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1. Introduction 
 
Functionally graded material (FGM) is inhomogeneous 

composite materials, proposed for the first time in 1984 by 

materials scientists in the Sendai area (Koizumi 1993, 

Koizumi 1997) as thermal barrier. FGM is characterized by 

variation in material properties from one surface to a further 

along the thickness direction. This concept of FGM can 

effectively eliminate the interface problems commonly 

found in composite materials due to stress concentration 

under the action of external mechanical and/or thermal 

loads. Those advanced composite materials have the 

primary constituents made from a mixture of metal with 

ceramic or from a combination of materials. The FGM is 

now being used in many structural applications: aircraft, 

spacecraft (Kar and Panda, 2015a, Xu and Xing 2016), and 

in other various fields: civil, gas turbines, nuclear fusions, 

biomaterial electronics, optical thin layers (Bensaid et al. 

2017) and other engineering and technological applications 

(Miyamoto et al. 1999). This flexibility in design for the 

FGM is given by their strength and stiffness. 

In recent years, a number of studies and computational 

techniques have been performed and applied for  
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engineering fields to analyze the static, dynamic and 

buckling behaviors of FG plates (Jha et al. 2013, Kar and 

Panda 2013, Sobhy 2013, Ait Amar Meziane et al. 2014, 

Kar and Panda 2014, Meksi et al. 2015, Attia et al. 2015, 

Kar 2015a, b, Kar and Panda 2015b, c, d, Bouderba et al. 

2016, Kar and Panda 2016a, b, c, d, Houari et al. 2016, 

Boukhari et al. 2016, Kar et al. 2017, Kar and Panda 2017a, 

b, Mahapatra et al. 2017, Neves et al. 2017) led to the 

development of various plate theories. However, this 

behavior can be predicted using either, the classical plate 

theory (CPT), first-order shear deformation plate theory 

(FSDT) and higher-order plate theory (HSDT). The 

classical plate theory (CPT) neglects transverse shear 

deformation effect (Feldman and Aboudi 1997, Javaheri and 

Eslami 2002, Chen et al. 2006, Abrate 2008, Zhang et al. 

2008, Mahdavian 2009, Mohammadi et al. 2010, Baferani 

et al. 2011) and it is acceptable only for thin plates. The 

first-order shear deformation plate theory (FSDT) has been 

used for FG thick and moderately thick plates (Yaghoobi 

and Yaghoobi 2013, Mantari and Granados 2015, Bellifa et 

al. 2016). This theory takes into account the transverse 

shear deformation effects and requires an appropriate shear 

correction factor in order to satisfy the zero transverse shear 

stress boundary conditions at the top and bottom of the plate. 

The second-order shear deformation plate theory (SSDT) 

has been used by Saidi and Sahraee (2006). They studied 

axisymmetric bending and stretching of functionally graded 
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solid circular and annular plates. Khdeir and Reddy (1999) 

studied the free vibration of laminated composite plates 

using SSDT. Shahrjerdi and Mustapha (2011) have been 

used SSDT to study the free vibration of FG plates 

(rectangular and square). Karami et al. (2018) used SSDT 

to study wave dispersion of mounted graphene with initial 

stress. Nami et al. (2015) were used nonlocal third-order 

shear deformation theory to analyze the thermal buckling of 

FG rectangular nanoplates. Alternatively, several higher-

order shear deformation plate theories (HSDT) have been 

proposed for FG plates, with higher-order variations of 

displacements (Neves et al. 2012, Bouazza et al. 2015,  

Bensatallah et al. 2016). A large number of studies have 

been performed to study the mechanical behavior of 

advanced composite plates using non-polynomial functions 

(hyperbolic, sinusoidal, exponential and tangent). The aim 

to use these functions is to describe the warping through the 

thickness, taking into account the transverse shear 

deformation effect in the plate. Mantari et al. (2012) 

employed the non-polynomial trigonometric function in the 

displacement to study the bending response of sandwich 

and laminated plates. Also, Mantari (2015) studied the 

bending analysis of functionally graded shells by presenting 

a closed-form solution of a generalized hybrid type quasi-

3D higher order shear deformation theory. The buckling 

behavior of sandwich plates with functionally graded skins 

using a new quasi-3D hyperbolic sine shear deformation 

theory has been studied by Neves et al. (2012). Tounsi and 

his co-workers (Ait Amar Meziane et al. 2014, Attia et al. 

