stage (initial state) 
 

Under determination of the initial state, according to 

conditions (6)-(9) and according to Saint Venant’s principle, 

in the region where 0 2  r h  the stress-strain state 

can be taken as homogeneous with very high accuracy. In 

other words, in this region we can assume that 

( )0 0 k
zz , ( )0 0 k

rz , ( )0 0k
zzs  

( )0( )0  
kk

rr ks s const , ( )0( )0
1  

kk
rr kconst  

(16) 

Consequently, in the initial state in the cases where 

0 2 2 h  under the considered type of external 

loading, the existence of the cracks does not cause any 

stress concentration or any influence on the stress state 

given by the relations in (16). Taking this statement into 

consideration, under determination of the quantities related 

to the first approximation we will use the expressions given 

in (16). 

According to the last conditions in (6)-(9), we consider 

the results related only to the “open-circuit” case in the 

planes 2 F Cz h h , F Ch h , Fh  and 0 , and the 

“short-circuit” case on the lateral surface 2r  of the 

plate. Therefore, in the initial state we obtain that 

( )0 ( )0 0 k k
z rD D , 1,3k  (17) 

Using the constitutive relations in (2), we obtain from (17) 

that 

( ) ( )( )0 ( )0 ( )0
1 1 

k kk k k
r rr zzE a s b s  

( ) ( )( )0 ( )0 ( )0
1 1 

k kk k k
z rr zzE d s c s  

(18) 

where 

( ) ( ) ( ) ( ) ( ) ( )
( ) 13 31 32 33 11 22
1 ( ) ( ) ( ) ( )

11 33 13 31

( ) ( )  




 

   

k k k k k k
k

k k k k

e e e e
a

 

( ) ( ) ( ) ( )
( ) 13 33 33 13
1 ( ) ( ) ( ) ( )

11 33 13 31






 

   

k k k k
k

k k k k

e e
b , 

( ) ( ) ( ) ( )
( ) 11 33 31 13
1 ( ) ( ) ( ) ( )

13 31 11 33






 

   

k k k k
k

k k k k

e e
c

 

( ) ( ) ( ) ( ) ( ) ( )
( ) 11 31 32 31 11 12
1 ( ) ( ) ( ) ( )

13 31 11 33

( ) ( )  




 

   

k k k k k k
k

k k k k

e e e e
d  

(19) 

Taking into consideration the relation ( )0 0 j
zz , 1,2,3j  

we obtain 

( )0 ( ) ( )0j j j
zz zr rrs a s  

( ) ( ) ( ) ( ) ( ) ( )
( ) 31 32 13 1 33 1

( ) ( ) ( ) ( ) ( )
33 13 1 33 1

  


 

k k k k k k
k

zr k k k k k

c c e a e d
a

c e b e c
, 1,3k  

(2)
(2)

(2) (2)

2

2






 
zra  

(20) 

Using the relation (20), it is obtained that 

( )0 ( ) ( )0 j j j
rr r rrA s  

( ) ( ) ( ) ( ) ( )( ) ( )
11 12 11 1 13    

k k k k kk k
r zrA c c e a a c

 

( ) ( ) ( ) ( )( ) ( )
11 1 31 1

k k k kk k
zr zra e b a e c

 

(2)
(2)

(2) (2)2






 
rA  

(21) 

Assuming that 

(1)0 (2)0rr rrs s , (1)0 (2)02   f rr C rrh h hq  (22) 

The following expression is obtained for the stress in the 

face layers 

1
(2)

(1)0

(1)
2


 

  
 
 

 CF r
rr

r

hh A
q

h h A
 (23) 

Thus, through the expressions (16)-(23) we determine 

completely the quantities related to the initial state. We 

recall that these expressions are valid for the region where 

( 2 ) 2  h r  and it is assumed that the materials of 

the face layers are the same. 

 

3.2 Determination of the values related to the 
second stage (perturbed state) 
 

For determination of the perturbed state we employ the 

FEM method and for this purpose, according to the 

monographs by Akbarov (2013), Guz (1999), Yang (2005) 

and others, the following functional is introduced. 

