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1. Introduction 
 

Civil engineering structures in operation essentially 

belong to time-varying or nonlinear structures when 

exposed to service loads or extreme loads (Liu et al. 2015). 

For example, the mass distribution and stiffness of a 

vehicle-bridge system would constantly change with time 

when the vehicle passes the bridge. The cable stiffness 

would also decrease over time due to accumulated damages 

of a cable-stayed bridge during its service life. For such 

time-varying structures, it is of great significance to extract 

time-dependent dynamic parameters, which will benefit 

engineers for monitoring structural health condition. 

However, traditional signal processing techniques, 

including time domain and frequency domain analysis, are 

based on the assumption that response signals are stationary 

and linear. Such methods can only capture features in time 

or frequency domain, without revealing local characters in 

both time and frequency domains simultaneously (Feng et 

al. 2013). On the other hand, the response signals of time- 
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varying structures are often nonstationary, which creates 

challenge to traditional methods. Time-frequency analysis 

(TFA) is potential to deal with non-stationary signals and 

has been widely accepted in recent years. The Hilbert 

transform (HT) is a common approach to study the time-

varying dynamic properties (Feldman 1994a, b, Feldman et 

al. 2017). However, to ensure instantaneous frequency (IF) 

extracted by the HT being meaningful, some restrictive 

requirements have to be emphasized, i.e., the target signal 

should be an intrinsic mode function (IMF). Unfortunately, 

most response signals are not exact IMFs, and that is why 

HT cannot provide powerful description for time-varying 

features (Shi et al. 2009). In addition, HT is quite sensitive 

to random noises, thus often leading to an IF curve with 

blurred and distorted lines. Therefore, empirical mode 

decomposition (EMD) combined with HT is proposed to 

decompose the target signal into several IMFs by cubic 

spline interpolation (Huang et al. 1998). However, the EMD 

is not guaranteed theoretically and it has difficulties for the 

decomposition of closely-spaced frequency components 

(Lei et al. 2013, Zheng et al. 2017). By injecting a 

generated white noise into the original signal, ensemble 

empirical mode decomposition (EEMD) is capable of 

extracting closely-spaced frequency components. However, 

the decomposed results are sensitive to parameters 

selection, and pseudo components may be produced when 

improper parameters are selected (Chen and Cui 2016). The 

bilinear representations such as the Cohen and the affine 

class distributions can yield extremely precise IF estimation 

in the case of mono-component whose IF oscillates linearly, 

but it may fail in the multi-component situation because of 

interference terms (Flandrin et al. 1996, Padovese 2004, 

Hussain and Boashash 2002). Although considerable 

researches have demonstrated that TFA could be a perfect 

solution for processing non-stationary signals, but all TFA 
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methods have their own merits and deficiencies due to the 

complication of time-varying problem, and thus more 

relative studies need to be carried out (Peng et al. 2012). 

Wavelet transform as an adaptive algorithm is 

particularly useful for analyzing periodic, noisy, intermittent 

and transient signals (Ni et al. 2017). The past two decades 

have witnessed its great success on parameter identification 

of time-varying structures. For example, Xu et al. (2012) 

combined wavelet theory and state-space method to identify 

dynamic parameters in linear time-varying systems. Hou et 

al. (2006) proposed a continuous wavelet-based technique 

for the identification of instantaneous modal parameters of 

time-varying structures. By transforming a time-varying 

identification problem into a time-invariant one, Su et al. 

(2014) employed continuous wavelet transform (CWT) to 

identify the instantaneous modal parameters in the 

frequency ranges of interest. However, the measured 

responses in ambient vibration tests are usually mixed with 

harmonic components and as a result CWT cannot be 

directly performed. To address this issue, Le and Argoul 

(2015) presented a time-frequency domain decomposition 

technique to distinguish harmonic components from 

structural modes in the operational modal identification. 

Yan and Ren (2013) also proposed a continuous-wavelet 

transmissibility method to extract the operational modal 

frequencies and mode shapes of a linear system. The 

simulation and real case application demonstrated that the 

proposed method is capable of identifying the operational 

modal parameters of full-sized structures. In addition, 

Kijewski and Kareem (2003) argued that civil engineering 

structures usually possess long period or low-frequency 

motions and thus require finer frequency resolution in the 

parent wavelet function. 

Actually, the energy of a response signal concentrates 

around several curves in the time-frequency plane after 

CWT is performed. These concentrated bright curves in the 

wavelet scalogram are in fact the maxima points of wavelet 

coefficients and named „wavelet ridges‟. Therefore, a 

successful extraction of wavelet ridges is crucial to identify 

instantaneous modal parameters of time-varying structures. 

