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1. Introduction 
 
Most engineering systems and structures, such as 

aircraft, nuclear power plants, pipelines, and bridges, suffer 

increasing wear over time due to deterioration, which 

results in frequent failures. The performance deterioration 

can adversely affect the safety of these systems and reduce 

the operating life (Huang et al. 2016). In addition, once 

failures occur, they lead to high operating costs for the 

system due to the high repair costs. Hence, it is important to 

determine the timing of maintenance activities to keep the 

system in good condition. In practice, maintenance 

activities are considered a key part of the engineering 

system because they reduce unexpected failure and increase 

the functioning life of the system. Moreover, these 

maintenance activities restore the system to a good state by 

preventing degradation of system performance.  

Maintenance activities are classified as corrective 

maintenance (CM) and preventive maintenance (PM). CM 

activities are unscheduled and performed when a system 

fails, and the system is restored from a failed state to a  
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working state (Ahn and Kim 2011). PM activities are 

performed when system performance, such as time, 

reliability, failure rate, and availability, reaches a 

predetermined value, which reduces operational stress. 

Moreover, the performance of maintenance, such as the 

length of the PM interval, maintenance cost per unit time, 

and system lifetime, will vary depending on which 

condition variables are selected to perform PM. Therefore, 

determining the appropriate condition variable is important 

to establish optimal maintenance policies. However, 

establishing optimal maintenance policies may be difficult 

because they involve numerous uncertainties, such as status 

of the system, the level of system deterioration, 

maintenance costs, and repair effects.  

Since the 1960s, research on maintenance policies has 

been widely performed to consider the numerous 

uncertainties. These maintenance policies can be classified 

into two types according to the criteria of performing PM 

activities (Ahmad and Kamaruddin 2012). One is a time-

based PM policy in which PM activities are performed at a 

same time interval. Barlow and Hunter (1960) proposed a 

time-based periodic replacement policy with minimal repair. 

When failure occurs, minimal repair is immediately carried 

out and the system is restored to its prior state.   

Many time-based preventive maintenance policies have 

been presented based on the concept of minimal repair. 

Nakagawa (1979) developed a periodic PM policy with the 

assumption that PM is imperfect. Canfield (1986) 

developed a hazard function that reflects the imperfect PM 

effect under a periodic maintenance policy. Park et al. (2000) 
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extended the model of Canfield (1986) and considered time-

dependent CM costs. In addition, many periodic PM 

policies considering various decision variables, such as 

optimal frequency of PM actions, optimal recovery rate, and 

the optimal PM interval, have been presented (Jaturonnatee 

et al. 2006, Nakagawa and Mizutani 2009, Sheu and Chang 

2009, Bouguerra et al. 2012, Toledo et al. 2016). However, 

periodic PM may not prevent frequently occurring 

breakdowns in the late period of system life because of 

system degradation, which also causes high operational 

costs (Huang et al. 2013).   

The other is a condition-based PM policy (precisely 

non-periodic PM policy). In condition-based maintenance, 

the state of the condition variable is continuously monitored 

to determine the time to perform the PM activity before 

reaching the predicted state of failure, which improves 

system safety and reduces opportunity costs from severe 

failures (Roach 2009). It is important to determine the 

threshold value for these maintenance policies because 

performance of the maintenance policy depends on the 

threshold. Some researchers have studied the optimal 

condition-based PM model with a threshold value for 

system reliability (Zhao 2003, Zhou et al. 2009, Schutz and 

Rezg 2013) or failure rate (Dieulle et al. 2003, Yeh and 

Chang 2007).  

Zhou et al. (2007) developed a reliability-centered 

predictive maintenance policy with a reliability threshold 

under situations where system reliability was continuously 

monitored. Park et al. (2008) developed the multi-objective 

optimum maintenance scenario for existing steel-girder 

bridges considering the minimizing life-cycle cost and the 

maximizing reliability. Doostparast et al. (2014) proposed 

an optimal PM schedule for coherent systems with 

consideration of a certain level of reliability. Lin et al. 

(2015) developed a non-periodic PM model that took into 

account various reliability constraints for complex systems. 

Lu et al. (2016) proposed a PM policy with a failure rate 

threshold for a single-machine manufacturing system by 

adding quality control. However, in traditional studies, 

establishing the cost-effectiveness of the maintenance 

policy may be difficult because the threshold value is 

predetermined. Therefore, this study focused on deriving 

the optimal threshold value that minimizes expected total 

costs.   