(1) (2) (3) (1) (2) (3) (1) (3)( , , , , , , )  r r r z z zu u u u u ,u  

( )

( ) ( ) ( )3
( )( ) ( )

1

1
2

2


  
  

 
  




k

k k k
kk kr r z

rr rz
k

u u u
t t t

r r r
 

( ) ( )
( ) ( )

 
 

  

k k
k kr z

zr zz

u u
t t rdrdz

z z
 

(1)

(1) (1) (1) (1)1
2

2


   
  r r z zE D E D rdrdz

 

(3)

(3) (3) (3) (3)1
2

2


  
  r r z zE D E D rdrdz

 

0 02 2
(1) (2)

0 0

2 2
 

   
F F

z r
z h z h

pu rdr pu rdr

 

0 02 2
(2) (3)

0 0

2 2
   

  
F C F C

z z
z h h z h h

pu rdr pu rdr  

(24) 
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where 

 (1) 0 2;0      Fr z h
 

 00;0 2   Fz h r
 

 (2) 0 2;      F F Cr h z h h
 

 00;0 2    Fz h r
 

 00;0 2     F Cz h h r
 

 (3) 0 2; 2        F C F Cr h h z h h
 

 00;0 2    F Cz h h r
 

(25) 

From equating to zero the first variation of the functional 

(24), i.e., from the relation 

3 3
( ) ( )

( ) ( )
1 1 

 
   

 
   k k

r zk k
k kr z

u u
u u

 

(1) (3)

(1) (3)
0

 
 

 
 

 
 

(26) 

and after well-known mathematical manipulations we 

obtain the equations in (10) and all the corresponding 

boundary and contact conditions in (12)-(15) with respect to 

the forces and electrical displacements. In this way it is 

proven that the equations in (10) are the Euler equations for 

the functional (24), and the boundary and contact conditions 

in (12)-(15) which are given with respect to the forces and 

electrical displacements are the related natural boundary 

and contact conditions.   

According to FEM modelling, the solution domains 

indicated in (25) are divided into a finite number of finite 

elements. For the considered problem, each of the finite 

elements is selected as a standard rectangular Lagrange 

family quadratic finite element (i.e., with nine nodes) and 

each node has three degrees of freedom, i.e., radial 

displacement ( )j
ru , transverse displacement 

( )j
zu  

( 1,2,3)j  and electric potential 
( )


k

( 1,2)k . We note 

that under FEM modelling of the region containing the 

crack’s tip, as did our predecessors, we use ordinary (not 

singular) finite elements.  This is because up to now finite 

elements with oscillating singularity which appear at the 

interface crack tips have not been found. Furthermore, as 

shown in the references Akbarov (2013), Akbarov and 

Yahnioglu (2016), Henshell and Shaw (1975) and other 

ones listed therein, under calculation of the global 

characteristics of the element of construction (such as the 

critical forces, ERR, etc.) the results obtained by the use of 

the “ordinary” singular finite elements coincide, with very 

high accuracy, with the results obtained by the use of the 

ordinary finite elements. At the same time, the use of the 

singular finite elements has some inconveniencies such as 

no representability of the rigid-body motions and the 

invariability by rigid-body motion conditions which are the 

two main conditions required from the shape functions 

under FE modelling. The algorithm and the programs to 

obtain the numerical results are coded within the foregoing 

assumptions by the authors in the FORTRAN programming 

language (FTN77). 

Employing the standard Ritz technique detailed in many 

references, for instance, in the book by Zienkiewicz and 

Taylor (1989), we determine the displacements and 

electrical potential at the selected nodes. After this 

determination, the corresponding values of the ERR (denote 

it by  ) are 

0 0









U
 (27) 

where 

( )

( ) ( )3
( )( )

1

1
2

2


 
  


  




k

k k
kk r r

rr
k

u u
U t t

r r
 

( ) ( ) ( )
( ) ( ) ( )

  
  

   

k k k
k k kz r z

rz zr zz

u u u
t t t rdrdz

r z z
+ 

(1)

(1) (1) (1) (1)1
2

2


  
  r r z zE D E D rdrdz

 

(3)

(3) (3) (3) (3)1
2

2


 
  r r z zE D E D rdrdz  

(28) 

We recall that in (27), 0  is the diameter of the penny-

shaped crack. 

This completes the consideration of the method of 

solution. 

 

 

4. Numerical results 
 

4.1 The selection of the layers’ materials 
 
In the present paper, all the numerical results are made 

for the piezoelectric materials PZT -4, PZT -5H and BaTiO3 

which are selected for the face layers, however the metal 

materials - aluminum (Al) and steel (St) are taken as the 

core layer materials. The values of the elastic, piezoelectric 

and dielectric constants of the selected piezoelectric 

materials and the references used are given in Table 1. 

According to the monograph by Guz (2004), the values of 

Lame’s constants of the core layer material are selected as 

follows: for the Al: 48.1 GPa  and 27.1 GPa ; and 

for the St: 92.6 GPa  and 77.5 GPa .  

In order to analyze the coupling effects of the electro-

mechanical fields on the ERR, the numerical results are 

obtained for the following two cases 

Case 1. 
( ) ( )

0, 0 n nr r
ij iie  (29) 
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Case 2. 
( )

0nr
ije  ,

( )
0 nr

ii  (30) 

Note that the numerical results obtained in Case 1 (29) 

relate to the pure mechanical energies and ERR, however 

the numerical results obtained in Case 2 (30) relate to the 

total electro-mechanical energies and ERR. Comparison of 

the results obtained in Case 2 with the corresponding ones 

obtained in Case 1 will give the information for estimation 

of the influence of the coupling electro-mechanical effect 

on the studied quantities.  