The IF extraction from wavelet ridges in a way of phase 

information was first proposed by Delprat et al. (1992). 

However, the phase information is quite sensitive to noises, 

which limits its engineering application. The direct 

maximum ridge detection algorithm is such a method to 

extract wavelet ridges by detecting the maximum 

magnitude of wavelet coefficients for every discrete time 

points, but its practical application will inevitably be 

affected by a number of noise sources in engineering 

structures (Liu et al. 2004, Qin et al. 2017). Therefore, a 

more robust algorithm with a consideration of noise effect 

is required for wavelet ridge detection. The cost function 

method based on dynamic optimization is an effective tool 

to extract ridges, but the exhaustive searching is still 

computationally expensive. Carmona et al. (1997, 1999). 

proposed a new ridge detection algorithm which can 

efficiently extract single or multiple ridges in the modulus 

of a wavelet transform. The main concept of this new 

method is „crazy climber‟, which is similar to the simulated 

annealing algorithm. Contrary to the simulated annealing, 

the „crazy climber‟ looks for all the local maxima instead of 

searching the global maxima only. However, the most 

important issue needs to be taken into account is the 

computational cost of those methods. Dynamic 

programming algorithm was first presented by Liebling et 

al. (2006) to find a ridge of maximum response through the 

wavelet scalogram. Nevertheless, a penalty function was 

introduced during the dynamic programming process to 

improve the accuracy of wavelet ridge extraction, which in 

turn increases the computational complexity. Wang et al. 

(2013) combined penalty function and dynamic 

optimization techniques to extract the wavelet ridges. This 

method suffers the same problem with the dynamic 

programming and the crazy climber algorithm, that is, the 

computation is much time-consuming. Recently, the 

synchrosqueezing wavelet transform (SWT) is presented by 

Daubechies et al. (2011) to decompose an arbitrary 

asymptotic signal into a linear superposition of several 

approximate harmonics. The SWT algorithm reallocates the 

energy in the frequency direction and hence suppresses the 

blur along the frequency axis, but it cannot achieve good 

resolution in the time domain. Li and Liang (2012)
 

proposed a generalized synchrosqueezing transform (GST) 

approach to reduce the diffusion in both time and frequency 

dimensions for frequency modulated signals, but this 

algorithm can only work well when the phase function or 

modulation source of the frequency modulated signal is 

known beforehand. However, this assumption is not always 

satisfied in practical engineering applications. More details 

about the applications of the SWT method and its improved 

algorithms can be found in the references (Pham and 

Meignen 2017, Feng et al. 2015, Oberlin et al. 2015, Cao et 

al. 2016). 

To enhance the accuracy of IF extraction from time-

varying structural responses, we present a wavelet ridge 

extraction method based on a maximum gradient algorithm 

and a smoothing approach. In this method, an optimal route 

to trace the change of wavelet coefficients from the gradient 

perspective was investigated, with the searching scope was 

strictly restricted in a predetermined region of the time-

frequency plane according to the wavelet scalogram. The 

new detected optimal path is denoted as wavelet ridge, 

based on which the IFs of time-varying structures is 

estimated. The extracted IFs are smoothed by a polynomial 

curve fitting and a threshold method to reduce the effects of 

random noises. Compared with other methods, the greatest 

advantage of the new method is its simplicity and 

computational efficiency, which is very useful in practical 

engineering. Unlike crazy climber or dynamic programming 

algorithms, the calculation of gradient can be done without 

difficulty and moreover the complex iteration process is 

avoided in the searching of maximum gradient.  

The outline of this paper is arranged as follows. The 

wavelet transform is introduced in Section 2. The new 

wavelet ridge extraction method based on maximum 

gradient and smoothing algorithm is proposed in detail in 

Section 3. A numerical case study is presented in section 4 

to illustrate the proposed method, followed by an 

experimental demonstration on a steel cable with linearly 

and sinusoidally varying tension forces in Section 5.  
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The evaluation outcomes are summarized in conclusion 

section at the end of this paper. 

 

 

2. Continuous wavelet transform 
 

A nonstationary response signal of civil engineering 

structures usually consists of several components, and each 

one has individual local features. Usually, a multi-

component signal can be expressed as a sum of n IMFs and 

a residual (Wang et al. 2013, Daubechies et al. 2011). 

𝑥(𝑡) = ∑ 𝑥𝑖(𝑡)

𝑛

𝑖=1

+ 𝑟(𝑡) (1) 

where each IMF is an oscillating function and denoted as a 

product of amplitude function and phase function, that is, 

 𝑥𝑖(𝑡) = 𝐴𝑖(𝑡)cos(𝜙𝑖(𝑡)). 

Extracting IFs of multi-component signals has been 

widely employed as a measure for structural health 

monitoring. A variety of signal processing techniques have 

developed for IF extraction, including the HT and CWT. 