The goal of this study was to develop the optimal non-

periodic PM policy for a repairable system with a failure 

rate threshold and minimize the expected total cost per unit 

time. Whenever the failure rate of the system reaches a 

certain value, the imperfect PM activities are performed to 

restore the system. After imperfect PM, the failure rate of 

system is restored via failure rate reduction factors. If the 

system failure occurs before the imperfect PM, minimal 

repairs are carried out. This study not only considered the 

costs for replacement and related maintenance activities, but 

also considered operational costs. Actual engineering 

systems deteriorate with operating time and are hard to 

operate after a long period of use. When the state of such a 

system gets worse, replacing the system may be more 

economical rather than performing the maintenance 

activities, as operational costs are extremely high (Nguyen 

and Murthy 1981). Therefore, this study considered 

operational costs to develop a well-structured maintenance 

policy.     

This study is organized as follows. Section 2 explains 

the assumptions to establish the non-periodic PM model, 

and derives the expected total cost function. Section 3 

formulates the details of the proposed PM model and 

derives the optimal non-periodic PM models. It also shows 

the unique properties of the proposed PM model. Section 4 

illustrates the optimal non-periodic PM model via a 

numerical example. Sensitivity analyses were conducted to 

investigate how changes in the parameters affect the 

proposed model. Finally, Section 5 discusses the 

conclusions of this research. 

 

2. Sequential imperfect preventive maintenance 
model with failure rate threshold 

 
2.1 Assumptions 
 
With regard to how to model the imperfect PM, many 

studies have categorized maintenance activities into three 

types according to the restoration level of the system status 

(Nakagawa 1988, Wang 2002, Yanez, Joglar et al. 2002). 

Perfect repair restores the system to a state of “as good as 

new”; minimal repair restores the system to a state of “as 

bad as old”; and imperfect repair restores the system to a 

“better than old but worse than new” state, which is suitable 

for engineering systems because it represents the 

uncertainty of the deterioration process. Kijima (1989) 

developed a generalized renewal process to express all 

types of repair effects using the virtual age process. 

Martorell et al. (1999) developed a proportional age setback 

model by measuring the efficiency of PM activities using 

the age reduction factor. Lin et al. (2001) developed a 

hybrid model that combined the age reduction factor and 

the hazard-increasing factor. Doyen and Gaudoin (2004) 

proposed an arithmetic reduction of the age model (ARA) 

based on the age reduction factor and the arithmetic 

reduction of intensity model (ARI) based on the hazard 

reduction factor. 

In this study, we consider the imperfect PM activity and 

situations in which minimal repairs are performed 

immediately after any failures. Moreover, this study does 

not consider perfect repair because it is not realistic to 

restore the system to a state of “as good as new” by any 

repairs. Hence, we assumed that the deterioration process of 

the system follows a non-homogeneous Poisson process 

(NHPP), as the above situations can be modeled via the 

NHPP. In addition, we assumed that the system described in 

this study undergoes the (N1) imperfect PM activities and 

it is replaced at the Nth PM activity.  

The detailed assumptions are as follows:  

• The deterioration process of the system is assumed to 

be a NHPP that can be modeled by the Weibull power-

law intensity given as h(t)t
-1

 where t  0 is the 

elapsed time,   0 is the scale parameter, and   2 is 

the deterioration parameter.  

• When a system failure occurs before imperfect PM 

activities, minimal repairs are immediately carried out.  
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• All PM activities are performed when the system 

failure rate reaches a certain threshold value θ. After 

imperfect PM activities, the system is restored to a state 

of “better than old but worse than new” via the failure 

rate reduction factor.  

• The duration for both minimal repair and imperfect PM 

is considered negligible. 

• The system undergoes the (N1) imperfect PM during 

its lifetime and is replaced at the Nth PM activity.  

• The minimal repair cost Cm, the PM cost Cp, and the 

replacement cost Cr are assumed to be constants. 

 
2.2 Imperfect PM activities and maintenance cost 

 

In the present study, we considered the situation where 

the failure rate of the system can be restored via the failure 

reduction factor. This can be modeled via ARI model 

proposed by Doyen and Gaudoin (2004). The ARI model is 

appropriate to describe the effect of imperfect PM activities 

because of the assumption that the failure rate of a system is 

restored after performing imperfect PM activities.  