In the all the numerical investigations carried out in the 

present paper, we assume that the piezoelectric materials are 

polarized along the plate thickness, i.e., the polarized 

direction of the PZT materials coincides with the Oz  axis. 

Moreover, all the numerical results are obtained in the case 

where / 0.2h . 

 

4.2 Testing of the FEM modelling and PC programs 
 

Under FEM modelling using the symmetry with respect 

to the plane / 2 F Cz h h  and the axial symmetry with 

respect to the Oz  (Fig. 1a) axis of the mechanical and 

geometrical properties of the plate, only the region 

0 2; r 0 2  F Cz h h  is considered and this 

region is divided into 500 finite elements along the radial 

direction and 40 finite elements along the plate’s thickness 

direction. Under fixed numbers of the finite elements, the 

NDOF depends on the length (or radius) of the penny-

shaped crack and the NDOF increases with increasing of 

this length. For instance, in the case where 0 / 0.5  we 

have 243499 NDOF, however, in the case where 

0 / 0.3  we have 242899 NDOF. All the corresponding 

PC programs are composed by the authors of the paper.  

First, we consider the convergence of the numerical 

results with respect to the number of finite elements (FE) 

selected in the radial and Oz axis directions. For this  

purpose, consider the numerical results related to the 

dimensionless ERR, i.e., 
5

44/ ( ) PZT Hc  for the PZT-

5H/Al/PZT-5H plate. The results obtained for various 

values of the FE selected in the radial direction (in the Oz  

axis direction) are given in Table 2 (in Table 3). It follows  

 

 

 

from these tables that the convergence of the numerical 

results is more sensitive with respect to the FE numbers 

selected in the radial direction. These and other similar 

results which are not given here allow us to conclude that in 

the convergence sense of the numerical results, it is enough 

to select 500 FE in the radial direction and 40 FE in the 

Oz  axis direction in order to obtain results, the relative 

errors of which are less than 0.4%. Note that 40 FE in the 

Oz  axis direction are divided in half between the face 

layer and half thickness of the core layer. 

The foregoing convergence of the numerical results 

gives some confidence on the reliability of the calculation 

algorithm and PC programs. However, for more detailed 

verification of the PC programs and FEM modelling used 

we consider a comparison of the numerical results obtained 

within the scope of the present algorithm and PC programs 

with the corresponding ones obtained within the scope of 

the analytical solution method developed in the paper by Li 

and Lee (2012). 

 

 

Table 2 Convergence of the numerical results with respect 

to the number of FE selected in the radial direction in the 

case where 0 0.5 , / 0.05Fh  , and 0.1Ch   

and the number of FE in the Oz  axis direction is 12 for 

PZT-5H/Al/PZT-5H 

Number of FE in 

the radial direct. 
NDOF 

5
44/ ( )PZT Hc   

Case 1 Case 2 

40 5039 5.17384 3,74138 

60 7559 5.25945 3.80980 

80 10079 5.31453 3.85354 

100 12599 5.35750 3.88634 

120 15119 5.39413 3.91292 

140 17639 5.42579 3.93496 

160 20159 5.45335 3.95347 

200 25199 5.49826 3.98258 

300 37799 5.56864 4.02635 

400 50399 5.60464 4.04842 

500 62999 5.62642 4.06177 

 

 

Table 1 The values of the mechanical, piezoelectrical and dielectrical constants of the selected piezoelectric materials: 

here 1( )
11

r
c ,…, 1( )

66
r

c  are the elastic constants, 1( )
31
r

e ,…, 1( )
15

r
e  are the piezoelectric constants, and 1( )

11
r

  and 1( )
33
r

  are 

the dielectric constants 

Mater. 

(Source Ref.) 
1( )

11
r

c  1( )
12

r
c  1( )

13
r

c  1( )
33
r

c  1( )
44
r

c  1( )
66
r

c  1( )
31
r

e  1( )
33
r

e  1( )
15

r
e  1( )

11
r

  1( )
33
r

  