While the HT is sensitive to random noises, CWT is 

suitable for coping with problems of more complicated 

local noises (Liu et al. 2004). In this paper, CWT is used to 

generate the wavelet scalogram of a signal before the 

extraction of wavelet ridge. 

For a given square-integrable parent wavelet function 𝜓, 

the CWT of an arbitrary signal x(t) is defined as 

𝑊𝑥(𝑎, 𝑏) = ∫ 𝑥(𝑡)
1

√𝑎

∞

−∞

𝜓 (
𝑡 − 𝑏

𝑎
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 d𝑡 (2) 

 

 

 

where a and b are the scale factor and the dilation factor, 

respectively, and 𝜓 (
𝑡−𝑏

𝑎
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 represents the complex conjugate 

of 𝜓 (
𝑡−𝑏

𝑎
). The wavelet coefficients 𝑊𝑥(𝑎, 𝑏) represent 

the similitude between the dilated parent wavelet and the 

signal at the time b and the scale a. 

Morlet wavelet is chosen as parent wavelet function in 

this paper since its analog to the Fourier transform make it 

quite attractive for harmonic analysis and IF extraction. The 

mathematical expression of Morlet wavelet is as follows. 

𝜓σ(𝑡) = 𝑐σπ
−

1
4𝑒−

𝑡2

2 (𝑒−𝑖σ𝑡 − 𝜅𝜎) (3) 

where 𝜅𝜎 = 𝑒−
𝜎2

2 , which is defined by the admissibility 

criterion; 𝑐𝜎  is the normalization constant, which is 

expressed as 

𝑐𝜎 = (1 + 𝑒−𝜎2
− 2𝑒−

3𝜎2

4 )−
1
2 (4) 

The parameter  𝜎 in the Morlet wavelet allows trade 

between time and frequency resolutions. By changing the 

value of  𝜎  continuously, the central frequency and 

frequency band are changed and thus an optimum resolution 

is obtained. 

 

 

3. Wavelet ridge extraction 
 

The crucial issue for the IF identification using CWT is 

how to extract wavelet ridges effectively. In this paper, a 

method for wavelet ridge extraction is proposed by 

combining a maximum gradient method and a smoothing 

algorithm. The flowchart of the proposed method is 

presented in Fig. 1. In this method, the CWT is first 

 

Fig. 1 The flowchart of the proposed method 

  

  

  

  

Original signal 

  
Step 4: Repeat Step 3 and connect all wavelet ridge points 

Step 1: Perform CWT to obtain wavelet coefficient matrix 

Step 2: Predefine the starting point and searching region 

Step 3: Calculate the gradient and extract the wavelet ridge point 

  

Step 5: Process the wavelet ridge by a smoothing method 

Stop 
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performed on a response signal and then the searching 

ranges are preliminarily defined based on the resultant 

wavelet scalogram. Given an initial frequency at the starting 

time, the search was conducted in the prescribed range with 

the search direction defined by the maximum gradient. 

Connecting all points with maximum gradient gives the 

wavelet ridges, from which the IFs are identified. Finally, a 

smoothing operation based on a polynomial curve fitting 

and a threshold method is performed to reduce the effect of 

random noises on the IF extraction. 
 

3.1 The maximum gradient algorithm 
 

After performing the wavelet transform on a response 

signal 𝑥(𝑡)  expressed as Eq. (1), one can obtain the 

wavelet coefficients 𝑊𝑥(𝑎, 𝑏). These coefficients can be 

represented by a three-dimensional (3D) surface with 𝑏 as 

the time axis, 𝑎  as the scale axis and the modulus of 

wavelet coefficients as the height axis, as exemplified in Fig. 

2. The wavelet ridges are the sequences of points with the 

maximum modulus i.e. the ridges of the 3-D surface. This 

indicates that a wavelet ridge is the curve of maximum 

gradient of the two-variable function |𝑊𝑥(𝑎, 𝑏)|, where |∙| 
is the modulus of wavelet coefficients. In this paper, the IFs 

are extracted by calculating the curves of maximum 

gradient in a series of time-frequency sub-regions, each of 

which only includes a single wavelet ridge. The numerical 

calculation of maximum gradient curves is exemplified as 

follows. 

Consider a real signal 𝑥(𝑡) = cos(2π𝑡 + 𝑡2) . The 

sampling frequency is 𝑓𝑠 and the length of the signal is n 

(the number of time points). Then the maximum gradient 

algorithm is described as follows. 