The failure reduction factor i is used to describe the 

effect of imperfect PM in this study. If the first imperfect 

PM activity is performed at the time T1, the failure rate of 

the system is restored from h0(T1) to 1h0(T1). The failure 

rate of the system is restored from h0(T2)(11)h0(T1) to 

2(h0(T2)(11)h0(T1)) after the second imperfect PM 

activity. Based on these reduction processes, the reduction 

of the failure rate after the ith imperfect PM activity can be 

derived as 

 ,)()( 1001   iiiii ThThHH   (1) 

where H0  0, i1,2,…, N1, and 0 i  1. Hi indicates the 

reduction in the failure rate by the failure reduction factor 

after the ith PM activity. In addition, when h0(t) is the 

function of the failure rate for the initial state of system, the 

failure rate of the system after the ith imperfect PM activity 

can be determined as follows 
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where t( Ti , Ti+1), i=1,2,…,N. Fig. 1 shows the failure rate 

of the system based on the proposed PM model. In Fig. 1, θ 

represents the criterion for determining the schedule of 

imperfect PM activities. Therefore, the constraints for 

performing PM activities can be determined as 
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Solving Eq. (3) with respect to Ti, the operating time 

until the ith PM activities can be derived as 
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The time interval at the ith PM cycle becomes 
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for i=1,2,…,N. Eqs. (4) and (5) show that the more PM 

activities are performed, the shorter the length the PM cycle 

becomes. In addition, they depend on the first time interval 

of the PM activities. Solving Eq. (3) with respect to T1, the 

first time interval of the PM activities can be derived as 
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The system operating time until replacement can be 

calculated by the sum of the time interval up to the Nth PM 

cycle, which is given as 
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Because it is assumed that the deterioration process of  

the system follows the NHPP, the expected number of 

minimal repairs until replacement can be derived as 
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Hence, the expected total cost per unit time can be 

constructed as 
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Fig. 1 The failure rate curve under the proposed model 
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Note that the expected total cost per unit time is 

composed of the cost for performing maintenance activities 

and the cost for replacing the system. It is assumed that 

these costs are constants and obtained from a field 

investigation. They may also be interpreted as the expected 

values for the corresponding random variables, so it is 

reasonable to assume that maxCm, Cp   Cr (Lin et al. 

2015).   

 

2.3 Operational cost 
 
The operational cost should be considered in order to 

illustrate deterioration process of the system and establish 

the realistic maintenance model. In practice, system failures 

increase as the operating time of the system increase, which 

leads to high operational costs. Hence, this study considered 

operational costs to illustrate the deterioration process of the 

system and construct the PM model. We used the 

operational cost proposed by Liao et al. (2010). This is 

composed of the fixed cost of operating, the cost that varies 

with the number of PM activities, and the cost that varies 

with the time interval of the PM cycles, which is given a 

,),( tcicctiC otopoco   (11) 

where coc
 
denotes the fixed cost for the system operating, cop 

denotes the relative changing cost depending on the number 

of PM activities, and cot denotes the relative changing cost 

depending on the time. The expected total cost per unit time 

considering the operational costs can be determined as 

follows 
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where C1(N, θ) represents the expected total cost per unit 

time.  

 

 

3. Optimal preventive maintenance policies 
 

Determining the optimal maintenance policy is 

important to decision makers. Hence, the decision maker 

should design an optimal PM policy that includes 

investigations on the mechanical condition, the state of the 

system, and the related costs of maintenance activities. 

 

 

 

The basic assumptions are presented in section two, and 

two optimal non-periodic PM policies based on the failure 

rate threshold are established as follows 

(1) Policy 1: This policy minimizes expected total cost 

per unit time, which is given in Eq. (10). 

(2) Policy 2: This policy minimizes the expected total 

cost per unit time, which is given in Eq. (12) by using the 

operational cost in Eq. (11).  
Note that the decision variables of the two policies are 

the optimal number of scheduled PM actions and the 

optimal failure rate threshold. 

 

3.1 Optimization 
 
Here, we tried to minimize Ci(N, θ) with (N, θ) for i = 

1,2 to obtain the optimal proposed PM policies. The 

inequalities are 
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for i = 1,2, and where Eq. (15) shown at the bottom of the 
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Eq. (15) indicates a necessary condition to determine that 

Eq. (12) is a convex function with regard to N for the case 

where θ  0. 