PZT-4 

(Yang 2005) 
13.9 7.78 7.40 11.5 2.56 3.06 -5.2 15.1 12.7 0.646 0.562 

PZT-5H 

(Yang 2005) 
12.6 7.91 8.39 11.7 2.30 2.35 -6.5 23.3 17.0 1.505 1.302 

BaTiO3 

(Kuna 2006) 
16.6 7.66 7.75 16.2 4.29 4.29 -4.4 18.6 11.6 1.434 1.682 

 1010 N m  2C m  810 C Vm  
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Table 3 Convergence of the numerical results with respect 

to the number of FE selected in the Oz  axis direction in 

the case where 0 0.5 , / 0.05Fh  , and 

0.1Ch   and the number of FE in the radial direction is 

100 for PZT-5H/Al/PZT-5H 

Number of the FE in 

the Oz  axis direc. 
NDOF 

5
44/ ( )PZT Hc   

Case 1 Case 2 

12 12599 5.35750 3.88634 

18 18599 5.33552 3.86970 

20 20599 5.33017 3.86545 

24 24599 5.32377 3.85928 

28 28599 5.32045 3.85535 

30 39599 5.31515 3.85174 

40 40599 5.30807 3.84444 

 

 

We recall that the paper by Li and Lee (2012) studies an 

axisymmetric penny-shaped crack problem for the infinite 

piezoelectric layer in the case where the crack is in the 

middle plane of the layer and the new analytical method is 

developed for determination of the corresponding 

fundamental solutions and, by employing this method 

numerical, results related to the ERR are presented and 

discussed. Let us employ, in some particular cases, i.e. in 

the cases where on the crack edges the electric 

displacements are equal to zero and these edges are loaded 

with uniformly distributed mechanical opening forces with 

intensity 0 , our FEM modelling and the PC programs for 

obtaining the numerical results considered in the by Li and 

Lee (2012). Note that under FEM modelling of the problem 

considered in the paper by Li and Lee (2012) we assume 

that 1 m , 0 0.003 m  and 0.02h m . The values 

selected for 0  and h  coincide with the corresponding 

ones selected in the paper by Li and Lee (2012), however, 

the parameter  does not exist in the paper by Li and Lee 

(2012) because in that paper it is assumed that the length of 

the piezoelectric layer in the radial direction is infinite. 

 

 

 

Table 4 Numerical results related to ( / )N m  (i.e. ERR) 

for the penny-shaped crack in the middle plane of the 

infinite PZT-5H piezoelectric layer in the case where 

1m , 0.02h m  and 0 0.003m  

 
 
 

Thus, within the scope of the foregoing assumptions, we 

compare the numerical results obtained with employing of 

the present FEM modelling with the corresponding ones 

obtained in the paper by Li and Lee (2012) for the PZT-5H 

material. These results are given in Table 4 and it follows 

from the corresponding comparison that the FEM modelling 

and PC programs developed in the present paper are reliable 

enough. 

 
4.3 Numerical results related to energies and energy 

release rate and their discussions 
 
First we consider the case where the initial stresses in 

the plate-disc are absent and analyze the numerical results 

related to the energies. Under this analysis, the following 

energies in the Case 2 are distinguished:  

i)  total electro-mechanical energy under calculation of 

which all the terms in the expression (28) are taken 

into consideration,  

ii) pure mechanical energy under calculation of which 

the last two integral terms in the expression (28) are 

ignored, 

iii)  interaction energy under calculation of which only 

the terms containing the mechanical and electrical 

quantities simultaneously in the expression (28) are 

taken into consideration, and 

iv)  pure electrical energy under calculation of which 

only the terms in the expression (28) containing only 

the electrical quantities are taken into consideration.  

Numerical results illustrating the influence of the crack’s 

radius on the values of the foregoing energies appearing in 

the PZT-5H/Al/PZT-5H and PZT-5H/St/PZT-5H plates are 

given in Fig. 2a and Fig. 2b, respectively. Under obtaining 

these results, it is assumed that 
5

44/ 0 PZT Hq c  (i.e., the 

initial stresses in the layers of the plate are absent) and 

/ 0.025Fh . It follows from these results that for all the 

considered lengths of the penny-shaped interface crack’s 

radius, the values of the total electro-mechanical, pure 

mechanical and interaction energies are positive numbers 

and these values increase monotonically with this radius. 

However, in all the considered lengths of the crack radius, 

the values obtained of the pure electrical energy are 

negative and the absolute values of this energy also increase 

monotonically with the penny-shaped crack’s radius. Note 

that in the qualitative sense, similar results are also obtained 

in the paper by Akbarov and Yahnioglu (2016) for the 

sandwich plate-strip in the plane-strain state.  