(a) The CWT is first conducted on the signal 𝑥(𝑡). Let us 

assume that there are m discrete scales [𝑎1̂, 𝑎2̂, 𝑎3̂, … , 𝑎�̂�] 
and n time points [𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛]. The resultant coefficient 

𝑊𝑥(𝑎, 𝑏) is then a 𝑚 × 𝑛 matrix and the corresponding 

wavelet scalogram is plotted in Fig. 2. 

(b) Based on the resultant wavelet scalogram, a sub-

region of time-frequency plane, which includes the targeted 

IF curve, is identified as [𝑎𝑖
𝑙 , 𝑎𝑖

𝑢]
𝑖=1,2,3,…,𝑛

. The scale at the 

𝑖-th time instance is in the range of [𝑎𝑖
𝑙 , 𝑎𝑖

𝑢]
𝑖=1,2,3,…,𝑛

. 

(c) The search starts from a prescribed point 𝑆1 , 

(𝑎1, 𝑡1, 𝑊𝑥
1) on the 3D surface in the subregion, where 𝑡1 

is the initial time, 𝑎1 is the scale at 𝑡1, and 𝑊𝑥
1 is the 

modulus of the corresponding wavelet coefficients. 

Correspondingly, the initial frequency can be calculated as 

𝑓1  = 𝐹𝑐. 𝑓𝑠 𝑎1⁄  in which 𝐹𝑐  is the central frequency of 

parent wavelet function. 

(d) It is assumed that the (𝑖 − 1)-th point on the ridge of 

the 3D surface in the prescribed sub-region has been found, 

denoted as 𝑆𝑖−1 of the coordinate (𝑎𝑖−1, 𝑡𝑖−1, 𝑊𝑥
𝑖−1). The 

next step is to search the 𝑖-th point 𝑆𝑖, (𝑎𝑖 ,  𝑡𝑖 ,  𝑊𝑥
𝑖) in the 

prescribed sub-region [𝑎𝑖
𝑙, 𝑎𝑖

𝑢]. Since 𝑡𝑖 is known, 𝑎𝑖 and 

𝑊𝑥
𝑖  are the unknowns which will be determined by 

calculating the maxima among the gradients of lines 

relating the project of the point 𝑆𝑖−1  on the time-scale 

plane. 

 

The distance between 𝑆𝑖−1 and 𝑆𝑖 along the time axis 

can be defined as 

𝐷𝑖
𝑡 = |𝑡𝑖 − 𝑡𝑖−1| (5) 

For an arbitrary 𝑎𝑖
 
  [𝑎1̂, 𝑎2̂, 𝑎3̂, … , 𝑎�̂�] at 𝑡𝑖 , which 

is also restricted in the range of [𝑎𝑖
𝑙 , 𝑎𝑖

𝑢] , the distance 

between 𝑆𝑖−1 and 𝑆𝑖 along the scale axis is expressed as 

Eq. (6). 

𝐷𝑖, 
𝑎 = |𝑎𝑖

 
− 𝑎𝑖−1|𝑎𝑖

𝑗
 [𝑎𝑖

𝑙, 𝑎𝑖
𝑢]

 (6) 

Hence, the distance between 𝑆𝑖−1 and 𝑆𝑖 in the time-

scale plane can be calculated as 

𝐷𝑖, 
 = √(𝐷𝑖

𝑡)2 + (𝐷𝑖, 
𝑎 )

2
 (7) 

Whereas the distance between 𝑆𝑖−1  and 𝑆𝑖  in the 

height direction at the scale 𝑎𝑖
 
 is denoted as 

𝐷𝑖, 
 = |𝑊𝑥

𝑖 
− 𝑊𝑥

𝑖−1| (8) 

where 𝑊𝑥
𝑖 

 represents the wavelet coefficient 

corresponding to the time 𝑡𝑖 and scale 𝑎𝑖
 
. 

Thereby, the gradient between 𝑆𝑖−1  and 𝑆𝑖  is 

computed according to Eqs. (7) and (8). 

    𝑖
 
= 𝐷𝑖, 

 𝐷𝑖, 
 ⁄  (9) 

(e) The maximum gradient is the maximum value of 

    𝑖
 
 as displayed in Eq. (10). Then, the value of the scale 

corresponding to the maximum gradient     𝑖  is 

calculated and assigned to 𝑎𝑖. 

    𝑖 =    
𝑎𝑖

𝑙 𝑎
𝑖
𝑗
 𝑎𝑖

𝑢
|    𝑖

 
| (10) 

(f) The coefficients 𝑊𝑥
𝑖 at the point 𝑆𝑖 can be found in 

the matrix [𝑊𝑥(𝑎, 𝑏)]𝑚×𝑛  because 𝑎𝑖  is already solved 

and 𝑡𝑖 is known in advance. Thus, the values at the point 

𝑆𝑖 , (𝑎𝑖 , 𝑡𝑖, 𝑊𝑥
𝑖) , are totally recognized. After that, the 

frequency 𝑓𝑖  can be computed easily by the formula 

𝑓 = 𝐹𝑐. 𝑓𝑠 𝑎⁄ . 