Through the following Proposition 1, we prove that 

there exists an optimal unique N
*
 (i.e., minN Ci(N, θ) = 

Ci(N
*
, θ)) under certain conditions.  

Proposition 1: If θ > 0 and Yi(N, θ) increases to infinity 

as N for i =1,2, there exists a finite and unique N
*
 that 

satisfies Eqs. (13)-(14). 

The detailed proof Proposition 1 is in the Appendix.  
For i = 1, 2, solving the first partial derivative of Ci(N, θ) 

with respect to θ to zero, respectively, (dCi(N, θ) / dθ) = 0, 

if and only if 
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and for i = 1,2. 

Additionally, let 
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for i = 1,2. 

Through the following Proposition 2, we prove that 

there exists an optimal θ
*
 (i.e., minθ Ci(N, θ) = Ci(N, θ

*
)) 

under certain conditions. 

Proposition 2: For i = 1,2, if   1)/)((lim 





ii , then 

there exists a finite and unique θ
*
 that minimizes Ci(N, θ).   

The detailed proof of Proposition 2 is in the Appendix. 

Moreover, through the following Proposition 3, the 

optimal failure rate threshold of Policy 1 can be derived as 

Eq. (21).  

Proposition 3: The optimal failure rate threshold of 

Policy 1 to perform each imperfect PM action is given as 

 
 
   
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NSC
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N

m
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The detailed proof of Proposition 3 is in the Appendix.  

The optimal failure rate threshold for Policy 2 can be 

obtained via the Newton-Rapson method. The optimal 

solutions for the proposed policies can be obtained via the 

following algorithm:  

Step 1: Set N = 1 and if Policy 1, go to step 1.1; 

otherwise go to step 1.2. 

  Step 1.1: Compute the failure rate threshold θ1(N) 

asgiven in Eq. (21), then go to Step 2. 

  Step 1.2: Compute the failure rate threshold θ2(N) as 

given in Eq. (17) using the Newton-Rapson method, then go 

to step 2.   

Step 2: If Policy 1, go to step 2.1; otherwise go to step 

2.2. 

  Step 2.1: Compute C1(N, θ1(N)) as given in Eq. (10) 

and go to step 3. 

  Step 2.2: Compute C2(N, θ2(N)) as given in Eq. (12) 

and go to step 3. 

Step 3: Set N = N1 and if Policy 1, go to step 3.1; 

otherwise go to step 3.2. 

  Step 3.1: Compute C1(N+1, θ1(N1)) as given in Eq. 

(10) and go to step 3. 

  Step 3.2: Compute C2(N+1, θ2(N1)) as given in Eq. 

(12) and go to step 3. 

Step 4: If Policy 1, go to step 4.1; otherwise go to step 

4.2. 

  Step 4.1: If C1(N, θ1(N)) < C1(N1, θ1(N1)) then 

attain the corresponding optimal solutions (N
*
, θ1

* 
), and 

stop the process, and go to step 5; otherwise go to step 3. 

  Step 4.2: If C2(N, θ2(N)) < C2(N+1, θ2(N1)) then 

attain the corresponding optimal solutions (N
*
, θ2

* 
), and 

stop the process, and go to step 5; otherwise go to step 3. 

 Step 5: Compute the schedules of PM activities by 

using in Eq. (4). 

 

 

4. Numerical example 
 

A numerical example was used to illustrate the 

usefulness of the proposed PM policies. The parameters of 

the failure rate function were given as  = 1.8 and  = 2.6. 

The failure reduction factors were given as i = i/(2i+1), i = 

1,2,…, N1, which increased as the number of imperfect 

PM activities increased (El-Ferik and Ben-Daya 2006, Lin 

and Huang 2010). The related costs for performing 

maintenance activities were considered as their ratios, 

which were given as Cm / Cp = 0.5 and Cr / Cp = 8. In 

addition, the costs associated with the operational cost were 

given as cot = 0.1, cop = 0.05, and cot = 0.01. In this analysis, 

we considered that PM cost was set higher than the minimal 

repair cost. 

For Policy 2, the tolerance of the Newton-Raphson 

method was set to  = 4.010
-6

. The unit of operating time 

may be either years or thousands of hours. The results are 

summarized in Table 1. Fig. 2 represents the variation of the 

expected costs per unit time for each policy as the number 

of PM activities increase. 