2015, Hassaine Daouadji et al. 2015 and Bousahla et al. 

2016) developed a new refined plate theory for free 

vibration analysis of functionally graded materials with four 

unknown functions. They introduced undetermined integral 

variables into the displacement field. This theory does not 

require shear correction factor and satisfies the zero 

transverse shear on the surfaces of the plate. The thickness 

stretching effect is ignored in the above theory and the 

transverse displacement is considered constant in the 

thickness direction, as in Kirchhoff-Love type thin FGM 

plates. The majority of higher-order shear deformation 

theories employed to investigate the mechanical behavior of 

FGM plates contain five unknowns. In order to diminish the 

number of variables used in the equilibrium equation, 

satisfying the shear deformation effects on the bottom and 

top surfaces of plate without employing shear correction 

factor, many refined theories have been offered. Shimpi and 

Patel (2006) have studied the free vibration of plate using 

two variable refined plate theory. Nguyen et al. (2015) have 

studied the bending, vibration and buckling analysis of FG 

sandwich plates using a refined shear deformation theory. 

Karami et al. (2017) were used a four variable refined plate 

theory to study the wave propagation analysis in FG 

nanoplates under in-plane magnetic field based on nonlocal 

strain gradient theory. Karami and Janghorban (2016) have 

been used one parameter and two-variable refined plate 

theory to study the effect of magnetic field on the wave 

propagation in nanoplates based on strain gradient theory. 

Always, Karami and Janghorban (2018) were studied wave 

propagation in fully clamped porous FG nanoplates.       

From the literature, there have been many studies on the 

bending, vibration and buckling behaviors of FGM plates 

resting on elastic foundations (Ait Atmane et al. 2010, 

Abualnour et al. 2018, Shahsavari et al. 2018, Ait Atmane 

and Tounsi 2017). Meftah et al. (2017) studied the free 

vibration of FG thick rectangular plates on elastic 

foundation using a non-polynomial four variable refined 

plate theory. Shahsavari et al. (2018) have studied the shear 

buckling of single layer graphene sheets in hygrothermal 

environment resting on elastic foundation based on different 

nonlocal strain gradient theories. These foundations 

considered include the Winkler and Pasternak type elastic 

foundations.  

In this paper, the vibration analysis of FGMs plates is 

analyzed based on a simple and efficient hybrid quasi-3D 

higher-order shear deformation plate theory. The highlight 

of this theory is that, in addition to including the Winkler-

Pasternak elastic foundations and the thickness stretching 

effect, the displacement field contains only five unknowns 

against six or more displacement functions used in other 

theories. Governing equations of motion for FGM plates are 

derived from Hamilton’s principle. The closed form 

solutions are obtained by using Navier technique, and 

natural frequencies are found, for simply supported plates, 

by solving the results of eigenvalue problems. Moreover, 

the accuracy of the hybrid quasi-3D HSDT is examined by 

comparing the present results with published ones.   

The paper is organized as following. Section 2 outlines 

the geometric configuration and material properties of 

FGMs plates. Section 3 describes the theoretical 

formulation methodology of FGMs, constitutive relations, 

displacement field and strains, plate governing equations, 

equations of motion in terms of displacements and 

analytical solutions. The last section 4 is about numerical 

results and discussions. Finally, further general aspects are 

given in the conclusions. 

 

 

2. Geometric configuration and material properties 
 

Consider an FG plate of length 𝑎 , width 𝑏 , and 

thickness ℎ that is made of a FGM and resting on elastic 

foundation (Fig. 1).  The FGM is assumed to vary from the 

ceramic-rich top surface (𝑧 = ℎ/2) to the metal-rich bottom 

surface (𝑧 = −ℎ/2). The rectangular Cartesian coordinate 

system 𝑥, 𝑦, 𝑧 has the plane 𝑧 = 0. 
 