(g) Repeat the searching step from (d) to (f) until the end 

of the signal. So far the frequencies at all points are solved 

by the maximum gradient (MG) method, which means the 

values at all points are recognized. Then, all points in the 

time-frequency plane are connected to a polyline, that is, 

the identified wavelet ridge. 

The definition of initial frequency and the searching 

scope (usually divided by two parallel lines) is a key issue 

for the MG method. Although they can be determined in 

advance according to the time-frequency representation in 

the wavelet scalogram, the initial frequency and the 

searching scope really have a great impact on the accuracy 

of wavelet ridge extraction and IF identification. Therefore, 

the determination of initial frequency and the searching 

scope should be preset as precisely as possible. The MG 

algorithm can efficiently extract ridges from noiseless 

multi-component signals on condition that the multiple 

initial frequency and searching range are provided in 

advance. However, random noises are pervasive in practical  
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engineering structures, and it will inevitably affect the 

accuracy of the MG method. Therefore, it is necessary to 

introduce a new method to reduce the effect of noises and 

make the IF curves identified by the MG method smoother. 

 

3.2 The smoothing algorithm 
 

The IF identified by the MG method will be corrupted 

by random noises, especially at both ends of a response 

signal. To reduce the effect of random noises, a smoothing 

algorithm including a polynomial curve fitting method and 

a threshold algorithm is introduced. The process of 

polynomial curve fitting can be easily realized by the 

Matlab software, but the selection of the order of 

polynomial remains crucial for this algorithm. Typically, 

low order polynomial curves tend to be smooth while high 

order polynomial curves are liable to be lumpy. Because of 

this, an increase of the order/degree of polynomial does not 

always result in a better fit, and actually the selection of the 

degree depends on the problem to be solved. Here, a 

suggested value of 1 for the degree of the polynomial can 

provide a better fit for the signals with linearly varying IFs, 

but the corresponding value for the signals with sinusoidally 

varying IFs is recommended from 15 to 25. 

Actually, the problem of noise contaminations can be 

formulated as Eq. (11). 

𝑓 =  + 𝑟 (11) 

where 𝑓  is the noisy IF, w is the noise-free or exact 

frequency and 𝑟 represents noises or estimation error. Our 

goal is to estimate w from the noisy observation 𝑓 and the 

estimation is denoted as  ̂(𝑓). To reduce the influence of 

random noises, the hard threshold estimator (Chang et al. 

2000, Han et al. 2007) is introduced and modified to 

smooth the IF identification results. 

A new threshold operator   ( ) is defined as Eq. (12). 

  ( ) = {
   f | |   
 e se

 (12) 

where   is the threshold defined in advance,   represents 

an independent variable. The value of   at the point 𝑆𝑖 is 

defined as the changing rate of the frequency and expressed 

as Eq. (13). 

 

 

 

 (𝑖) =
𝑓𝑖 − 𝑓𝑖−1

𝑡𝑖 − 𝑡𝑖−1

        𝑖 = 2,3, … , 𝑛 (13) 

where 𝑓𝑖  and 𝑓𝑖−1  are the frequencies at time point 𝑡𝑖 
and 𝑡𝑖−1, respectively. 

The choice of the threshold   is delicate and important. 

Usually, a big threshold leads to a large bias of the 

estimator. On the other hand, a small threshold increases the 

variance of the smoother. Here, we empirically select   by 

using Eq. (14). 

 = | 𝑓𝑎
 | =  |

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛

| (14) 

where   is a self-defined coefficient and 𝑓𝑎
  is denoted as 

the average changing rate of the frequency. 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛 

separately represent the maximum and minimum value of 

the noisy frequency in the time-frequency plane, and 𝑡𝑚𝑎𝑥 

and 𝑡𝑚𝑖𝑛 are the time instants corresponding to 𝑓𝑚𝑎𝑥 and 

𝑓𝑚𝑖𝑛, respectively. Normally, 𝑓𝑚𝑎𝑥 , 𝑓𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥  and 𝑡𝑚𝑖𝑛 

are estimated from the preliminary wavelet scalogram. The 

coefficient   in Eq. (14) has a great impact on the 

performance of the threshold algorithm and its value is 

selected as required. For the case of linearly varying IFs, the 

optimal value of   equals 1. Similarly, the proper value of 

  is recommended as π 2⁄  in the case of IFs with 

sinusoidal variation, which can be interpreted as the 

following. 