 

 

 

Fig. 2 The failure rate curve under the proposed model 
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As shown in Table 1, the numerical example results for 

Policy 1 are better than optimal results obtained from Policy 

2. However, it may not be reasonable to compare the 

numerical example results of the policies because the goals 

of the two policies are different. Therefore, we interpreted 

the numerical example results of both policies from an 

operational point of view. Table 1 shows that the length of 

the PM interval became longer when the operational cost 

was considered in the maintenance policy. This is because 

the optimal failure rate threshold of Policy 2 was higher 

than the optimal value obtained from Policy 1. Additionally, 

as a high failure rate threshold results in higher operational 

cost, the expected total cost per unit time increases. Hence, 

as shown in Table 1, the expected cost per unit time of 

Policy 2 was higher than that of Policy 1. In addition, 

because the operational cost increased as the operating time 

of the system increases, replacement of the system in Policy 

2 was performed faster than that in Policy 1. 

A sensitivity analysis was conducted for the situation in 

which  was adjusted from 1.44 to 2.16 and  was adjusted 

from 2.08 to 3.12 to determine the effect of the failure rate 

function parameters on the proposed PM policies. The 

results are summarized in Table 3. The results shows the 

change in the scale parameter had no effect on N
*
 of the two 

proposed PM policies. However, the length of the PM 

interval for both policies increased as  decreased; hence, it 

caused a lower than expected total cost per unit time and a 

longer operating time for the system. As the function of the 

optimal failure rate threshold is affected by the change in , 

θ
*
 increased as  increased. 

The change in  affects N
*
 of the two proposed PM 

policies unlike the results of the sensitivity analyses for . 

In Policy 1, N
*
 increased from 2 to 38, as  decreased. In 

Policy 2, N
*
 increased from 2 to 11, as  decreased. In 

addition, the length of the PM interval increased as   

 

 

decreased for both policies, resulting in a lower than 

expected maintenance cost and a longer operating time for 

the system. This is because  represents the level of system 

deterioration. When  is a low value, as deterioration of the 

system increases from the initial period, the failure rate of 

the system rapidly reaches the threshold value. Hence, the 

length of the PM interval becomes shorter, resulting in 

increased frequency of PM activities. However, although 

more PM activities are performed, a lower expected total 

cost per unit time is incurred because of the significantly 

longer PM interval length.  

In contrast, if  is a high value, the failure rate of the 

system slowly reaches the threshold value rather than the 

case when  is a low value because the deterioration of the 

system rapidly increases during the wear-out period. 

Therefore, the length of the PM interval becomes longer,  

resulting in a low number of PM activities. However, the 

expected total cost per unit time becomes higher because of 

severe deterioration in the system, although the length of 

the PM interval is longer than when  is a low value. These 

results indicate that both policies are significantly sensitive 

to changes in .  

In addition, we conducted sensitivity analyses for 

related maintenance activity costs. The costs were given as 

Cm / Cp = 0.5 and Cr / Cp = 8. In this analysis, Cm increased 

from 0.40 to 0.60, Cr increased from 6.40 to 8.80, and Cp 

increased from 0.80 to 1.20. The results are summarized in 

Table 3. In the case when the cost for a minimal repair 

increased, the optimal number of PM activities does not 

change for both policies, but their imperfect PM activities 

were performed earlier. As shown in Table 3, the optimal 

failure rate threshold decreased as Cm increased. N
*
 

decreased and θ
*
 increased, for both policies when the cost 

for PM increased because it is more economical to replace 

the system than to perform the PM activities. 

Table 1 The optimal solutions and the system performance of optimal ones 

 N* θ* C( N*, θ*) To x1 x2 x3 x4 x5 

Policy 1 5 8.6752 6.1780 3.1564 1.4707 0.5532 0.4288 0.3700 0.3337 

Policy 2 4 8.9938 6.3915 2.8870 1.5042 0.5658 0.4386 0.3785  

 

 

Table 2 Sensitivity analysis for the failure rate function parameters (given that Cm / Cp = 0.5, Cr / Cp = 8, cot = 0.1, cop = 

0.05, and cot = 0.01) 