The other geometrical parameter, the change of which can 

significantly influence the values of the energies, is the 

thickness of the piezoelectric face layers. As an example, 

this influence is illustrated by the graphs of the 

dependencies among the pure electrical (Fig. 3(a)), the 

interaction (Fig. 3(b)), the pure mechanical (Fig. 3(c)), the 

total electro-mechanical (Fig. 3(d)) and the dimensionless 

radius of the crack ( 0 ) constructed for various  

Sources of  

the results 
0  

10MPa 20MPa 30MPa 

Present results 3.3164 13.2655 29.8473 

Results obtained in 

Li and Lee (2012) 
3.2000 12.8000 

 

29.4000 
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(a) 

(b) 

Fig. 2 Graphs of the dependencies between energies and the 

ratio 0  in Case 2 for the PZT-5H/Al/PZT-5H (a) and 

PZT-5H/St/PZT-5H (b) plates in the absence of initial 

stresses 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3 Dependence of various pure electrical (a), interaction 

(b), pure mechanical (c) and total electro-mechanical (d) 

energies on the ratio 0  under various Fh  for the 

PZT-5H/Al/PZT-5H plate 

 

 

 

 
(a) 

 
(b) 

Fig. 4 The influence of the piezoelectricity of the face 

layers of the plates PZT-5H/Al/PZT-5H (a) and PZT-

5H/St/PZT-5H (b) on the values of the total electro-

mechanical energies obtained for various values of the 

ratios 0  and Fh  

 

 

thicknesses of the piezoelectric face layers of the PZT-

5H/Al/PZT-5H plate. These results show that for a fixed 

thickness of the whole PZT-5H/Al/PZT-5H plate, a decrease 

of the face layers’ thickness causes an increase in the 

absolute values of all the foregoing energies. 
For estimation of the electro-mechanical coupling effect 

of the piezoelectric materials on the total electro-

mechanical energy, we consider the graphs given in Fig. 4 

which show the dependence between U  determined by 

expression (28) and the dimensionless length 0  of the 

crack under various thicknesses of the face layers for PZT-

5H/Al/PZT-5H (Fig. 4(a)) and PZT-5H/St/PZT-5H (Fig. 

4(b)). Note that in Fig. 4, the graphs are constructed for 

Case 2 and Case 1 simultaneously. The difference between 

the corresponding results obtained in Case 1 and in Case 2 

namely causes the coupling electro-mechanical effect of the 

piezoelectric material. We recall that, according to the 

expressions (28) and (29) under obtaining the results related 

to Case 1, the coupling effect is not taken into consideration, 

however, under obtaining the results related to Case 2 this 

effect is taken into consideration completely. Thus, it 

follows from the results given in Fig. 4 that for all the 

selected values of the layers’ thickness and crack radius the 

piezoelectricity of the face layers’ materials causes to 

decrease the total electro-mechanical energy of the plates 

under consideration.  

This completes the consideration of the numerical 

results related to the energies. Now we consider the 

numerical results related to the dimensionless energy 

release rate (ERR) determined through the expression 

44/ ( ) PZTc  and the influence of the problem parameters, 

as well as the influence of the initial stresses on this ERR. 

Under obtaining these results, the values of   are 

calculated through the expression (27) and under this 

calculation the following approximate relation is used. 

0 0









U
; 0 0 0( ) ( )   U U U  

8
0 10   

(31) 

269



 

Surkay D. Akbarov, Fazile I. Cafarova and Nazmiye Yahnioglu 

 

Fig. 5 Dependence between the dimensionless ERR and the 

initial loading obtained for the plate PZT-5H/Al/PZT-5H  

for various values of the ratio Fh  under 0 0.5  

 

 

Note that the number 810  shown in (31) for the ratio 

0  is determined from the corresponding convergence 

requirement which appears for the numerical calculation of 

the derivative 0 U . 

First, we analyze the numerical results which relate to 

the influence of the initial stresses in the plate on the ERR 

and we make this analysis with respect to the PZT-

5H/Al/PZT-5H plate for various /Fh  under 0 0.5 . 

The graphs regarding these results are given in Fig. 5 from 

which it follows that the initial compression (stretching) of 

the plate layers in the inward (outward) radial direction 

causes an increase (a decrease) in the values of the ERR. At 

the same time, these results show that the ERR increases 

infinitely as the initial compressive forces acting in the 

radial inward direction approach the corresponding critical 

value under which buckling delamination of the plate under 

consideration takes place. Note that this “resonance” type 

phenomenon in fracture mechanics was first found by Guz 

for the homogeneous initially stressed elastic medium 

containing a crack and is detailed in the monograph by Guz 

(1981). For the compressed elastic layered systems with 

interface cracks this phenomenon is also found in the paper 

by Akbarov and Turan (2009). Moreover, in the paper by 

Akbarov and Yahnioglu (2016) this phenomenon is also 

found for compressed piezoelectric + elastic layered 

systems with interface cracks under the plane-strain state 

case. Consequently, the results given in Fig. 5 agree in the 

qualitative sense with all the corresponding results obtained 

earlier and these results have great significance not only in 

the theoretical but also the practical sense. 
More detailed analysis of the results given in Fig. 5 

gives us the opportunity to say that the piezoelectricity of 

the face layers’ materials of the plate causes the ERR to 

decrease and the magnitude of this "decreasing" increases 

with the thickness of the piezoelectric layers. Note that this 

and all the foregoing results on the influence of the 

piezoelectricity of the face layers’ materials can be 

explained namely with the well-known stiffening effect of 

the piezoelectric materials. 
 