Typically, the response signal of a time-varying 

structure with its frequency oscillating sinusoidally can be 

expressed as Eq. (15). 

 (𝑡) = 𝐴cos[ s  (2π 𝑡) +  ] (15) 

where 𝐴 ,  ,   , and    are constants or slow-varying 

variables. 

The frequency of  (𝑡) is calculated and expressed as 

Eq. (16). 

𝑓 = 2π  cos(2π 𝑡) (16) 

Thereby, 𝑓𝑎
 , the average changing rate of the frequency, 

can be solved according to Eq. (16). 

𝑓𝑎
 =

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛

= 
2π  − (−2π  )

 2⁄
=  

 π  

 
 (17) 

 

where   represents the period and it can be derived from 

 
 

(a) The representation in 3D coordinate system (b) The time-frequency plane 

Fig. 2 The scalogram of the signal 𝑥(𝑡) = cos(2π𝑡 + 𝑡2) 

363



 

Jing-liang Liu, Xiaojun Wei, Ren-Hui Qiu, Jin-Yang Zheng, Yan-Jie Zhu and Irwanda Laory 

Eq. (16), that is 

 =
2π

2π 
=

1

 
 (18) 

Substitute Eq. (18) into Eq. (17) and yield 

𝑓𝑎
 =  π 2  (19) 

Meanwhile, the exact changing rate of the frequency can 

be computed by taking a derivative of 𝑓 denoted in Eq. (16) 

with respect to time.  

𝑓 
 = −4 2 2 s  (2π 𝑡) (20) 

Therefore, the coefficient   can be calculated as Eq. 

(21). 

 = |𝑓 
 𝑓𝑎

 ⁄ | = |−
 

2
s  (2  𝑡)|  

π

2
 (21) 

Since the threshold   is determined by Eq. (14), the 

estimate of IF can be expressed as Eq. (22). 

 ̂(𝑓𝑖) = 𝑓𝑖 = [𝑡𝑖 − 𝑡𝑖−1] ∙   ( ) + 𝑓𝑖−1 (22) 

So far the self-defined threshold algorithm has been 

accomplished and the effects of random noises can be 

suppressed to an extent, resulting in a more accurate 

estimation of IF. 

 

 

4. Numerical example 

 
To verify the performance of the proposed method on IF 

extraction, a numerical case of a multi-component signal 

with two frequency modulated (FM) components is 

considered. The target multi-component signal is defined as 

Eq. (23). 

𝑥(𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡)
= cos[2.4π𝑡 + 0. s  (0.4π𝑡)]
+ cos[3.6π𝑡 + 0.5 s  (0.5π𝑡)] 

(23) 

The frequencies of component signals 𝑥1(𝑡) and 𝑥2(𝑡) 

are as follows: 𝑓1 = d𝜙1 d𝑡⁄ = 1.2 + 0.16 cos(0.4π𝑡) Hz, 

and 𝑓2 = d𝜙2 d𝑡⁄ = 1. + 0.125cos(0.5π )Hz. In this case, 

a sampling rate of 20 Hz is used and the total sampling time 

is set to be 12 seconds. To consider the impact of the noise, 

the signal 𝑥(𝑡) is assumed to be contaminated by a 20% 

Gaussian white noise, which means that the ratio of 𝐴noise
2  

to 𝐴signal
2  is 20% where 𝐴signal and 𝐴noise are the root 

mean square values of the signal and the noise, respectively. 

Fig. 3 shows the signal contaminated by 20% Gaussian 

white noise. 

The Morlet wavelet transform was performed on the 

noisy signal, with central frequency and frequency band set 

as 1 and 2 Hz, respectively. The result of the wavelet 

transform is presented in Fig. 4. It is apparent that there are 

two highlighted wavelet ridges or IF trajectories in the time-

frequency domain, and each oscillates sinusoidally. More 

precisely, the IF of the component signal 𝑥1(𝑡) varies from 

1.1 to 1.4 Hz, while the IF value of 𝑥2(𝑡) changes from 1.6 

to 2.0 Hz. However, both two wavelet ridges suffer blur and 

thus need to be refined. According to the proposed MG 

method, two searching regions are determined by two sets 

of parallel lines according to the IF trajectories displayed in 

the time-frequency plane. While the first region, ranging 

from 1.1 to 1.4 Hz, is indicated in Fig. 4 by two thick black 

dashed lines, the second region, ranging from 1.6 to 2.0 Hz, 

is indicated in Fig. 4 by two thick red dashed lines. The 

initial frequencies of 𝑥1(𝑡) and 𝑥2(𝑡) at t=0 are chosen to 

be 1.2 and 1.9 Hz, respectively. Then the wavelet ridges 

were extracted by the MG method and smoothed by a 

polynomial curve fitting and a threshold algorithm. The 

final results of IF identification are plotted in Fig. 5. It is 

shown that the identified IFs are in good agreement with 

their theoretical counterparts. Compared with the standard 

SWT algorithm, the proposed method can extract the IF of 

each component with higher accuracy if the searching scope 

and the initial values of the initial frequencies of 

of  𝑥1(𝑡)   d 𝑥2(𝑡) is accurately defined in advance. 