 

Fig. 1 Geometry of FGM plate resting on Winkler-

Pasternak foundation 
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The effective Young’s modulus 𝐸 of the FGM plate can 

be expressed in a power law as (Reddy2000) 
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In which the variables with subscripts c and m denote 

the properties of the top and bottom surfaces of the plate, 

respectively, and 𝑝 is the power law index. The volume 

fraction index 𝑝  specifies the material variation profile 

through the thickness. The value 𝑝 = 0  represents a 

ceramic plate.  
 

 

3. Theoretical formulation  
 

3.1 Constitutive relations 
 
The linear constitutive relations of the FG plates are written 

as 
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Where (
x ,

y ,
z ,

yz ,
xz ,

xy ) and (
x ,

y ,
z ,

yz ,

xz ,
xy ) are the stress and the strain components, 

respectively. The stiffness coefficients Qij  are given by 
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3.2 Displacement field and strains 
 
Basic assumptions for the displacement field of the plate, 

including the transverse normal stress effect are given as (Mahi 

et al. 2015) 

),,()(),,(),,,(

),,()(),,(),,,(

),,()(),,(),,,(

tyxzgtyxwtzyxw

tyx
y

w
zf

y

w
ztyxvtzyxv

tyx
x

w
zf

x

w
ztyxutzyxu

zb

sb

sb























0

0
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(4c) 

Where 𝑢0  and 𝑣0  are the in-plane displacements of the 

geometrical mid-plane of the plate along the 𝑥  and 𝑦 

directions. 𝑤𝑏  and 𝑤𝑠 are the bending and shear components 

of the transverse displacement, respectively, and the additional 

displacement z accounts for the effect of normal 

stress. 𝑓(𝑧) and )(zg  represent shape functions defining the 

distribution of the transverse shear strains and stress through 

the thickness.  
Based on the thick plate theory and including the thickness 

stretching effect (effect of transverse normal stress), the basic 

assumptions for the displacement field of the FG plate can be 

expressed as follows (Abualnour et al. 2018) 
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(5a) 
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(5c) 

The coefficients 
1k and 

2k depend on the geometry of 

the FG plate. The displacements field of the present theory, 

satisfying the conditions of transverse shear stresses (and 

hence strains) on the top and bottom surfaces of the plate, is 

given in simpler form as 
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It is clearly seen that the displacement field in Eq. (6) 

handles only five unknowns, i.e., 𝑢0, 𝑣0, 𝑤𝑏 , and .     

In this study, the shape functions 𝑓(𝑧) and )(zg are 

chosen based on the trigonometric form (Mahi et al. 2015) 
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The non-zero strains associated with the new 

displacement field in Eq. (6) are 
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It can be seen from Eq. (9) that the transverse shear strains  

( yz and xz ) are equal to zero at the top (𝑧 = ℎ/2) and 

the bottom (𝑧 = −ℎ/2) surfaces of the FG plate. 

We used the Navier type procedure to resolve integrals 

used in the above equations. We can express them as 
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The coefficients 'A and 'B are depending on the solution 

type obtained by Navier method. We give below 'A , 'B , 1k  

and 2k  
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 and  are defined in Eq. (27). 

 

3.3 Plate governing equations 
 
Hamilton’s principle is employed to derive the equations of 

motion. It can be stated as (Reddy 2002, Bennoun et al. 2016) 
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where 𝐴  is the top surface and stress resultants 

𝑁, 𝑀, 𝑆 and 𝑄 are given by 
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The plate kinetic energy is expressed by 
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where ),,,,,,,( 20021210 KKJJJIII are mass inertias given 

below by formulas (20a) and (20b). )(z is the mass density. 
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Substituting the expressions for U  , eV  and K  from 

Eqs. (14), (17) and (19) into Eq. (13) and integrating by 

parts and collecting the coefficients of 0u , 0v , 0w , 

and z , the equations of motion of the plate are 

expressed by 
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Using Eqs. (6) in (20), the stress resultant of FG plate is 

related to the total strain by 
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3.4 Equations of motion in terms of displacements  
 