(a) 

(b) 

Fig. 6 The influence of the initial loading on the 

dependence between dimensionless ERR and crack radius 

for the PZT-5H/Al/PZT-5H plate in Case 1 (a) and in Case 2 

(b) 

 
 

Now we consider the results given in Figs. 6-8 which 

illustrate how an increase in the crack radius acts on the 

influence of the initial stresses on the ERR. Note that these 

results relate to the PZT-5H/Al/PZT-5H (Fig. 6), PZT-

4/Al/PZT-4 (Fig. 7) and PZT-5H/St/PZT-5H (Fig. 8) plates 

and show the graphs between the dimensionless ERR 

(denoted as 44( ) PZTc ) and the dimensionless crack 

radius (denoted as 0 ). Note that in these figures, the 

graphs grouped by the letter a (by the latter b) relate to Case 

1 (to Case 2).  

Note that these results allow us to make a conclusion on 

the character of the increase of the ERR with the crack 

radius length. In connection with this, according to these 

results, it can be concluded that the dependence between the 

ERR and crack radius length is clearly observed to be non-

linear and this nonlinearity is similar to the non-linear 

relation  y x  where 1 . These results also show that 

the initial stretching (compression) causes to decrease (to 

increase) the values of the ERR for all the penny-shaped 

crack radii and the magnitude of this decreasing 

(increasing) grows significantly with this radius. At the 

same time, according to these results, we can make some 

conclusions about the influence of the materials’ properties 

of the layers of the plate on the action of the initial stresses 

on the ERR. For instance, comparison of the results given in  
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(a) 

(b) 

Fig. 7 The influence of the initial loading on the 

dependence between dimensionless ERR and crack radius 

for the PZT-4/Al/PZT-4 plate in Case 1 (a) and in Case 2 (b) 

 

 

Fig. 6 with the corresponding ones given in Fig. 7 allows us 

to say that the difference in the results caused by the 

difference of the electro-mechanical properties of the 

considered pairs of the piezoelectric materials for the face 

layers, is insignificant. 
However, comparison of the results given in Fig. 6 with the 

corresponding ones given in Fig. 8 shows that the difference 

which appears on account of the difference of the 

mechanical properties of the selected pair of materials for 

the core layer of the plate, is significant. In addition to all of 

this, comparison of the graphs given in Figs. 6, 7 and 8 and 

grouped by the letter a with the corresponding ones grouped 

by the letter b gives information on the action of the 

piezoelectricity of the face layers’ materials on the influence 

of the initial stresses on the ERR. However, it is difficult to 

obtain a correct estimation in the quantitative sense on the 

action of the piezoelectricity from the comparison of these 

graphs and in order to make a more correct conclusion on 

this action in the quantitative sense, the foregoing and other 

additional numerical results for some discrete values of the 

crack radius length 0  are tabulated in Tables 5-8. Note 

that these results relate to the PZT-5H/Al/PZT-5H (Table 5), 

PZT-4/Al/PZT-4 (Table 6), BaTiO3/Al/BaTiO3 (Table 7) 

(a) 

(b) 

Fig. 8 The influence of the initial loading on the 

dependence between dimensionless ERR and crack radius 

for the PZT-5H/St/PZT-5H plate in Case 1 (a) and in Case 2 

(b) 

 
 
and PZT-5H/St/PZT-5H (Table 8) plates. We recall that in 

these tables, the results given in the columns indicated by 

Case 2 (Case 1) are obtained in the case where the 

piezoelectricity of the face layers materials is (is not) taken 

into consideration, i.e. in the case where the relations in (30) 

(the relations in (29)) are taken into consideration. 

Consequently, comparison of the results in the columns 

indicated by "Case 2" with the corresponding ones indicated 

by "Case 1" gives us correct quantitative information of the 

aforementioned piezoelectricity on the values of the ERR. 

Thus, according to this comparison we can conclude that 

the piezoelectricity of the face layers’ materials of the plate 

for all the values of the geometrical parameters /Fh , 

0 /  and for all the selected pairs of plate materials 

decreases the values of the ERR and the magnitude of this 

decrease grows with the length of the penny-shaped crack 

radius, i.e. with 0 / . However, not only the magnitude of 

this decrease but also the magnitude of the ERR decreases 

with the face layers’ thickness, i.e., with /Fh . 