  
 Policy 1  Policy 2 

 N* θ* C( N*, θ*) To  N* θ* C( N*, θ*) To 

1.44 2.60  5 7.9618 5.6699 3.4392  4 8.2505 5.8844 3.1449 

1.62 2.60  5 8.3307 5.9326 3.2869  4 8.6349 6.1466 3.0061 

1.80 2.60  5 8.6752 6.1780 3.1564  4 8.9938 6.3915 2.8870 

1.98 2.60  5 8.9992 6.4086 3.0425  4 9.3311 6.6219 2.7834 

2.16 2.60  5 9.3054 6.6267 2.9426  4 9.6500 6.8397 2.6920 

1.80 2.08  38 5.5165 3.9071 22.1820  11 5.7069 4.4622 8.4675 

1.80 2.34  9 7.1286 5.2580 5.3138  7 7.3196 5.5517 4.6234 

1.80 2.60  5 8.6752 6.1780 3.1564  4 8.9938 6.3915 2.8870 

1.80 2.86  3 10.2895 6.8248 2.2530  3 10.2725 7.0114 2.2510 

1.80 3.12  2 11.9420 7.2923 1.8163  2 11.9271 7.4621 1.8153 
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Additionally, the length of the PM interval in Policy 2 

was shorter than that of Policy 1, as Cp increased. On the 

contrary, in the case when the cost for replacement 

increased, N
*
 increased although PM activities were 

performed with a longer PM interval. These results indicate 

that both policies are sensitive to changes in Cr and Cp. 

Therefore, the decision- maker should pay more attention to 

estimation of Cr and Cp. 

 

 

5. Conclusions 
 

In this study, two non-periodic PM policies were 

proposed for repairable deteriorating systems with a failure 

rate threshold. The function of expected total cost per unit 

time was determined, including the costs for a minimal 

repair, an imperfect PM activity, and a replacement. In the 

proposed PM policy, operational cost was considered a 

variable that changed based on the number of PM activities 

and the length of the PM interval to reflect the operational 

process of the system. The structural properties of the two 

proposed PM policies and their uniqueness were 

investigated and shown. An algorithm to determine the 

optimal threshold value of the failure rate and the optimal 

number of PM activities was provided. A numerical 

example was prepared and conducted to illustrate the 

usefulness of the two proposed PM policies. Sensitivity 

analyses revealed that the case when operating costs were 

not considered in the PM policy was sensitive to a change 

in . 

This study was devoted to obtaining the failure rate 

threshold that minimized the expected maintenance cost. 

Such a failure rate threshold can be a guideline at the 

planning stage to decide the level of system's failure rate. 

For example, if a decision maker prefers to lower 

maintenance cost rather than keep a system in good 

condition, the failure rate threshold obtained in this study 

may satisfy the decision maker. In addition, the 

predetermined PM schedule of this study can assist in  

 

 

arranging maintenance activities and reaching the inventory 

of the spare parts to near-zero. This study can be extended 

by health monitoring techniques. Nearly perfect information 

about the current state of the system can be provided using 

these techniques, which will allow more practical 

adjustments to pre-scheduled optimal PM policies. 
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Appendix 
 

A.1 Proof of proposition 1 
 

The inequalities Ci (N,θ)  Ci (N+1,θ) and Ci (N1, θ) > 

Ci (N, θ) imply Eqs. (13) and (14). For respective i, to prove 

the proposition 1, we redefine Eq. (15) as 
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For i = 1, BN /AN and DN /AN are increasing functions in 

N because AN is a decreasing function in N; hence Y1(N, θ) 

increases to infinity as N. For i = 2, it is easily 

determined that Y2(N, θ) increases as N because Eqs. 

(A6)-(A7) are the increasing function in N. Therefore, for 

each i, there exists a finite and unique N
*
 that satisfies Eqs. 

(13) and (14).  

 

 

A.2 Proof of proposition 2 
 

For each i, (dCi(N, θ) / dθ) = 0 implies Eqs. (17) and 

(18). For i = 1, J1(θ) is the increasing function in  because 

1)(/)(lim 11   . For i = 2, J2(θ) is the increasing 

function in  because 1)(/)(lim 22   . Therefore, 

for each i, because Ji(θ) is the increasing function in , there 

exists a finite and unique θ
*
 such that Ji(0) < (N1)Cp+Cr 

and Ji() > (N1)Cp+Cr. In addition, θ
*
 satisfies Eqs. (17) 

and (18) and minimizes Ci(N, θ) for all N 1.  

 
A.3 Proof of proposition 3 
 
For a given N and i = 1, a condition for θ to minimize 

Eq. (10) is (dC1(θ| N) / dθ) = 0 because  
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Therefore, for the given N and i = 1, solving Eq. (17) with 

respect to θ, we obtain Eq. (21).    
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