Introducing Eq. (22) into Eq. (21), the equilibrium 

equations can be expressed in terms of displacements 0u ,

0v , 0w , and z by following formulas. 
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where ijd , ijld , ijlmd and id are given by 
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3.5 Analytical solutions  
 

A simply supported rectangular FGM plate is considered 

with length a and width b under transverse load q . Using 

Navier’s solution method, the expressions of displacements 

( 0u , 0v , 0w , and z ) are given by 
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where mnU , mnV , mnW , mnX and mn  unknown 

displacement coefficients must be determined,  is the 

Eigen frequency associated with ),( nm Eigen mode. 

and  are expressed as 

,/ am  bn /   (27) 

Substituting Eq. (26) into Eq. (24), the analytical 

solutions can be then defined by 

















































































































































0

0

0

0

0

5545352515

4544342414

3534332313

2524232212

1514131211

2

5545352515

4544342414

3534332313

2524232212

1514131211

mn

mnX

mnW

mnV

mnU

mmmmm

mmmmm

mmmmm

mmmmm

mmmmm

sssss

sssss

sssss

sssss

sssss



 (28) 

where elements of ijs and ijm are stiffness and mass 

matrices respectively. These elements are given by 
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4. Numerical results  
 

In this study, various numerical examples are presented 

to verify the accuracy of the present HSDT in predicting the 

natural frequency of simply supported plates. The analytical 

solution of the present work is compared with those of other 

theories. FG plates made of two material combinations of 

metal and ceramic: Al/ZrO2 and Al/Al2O3 are considered. 

Their corresponding material properties are given in Table 1. 

 

 

Table 1 Material properties of metal and ceramic 

properties 

Metal Ceramic 

Aluminum 

Al 

Alumina 

Al2O3 

Zirconia 

ZrO2 

Young’s 

modulus 

E(GPa) 

 

 

70 

 

380 

 

200 

Poisson’s 

ratio 

ʋ 

 

 

0,3 

 

0,3 

 

0,3 

Mass density 

ρ(kg/m3) 

 

2702 

 

3800 

 

5700 

 

4.1 Results of vibration analysis 
 
4.1.1 Example 1 
On the one hand, numerical results for vibration analysis 

are presented (Table 2). A comparison of the results of the 

natural frequency obtained by the present theory for simply 

supported isotropic square plate is given. For convenience, the 

following non-dimensional natural frequencies and non-

dimensional parameters of foundations are used 

0
2 Dha  ˆ  (30) 

 

0
4 DawKwk /  (31) 

 

0
2 DasKsk /  (32) 

 





  )(/ 21123

0 EhD  (33) 

Table 2 presents the first eight no-dimensional natural 

frequencies. The obtained results are compared with 3-D 

exact solutions developed by Leissa (1973), Zhou et al. 

(2002), Nagino et al. (2008), a FSDT computed via DQM 

(differential quadrature element method) given by Liu and 

Liew (1999), and the HSDT theories studied by Shufrin and 

Eisenberger (2005), Hosseini-Hashemi et al. (2011),   

Akavci (2014) and Mantari (2015).       

Inspection of the table 2, it can be seen that the values 

obtained by the present computation are very close with 

those given by 3-D exact and HSDTs theories with 

decreasing of thickness ratio 1000 to 5.  

On the other hand, FG plates are studied (Al/Al2O3). 

The main aim of this computation is to verify the obtained 

results with 3-D exact solution performed by Jin et al. 

(2014) and Mantari (2015). For this purpose, the non-

dimensional fundamental frequencies  are given in Table 

3, for different values of power law index p  and thickness 

ratio. In this part, the relations of non-dimensional natural 

frequencies and parameters of elastic foundation were used 

(see Eqs. (34) to (40)). Again, an excellent agreement 

between the results is seen (for square and rectangular 

plates). 

mEmh /   (34) 

 

cEch /   (35) 

 

mEmha /)/ (~  2  (36) 

 

cEcha /)/ (  2  (37) 
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Table 3 Comparison of non-dimensional fundamental 

frequencies mEmh /  of Al/Al2O3 FG plates 

 

 

 

 

 

 

DaKk ww /4  (38) 

 

DaKk ss /2  (39) 

with 

)])()(/[(])(

)()[(/

pppcEpp

mEppphD





321223

23821123 

 (40) 

The effect of power law index p on the non-dimensional 

fundamental frequency of moderately thick square plates 

(a/h=10) for two FGMs (Al/ZrO2 and Al/Al2O3) is displayed 

in Fig. 2. It can be seen that the non-dimensional frequency 

is higher when the Al2O3 is employed in the top surface. 