Comparison of the data given in Table 5 with the 

corresponding ones given in Table 6 shows that the 

difference between them is insignificant, i.e., the results 

obtained for the piezoelectric PZT-5H and PZT-4 materials 

are close to each other. 
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However, comparison of the data given in Tables 5 and 6 

with the corresponding ones given in Table 7 shows that the 

results obtained for the piezoelectric material BaTiO3 is 

significantly different from those obtained for the 

piezoelectric materials PZT-5H and PZT-4. Note that this 

difference is more considerable for relatively thin face 

layers of the plate. At the same time, comparison of the data 

given in Table 5 with the corresponding ones given in Table 

8 shows that the material properties of the core layer can 

also significantly affect the values of the ERR. For instance, 

in the cases under consideration the values of the ERR 

obtained for the plate with the St core layer are less 

significant than the corresponding ones obtained for the 

plate with the Al core layer. 

Note that all the numerical results presented above and 

obtained in the case where the initial stresses in the plate 

layers are absent, i.e., in the case where 44/ 0PZTp c , are 

also new ones and all conclusions given above on the 

influence of the problem parameters (except the parameter 

regarding the initial stresses) on the energies and the ERR 

also relate to this case. 

 

 

With this we restrict ourselves to consideration and 

discussion of the numerical results. 

 

 

5. Conclusions 
 

Thus, in the present paper, the interface penny-shaped 

crack problem for the initially rotationally symmetric 

compressed (or stretched) in the inward (outward) radial 

direction PZT/Elastic/PZT sandwich circular plate is 

considered by utilizing the so-called three-dimensional 

linearized field equations and relations of the electro- 

elasticity for piezoelectric materials. The quantities related 

to the initial stress state are determined within the scope of 

the classical linear theory of piezoelectricity. Under this 

determination, within the framework of certain restrictions, 

the existence of the interface cracks is not taken into 

consideration. However, the corresponding mathematical 

problem formulation and determination of the quantities 

related to the perturbed state, i.e., for the state which 

appears as a result of the action of the uniformly normal  

Table 5 The values of the ERR obtained for the PZT-5H/Al/PZT-5H plate 

Fh =0.025 

0  

5
44

/ PZT Hq c   

-0.02 -0.01 0 0.01 0.02 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

0.5 105.7905 79.5611 50.7413 36.6206 32.7965 23.3926 24.3000 17.2169 19.3285 13.6409 

0.4 27.2848 20.0440 18.9909 13.7480 14.5351 10.4374 11.7821 8.4193 9.9202 7.0651 

0.3 7.2982 5.3535 6.0969 4.4452 5.2366 3.8015 4.5923 3.3231 4.0924 2.9541 

0.2 1.5691 1.1647 1.4474 1.0723 1.3438 0.9939 1.2546 0.9267 1.1770 0.8684 

0.1 0.1895 0.1457 0.1843 0.1418 0.1795 0.1382 0.1750 0.1347 0.1707 0.1315 

Fh  =0.0375 

0  

5
44

/ PZT Hq c   

-0.02 -0.01 0 0.01 0.02 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

0.5 17.3130 12.2306 13.7086 9.7938 11.3182 8.1660 9.6629 7.0105 8.4224 6.1427 

0.4 6.8152 4.8917 5.9012 4.2675 5.2053 3.7858 4.6587 3.4034 4.2186 3.0930 

0.3 2.3403 1.7088 2.1538 1.5794 1.9957 1.4687 1.8600 1.3731 1.7422 1.2897 

0.2 0.6276 0.4685 0.6015 0.4502 0.5777 0.4334 0.5558 0.4179 0.5356 0.4035 

0.1 0.1073 0.0836 0.1055 0.0823 0.1037 0.0811 0.1020 0.0799 0.1004 0.0788 

Fh  =0.05 

0  

5
44

/ PZT Hq c   

-0.02 -0.01 0 0.01 0.02 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

0.5 7.0690 4.9832 6.2049 4.4483 5.5291 4.0155 4.9933 3.6633 4.5527 3.3680 

0.4 3.1005 2.2265 2.8466 2.0653 2.6322 1.9265 2.4488 1.8057 2.2901 1.6997 

0.3 1.1821 0.8639 1.1215 0.8249 1.0671 0.7894 1.0181 0.7570 0.9736 0.7274 

0.2 0.3617 0.2699 0.3513 0.2632 0.3416 0.2568 0.3325 0.2508 0.3239 0.2452 

0.1 0.0782 0.0609 0.0771 0.0602 0.0762 0.0596 0.0752 0.0590 0.0743 0.0584 
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opening forces acting on the penny-shaped crack’s edges 

are determined with the use of the three-dimensional 

linearized equations and relations of piezoelectricity. The 

values related to the initial stress state are determined 

analytically, however, the values related to the perturbed 

state are determined numerically by employing FEM. 