 

 

 

Fig. 3 The simulated multi-component signal with 20% 

Gaussian white noise 

 

 

Fig. 4 The wavelet scalogram of the multi-component 

signal with 20% Gaussian white noise 

 

 

Fig. 5 The IFs of the multi-component signal extracted by 

the MG and SWT methods 
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5. Experimental case study 

 
To further validate the accuracy of the proposed method, 

a cable composed of 7Φ
s
 5 steel wires is considered. The 

cable has elastic modulus E=1.95×10
5
MPa, area of cross 

section A=1.374×10
4 

m
2
 and density of unit length q=1.1 

kg/m. The stiffness of the cable is changed due to the 

applied time-varying tension forces so that the natural 

frequency of the cable is time-dependent. The cable is fixed 

at one end, and the other end is connected to a MTS loading 

system. The total length of cable between two ends is 4.55m. 

The accelerometer is installed vertically at the mid-point of 

the cable. The test setup is shown in Fig. 6. 

During the cable test, an initial constant pretension force 

was firstly applied by MTS load actuator to the cable. When 

the test setup and data collection were ready, the cable 

tension force was changed continuously using the MTS load 

system. At the same time, the impact hammer is used to 

generate free vibration and the vertical acceleration 

response was recorded at a sampling frequency of 600 Hz. 

The tension force with linear or sinusoidal change was 

considered during the test. The theoretical IFs of the cable 

were obtained by solving eigenvalues and eigenvectors of 

vibration equations, assuming that the parameters of cable 

keep invariant over a relatively short time interval, which is 

designated as the time frozen method (Wang et al. 2013). 

For simplicity, only the fundamental frequencies of the 

cable at several fixed tension forces were considered at this 

case and thus listed in Table 1. Other theoretical 

fundamental frequencies at different fixed tension forces 

can be computed using linear interpolation algorithm, which 

can be used as theoretical IFs to compare with the extracted 

IFs under time-varying tension forces in the following cases. 

For the first case, the initial tension force of the cable 

was 20 kN, and then the tension force increased linearly at 

the rate of 1.67 kN/s using the MTS load system.  

 

 

Fig. 6 The cable test setup 

 

 

Fig. 7 The measured cable tension forces with linear 

variation 

 

 

Fig. 8 The measured cable acceleration responses with 

linearly varying tension forces 

 

 

Fig. 9 The wavelet scalogram of the cable acceleration 

responses with linearly varying tension forces 

 

 

The duration of data acquisition was 7s. The measured 

tension force and acceleration responses were shown in Figs. 

7 and 8, respectively. 

By performing Morlet wavelet transform on the 

acceleration responses, a wavelet scalogram was obtained 

and displayed in Fig. 9, which indicates that the first order 

IF curve varies linearly in the range of 14 to 20 Hz. Here, 

the central frequency and frequency bandwidth of Morlet 

wavelet function were selected as 1 and 2 Hz, respectively. 

Then, two red dashed lines in parallel with the IF 

trajectories were selected as the upper and lower limit of the 

searching range, respectively. 

The initial frequency was set as 15 Hz. After that, the 

searching and smoothing algorithms were implemented to 

extract the IFs of the cable and the theoretical fundamental 

natural frequencies solved by the time frozen method are 

shown in Table 2.  
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Fig. 10 The extracted IF of the cable with linearly varying 

tension forces 

 

 

Fig. 10 presented the corresponding theoretical 

fundamental frequencies together with the extracted IFs 

using the MG method and SWT, respectively. It is shown in 

Fig. 10 that the MG method can extract IFs of the cable 

subjected to a linearly increased tension force more 

accurately than standard SWT. 

In the second case, the initial tension force of the cable 

was set to 22 kN, and then the tension force changed 

sinusoidally, which is shown in Fig. 11. The measured 

acceleration responses with a duration of 6 seconds is given 

in Fig. 12. 

As did in the first case, the Morlet wavelet transform 

was performed on the acceleration response signal with the 

central frequency and frequency bandwidth set as 1 and 2 

Hz, respectively. The wavelet scalogram was plotted in Fig. 