Also from this figure, the eigenfrequency of a homogeneous 

material (Al/ Al) is shown as reference value. 

The Fig. 3 shows the effect of the aspect ratio a/b on the 

non-dimensional fundamental frequency for moderately 

thick plates (a/h=10, p=1) for the above two FGMs 

(Al/ZrO2 and Al/Al2O3). Again we see that the non-

dimensional frequency is higher when the material Al2O3 is 

used in the top surface. However, the non-dimensional 

frequency is close to that of a homogenous material 

(Aluminum) for small values of the aspect ratio a/b. 

 

 

 

Table 2 Non-dimensional fundamental frequencies 0

2ˆ Dha   for simply supported isotropic square plates 

/a h  Theory Mode (m,n) 

(1,1) (1,2) (2,1) (2,2) (1,3) (3,1) (2,3) (3,2) 

1000 Leissa (1973) 19.7392 49.3480 49.3480 78.9568 98.6960 98.6960 128.3021 128.3021 

Zhou et al. (2002) 19.7115 49.3470 49.3470 78.9528 98.6911 98.6911 128.3048 128.3048 

Akavci (2014) 19.7391 49.3476 49.3476 78.9557 98.6943 98.6943 128.3020 128.3020 

Mantari (2015) 19.7405 49.3486 49.3486 78.9580 98.6967 98.6967 128.3049 128.3049 

Present 19.7391 49.3475 49.3475 78.9557 98.6943 98.6943 128.3019 128.3019 

100 Liu and Liew (1999) 19.7319 49.3027 49.3027 78.8410 98.5150 98.5150 127.9993 127.9993 

Nagino et al. (2008) 19.7320 49.3050 49.3050 78.8460 98.5250 98.5250 128.0100 128.0100 

Akavci (2014) 19.7322 49.3045 49.3045 78.8456 98.5223 98.5223 128.0346 128.0346 

Mantari (2015) 19.7332 49.3086 49.3086 78.8550 98.5365 98.5365 128.0346 128.0346 

Present 19.7323 49.3049 49.3049 78.8467 98.5241 98.5241 128.0146 128.0146 

10 Liu and Liew (1999) 19.0584 45.4478 45.4478 69.7167 84.9264 84.9264 106.5154 106.5154 

Nagino et al. (2008) 19.0653 45.4869 45.4869 69.8093 85.0646 85.0646 106.7350 106.7350 

Akavci (2014) 19.0850 45.5957 45.5957 70.0595 85.4315 85.4315 107.3040 107.3040 

Mantari (2015) 19.1190 45.7339 45.7339 70.3148 85.7622 85.7622 107.7376 107.7376 

Present 19.0914 45.6286 45.6286 70.1297 85.5289 85.5289 107.4422 107.4422 

5 Shufrin and Eisenberger 

(2005) 

17.4524 38.1884 38.1884 55.2539 65.3130 65.3130 78.9864 78.9864 

Hosseini-Hashemi et al. 

(2011) 

17.4523 38.1883 38.1883 55.2543 65.3135 65.3135 78.9865 78.9865 

Akavci (2014) 17.5149 38.4722 38.4722 55.8358 66.1207 66.1207 80.1637 80.1637 

Mantari (2015) 17.5899 38.6582 38.6582 56.0674 66.3474 66.3474 80.3365 80.3365 

Present 17.5324 38.5275 38.5275 55.9053 66.1815 66.1815 80.1826 80.1826 

ab /  ha /  p  Theory 

Jin et al.  