For obtaining numerical results on the energies and ERR 

caused by the aforementioned additional opening forces, the 

corresponding algorithm and PC programs are composed 

and tested with the corresponding known results. Numerical 

results are presented and discussed for the PZT-5H/Al/PZT-

5H, PZT-4/Al/PZT-4, BaTiO3/Al/BaTiO3 and PZT-

5H/St/PZT-5H sandwich plates. According to analyses of 

the results, the following concrete conclusions can be made: 

- The piezoelectricity of the face layers’ materials 

causes to decrease the total electro-mechanical 

energies and the magnitude of this influence increases 

with increasing of the ratio 0 /  and with 

decreasing of the ratio /Fh , where 0 / 2  ( / 2 ) 

is the radius of the penny-shaped crack (circular disc),  

 

 

and Fh  is the thickness of the piezoelectric face layer. 

Consequently, the parameters  0 /  and /Fh  

characterize not only the dimensions of the penny-

shaped crack and face layer thickness, but also the 

dimension of the circular plate; 

- Initial compressing (stretching) of the plate-disc in the 

inward (outward) radial direction causes an increase (a 

decrease) in the values of the ERR: in the initial 

compression case the values of the ERR increase 

indefinitely as the compressive force approaches the 

critical values of those determined in the paper by 

Cafarova et al. (2017) and the corresponding buckling 

delamination of the plates under consideration; 

- The piezoelectricity of the face layers’ materials 

causes to decrease the values of the ERR; 

- The values of the ERR increase (decrease) with the 

ratio 0 /  (with the ratio /Fh ); 

The magnitude of the ERR depends not only on the 

electro-mechanical properties of the face layers’ materials, 

but also on the mechanical properties of the elastic core 

layer.  

Table 6 The values of the ERR obtained for the PZT-4/Al/PZT-4 plate 

Fh =0.025 

0  

4
44/ PZTq c   

-0.02 -0.01 0 0.01 0.02 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

0.5 105.6929 78.6906 44.5352 34.2548 27.7275 21.4948 20.1143 15.6678 15.8351 12.3461 

0.4 25.0674 19.1414 16.6265 12.8488 12.4053 9.6434 9.9027 7.7255 8.2549 6.4547 

0.3 6.5821 5.0821 5.3779 4.1787 4.5480 3.5492 3.9435 3.0872 3.4843 2.7344 

0.2 1.4345 1.1174 1.3092 1.0242 1.2048 0.9459 1.1165 0.8792 1.0409 0.8218 

0.1 0.1834 0.1451 0.1776 0.1410 0.1723 0.1372 0.1673 0.1336 0.1626 0.1302 

Fh =0.0375 

0  

4
44/ PZTq c   

-0.02 -0.01 0 0.01 0.02 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

0.5 15.2707 11.3989 11.9062 9.1072 9.7594 7.5867 8.2697 6.5021 7.1848 5.6959 

0.4 6.0548 4.5972 5.1945 4.0026 4.5505 3.5454 4.0511 3.1838 3.6531 2.8909 

0.3 2.1166 1.6258 1.9356 1.5004 1.7841 1.3936 1.6554 1.3015 1.5448 1.2214 

0.2 0.5872 0.4555 0.5604 0.4373 0.5362 0.4206 0.5141 0.4052 0.4940 0.3911 

0.1 0.1069 0.0848 0.1048 0.0835 0.1028 0.0822 0.1010 0.0810 0.0992 0.0798 

Fh =0.05 

0  

4
44/ PZTq c   

-0.02 -0.01 0 0.01 0.02 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

0.5 6.2121 4.6543 5.4455 4.1613 4.8513 3.7638 4.3739 3.4362 3.9856 3.1632 

0.4 2.7757 2.1034 2.5432 1.9527 2.3476 1.8226 2.1809 1.7094 2.0372 1.6099 

0.3 1.0852 0.8287 1.0273 0.7914 0.9756 0.7576 0.9292 0.7266 0.8873 0.6983 

0.2 0.3448 0.2650 0.3343 0.2585 0.3245 0.2522 0.3153 0.2464 0.3067 0.2408 

0.1 0.0788 0.0622 0.0777 0.0616 0.0766 0.0609 0.0756 0.0603 0.0746 0.0597 
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For instance, the values of the ERR obtained for the plate 

with the St core layer are significantly less than the 

corresponding ones obtained for the same plate with the Al 

core layer; 

- Numerical results obtained in the present paper in the 

qualitative sense agree with the corresponding ones 

obtained in related investigations carried out, for 

instance, in the papers by Yang (2004), McMeeking 

and Landis (2008), Li and Lee (2012), Akbarov and 

Yahnioglu (2016), Akbarov and Turan (2009) and 

others. 
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