13. As can be seen in Fig. 13, the fundamental modal 

frequency oscillates sinusoidally. Then, the searching scope  

 

 

 

 

 

 

 

Fig. 11 The measured cable tension forces with sinusoidal 

variation 

 

 

in the MG method was restricted by two parallel lines (red 

thick dashed lines) and plotted in Fig. 13, with the 

frequencies of the two lines set as 14 and 16 Hz, 

respectively. The searching step was then conducted with 

the initial frequency defined as 15.7 Hz on the basis of the 

estimation from the wavelet scalogram. Eventually, the IF 

extracted by the MG method was smoothed by a 

polynomial curve fitting and a threshold algorithm and the 

corresponding results were displayed in Fig. 14. By using 

the time frozen method the theoretical fundamental natural 

frequencies are solved and shown in Table 3. The 

comparison of theoretical fundamental modal frequencies 

and IF identification results presented in Fig. 14 indicates 

that the identified IFs using the MG method are in 

reasonable accordance with theoretical results. Compared 

with the standard SWT, the MG method provides better 

time-frequency resolutions on IF extraction of a cable with 

sinusoidal tension forces. 

 

Table 1 The theoretical fundamental frequency of the cable under different constant tensions 

Tension (kN) 13.0 15.0 17.0 19.0 20.0 20.3 20.6 20.9 21.2 

Frequency (Hz) 12.26 13.08 13.87 14.65 15.03 15.13 15.24 15.33 15.45 

Tension (kN) 21.5 21.8 22.0 22.5 23.0 23.5 24.0 24.5 25.0 

Frequency (Hz) 15.56 15.67 15.70 15.91 16.09 16.24 16.41 16.54 16.72 

Tension (kN) 25.5 26.0 26.5 27.0 27.5 28.0 29.0   

Frequency (Hz) 16.88 17.03 17.19 17.33 17.47 17.63 17.90   

Table 2 The theoretical modal frequency of the cable with linearly varying tension forces 

Time (s) 0 0.06 0.43 0.62 0.78 0.97 1.15 1.26 1.55 

Tension (kN) 20.0 20.3 20.6 20.9 21.2 21.5 21.8 22.0 22.5 

Frequency (Hz) 15.03 15.13 15.24 15.33 15.45 15.56 15.67 15.70 15.91 

Time (s) 1.85 2.15 2.46 2.76 3.06 3.35 3.65 3.96 4.26 

Tension (kN) 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 

Frequency (Hz) 16.09 16.24 16.41 16.54 16.72 16.88 17.03 17.19 17.33 

Time (s) 4.56 4.96 5.47 6.09 6.7     

Tension (kN) 27.5 28.0 29.0 30.0 31.0     

Frequency (Hz) 17.47 17.63 17.90 18.20 18.47     
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Fig. 12 The measured cable acceleration responses with 

sinusoidally varying tension forces 

 

 

 

Fig. 13 The wavelet scalogram of the cable acceleration 

responses with sinusoidally varying tension forces 

 

 

 

Fig. 14 The extracted IF of the cable with sinusoidally 

varying tension forces 

 

 

 

6. Conclusions 

 
This paper presents a method for IF extraction of time-

varying structures, which are frequently encountered in the 

field of civil engineering. The proposed method is a 

combination of the MG method and a smoothing method. 

The method can successfully extract wavelet ridges from 

response signals by searching an optimal path on a 3D 

surface. Starting from an initial frequency, the search 

proceeds in a prescribed range along the direction defined 

by the maximum gradient at every time points. The IFs 

extracted by the MG method are smoothed by using a 

polynomial curve fitting method and a self-defined 

threshold algorithm such that the effect of random noises on 

identified time-frequency curves is alleviated. The proposed 

method is demonstrated using a numerical example and an 

experimental case study. The results demonstrate that the 

method can accurately identify not only the IFs of multi-

component numerical signals but also those of the signals 

from practical time-varying structures. In addition, the 

proposed method performs better than the standard SWT, 

provided that the searching area and initial frequency are 

precisely predetermined. 
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Table 3 The theoretical modal frequency of the cable with sinusoidally varying tension forces 

Time (s) 0 0.2 0.4 0.6 0.9 1.2 1.8 2.1 2.5 

Tension (kN) 22.00 21.84 21.55 21.17 20.59 20.09 19.10 18.71 18.3 

Frequency (Hz) 15.70 15.68 15.58 15.44 15.24 15.06 14.69 14.54 14.38 

Time (s) 3.1 3.4 3.8 4.2 4.7 5.3 5.4 5.6 5.9 

Tension (kN) 17.98 17.96 18.03 18.37 19.03 20.06 20.25 20.63 21.22 

Frequency (Hz) 14.25 14.24 14.27 14.40 14.66 15.05 15.11 15.25 15.46 

Time (s) 6.0         

Tension (kN) 21.42         

Frequency (Hz) 15.53         
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