(2014) 

Mantari  

(2015) 

Present 

1 10 0 0.1135 0.1137 0.1135 

1 0.0870 0.0883 0.0882 

2 0.0789 0.0806 0.0806 

5 0.0741 0.0756 0.0755 

5 0 0.4169 0.4183 0.4170 

1 0.3222 0.3271 0.3261 

2 0.2905 0.2965 0.2961 

5 0.2676 0.2726 0.2720 

2 0 1.8470 1.8543 1.8538 

1 1.4687 1.4803 1.4798 

2 1.3095 1.3224 1.3237 

5 1.1450 1.1565 1.1547 

2 10 0 0.0719 0.0719 0.0718 

1 0.0550 0.0558 0.0560 

2 0.0499 0.0510 0.0513 

5 0.0471 0.0480 0.0482 

5 0 0.2713 0.2721 0.2713 

1 0.2088 0.2121 0.2123 

2 0.1888 0.1928 0.1938 

5 0.1754 0.1789 0.1794 

2 0 0.9570 1.3075 1.3055 

1 0.7937 1.0371 1.0381 

2 0.7149 0.9297 0.9335 

5 0.6168 0.8248 0.8253 
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Fig. 2 Effect of power law index p on the non-dimensional 

fundamental frequency mEmha /)/ (~  2  of FG 

square plates (a/h=10)  

 

 

 

Fig. 3 Effect of the aspect ratio a/b on the non-dimensional 

fundamental frequency mEmha /)/ (~  2  of FG 

plates (a/h=10, p=1) 

 

 

The effect of the aspect ratio a/b on the non-dimensional 

frequency of FG plates resting on Winkler-Pasternak 

foundation is shown in Fig. 4. We can expect from this 

result that if the parameter sk increases, the eigenfrequency 

increases, for a given aspect ratio a/b and parameter wk . 

Figs. 5 and 6 show the effect of elastic foundation 

parameters wk and sk respectively on the nondimensional 

frequency of FG square plates made of Al/Al2O3. It can be 

seen from this result that the curves, displayed on Fig. 5, 

present a linear trend for different values of wk . However, 

the curves are greater slope to that obtained in Fig. 6. For 

this purpose, the influence of parameter sk  on the 

eigenfrequncies is greater compared to that of parameter 

wk . 

 

 

 

Fig. 4 Variation of non-dimensional fundamental frequency 

cEch /   of Al/Al2O3 FG rectangular plates 

resting on elastic foundation versus the aspect ratio (a/h=10, 

p=1) 

 

 

Fig. 5 Variation of non-dimensional fundamental frequency 

mEmha /)/ (~  2  of Al/Al2O3 FG square plates 

resting on elastic foundation versus the parameter wk  ( sk

=10, p=1) 

 

 

Fig. 6 Variation of non-dimensional fundamental frequency 

mEmha /)/ (~  2  of Al/Al2O3 FG square plates 

resting on elastic foundation versus the parameter sk  ( wk

=10, p=1) 
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5. Conclusions 
 

In the present paper, a free vibration analysis of 

advanced composites plates resting on Winkler-Pasternak 

elastic foundation, using an efficient hybrid quasi-3D 

higher-order shear deformation theory was studied. This 

theory accounts for the thickness stretching and shear 

deformation effects without requiring an appropriate shear 

correction factor. It contains only five unknown functions 

and then five governing equations are only obtained. 

Moreover, the number of unknowns is reduced and is less 

than other theories found in the literature. The governing 

equations are deduced by utilizing Hamilton’s principle. 

The equations of motion are solved analytically using the 

Navier’s type solution. Furthermore, natural frequencies are 

obtained by solving the results of eigenvalue problems. The 

effects of power law index, thickness ratio and two-parameter 

elastic foundation on the natural frequencies are analyzed. The 

key conclusions that emerge from the numerical results can be 

summarized as follows: 

 

• The accuracy of proposed hybrid quasi-3D higher-order 

theory is an excellent agreement compared with the FSDT and 

with other closed-form solutions published in the literature. 

• For thick plates, the stretching effect is more pronounced 

and it needs to be taken account. 

• The foundation stiffness affects the vibration of FGM 

plates.     
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