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Abstract. This research investigates the free vibration analysis of advanced composite plates such as functionally graded plates
(FGPs) resting on a two-parameter elastic foundations using a hybrid quasi-3D (trigonometric as well as polynomial) higher-
order shear deformation theory (HSDT). This present theory, which does not require shear correction factor, accounts for shear
deformation and thickness stretching effects by a sinusoidal and parabolic variation of all displacements across the thickness.
Governing equations of motion for FGM plates are derived from Hamilton’s principle. The closed form solutions are obtained
by using Navier technique, and natural frequencies are found, for simply supported plates, by solving the results of eigenvalue
problems. The accuracy of the present method is verified by comparing the obtained results with First-order shear deformation
theory, and other predicted by quasi-3D higher-order shear deformation theories. It can be concluded that the proposed theory is
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efficient and simple in predicting the natural frequencies of functionally graded plates on elastic foundations.
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1. Introduction

Functionally graded material (FGM) is inhomogeneous
composite materials, proposed for the first time in 1984 by
materials scientists in the Sendai area (Koizumi 1993,
Koizumi 1997) as thermal barrier. FGM is characterized by
variation in material properties from one surface to a further
along the thickness direction. This concept of FGM can
effectively eliminate the interface problems commonly
found in composite materials due to stress concentration
under the action of external mechanical and/or thermal
loads. Those advanced composite materials have the
primary constituents made from a mixture of metal with
ceramic or from a combination of materials. The FGM is
now being used in many structural applications: aircraft,
spacecraft (Kar and Panda, 2015a, Xu and Xing 2016), and
in other various fields: civil, gas turbines, nuclear fusions,
biomaterial electronics, optical thin layers (Bensaid et al.
2017) and other engineering and technological applications
(Miyamoto et al. 1999). This flexibility in design for the
FGM is given by their strength and stiffness.

In recent years, a number of studies and computational
techniques have been performed and applied for
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engineering fields to analyze the static, dynamic and
buckling behaviors of FG plates (Jha et al. 2013, Kar and
Panda 2013, Sobhy 2013, Ait Amar Meziane et al. 2014,
Kar and Panda 2014, Meksi et al. 2015, Attia et al. 2015,
Kar 2015a, b, Kar and Panda 2015b, c, d, Bouderba et al.
2016, Kar and Panda 2016a, b, c, d, Houari et al. 2016,
Boukhari et al. 2016, Kar et al. 2017, Kar and Panda 20174,
b, Mahapatra et al. 2017, Neves et al. 2017) led to the
development of various plate theories. However, this
behavior can be predicted using either, the classical plate
theory (CPT), first-order shear deformation plate theory
(FSDT) and higher-order plate theory (HSDT). The
classical plate theory (CPT) neglects transverse shear
deformation effect (Feldman and Aboudi 1997, Javaheri and
Eslami 2002, Chen et al. 2006, Abrate 2008, Zhang et al.
2008, Mahdavian 2009, Mohammadi et al. 2010, Baferani
et al. 2011) and it is acceptable only for thin plates. The
first-order shear deformation plate theory (FSDT) has been
used for FG thick and moderately thick plates (Yaghoobi
and Yaghoobi 2013, Mantari and Granados 2015, Bellifa et
al. 2016). This theory takes into account the transverse
shear deformation effects and requires an appropriate shear
correction factor in order to satisfy the zero transverse shear
stress boundary conditions at the top and bottom of the plate.
The second-order shear deformation plate theory (SSDT)
has been used by Saidi and Sahraee (2006). They studied
axisymmetric bending and stretching of functionally graded
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solid circular and annular plates. Khdeir and Reddy (1999)
studied the free vibration of laminated composite plates
using SSDT. Shahrjerdi and Mustapha (2011) have been
used SSDT to study the free vibration of FG plates
(rectangular and square). Karami et al. (2018) used SSDT
to study wave dispersion of mounted graphene with initial
stress. Nami et al. (2015) were used nonlocal third-order
shear deformation theory to analyze the thermal buckling of
FG rectangular nanoplates. Alternatively, several higher-
order shear deformation plate theories (HSDT) have been
proposed for FG plates, with higher-order variations of
displacements (Neves et al. 2012, Bouazza et al. 2015,
Bensatallah et al. 2016). A large number of studies have
been performed to study the mechanical behavior of
advanced composite plates using non-polynomial functions
(hyperbolic, sinusoidal, exponential and tangent). The aim
to use these functions is to describe the warping through the
thickness, taking into account the transverse shear
deformation effect in the plate. Mantari et al. (2012)
employed the non-polynomial trigonometric function in the
displacement to study the bending response of sandwich
and laminated plates. Also, Mantari (2015) studied the
bending analysis of functionally graded shells by presenting
a closed-form solution of a generalized hybrid type quasi-
3D higher order shear deformation theory. The buckling
behavior of sandwich plates with functionally graded skins
using a new quasi-3D hyperbolic sine shear deformation
theory has been studied by Neves et al. (2012). Tounsi and
his co-workers (Ait Amar Meziane et al. 2014, Attia et al.
2015, Hassaine Daouadji et al. 2015 and Bousahla et al.
2016) developed a new refined plate theory for free
vibration analysis of functionally graded materials with four
unknown functions. They introduced undetermined integral
variables into the displacement field. This theory does not
require shear correction factor and satisfies the zero
transverse shear on the surfaces of the plate. The thickness
stretching effect is ignored in the above theory and the
transverse displacement is considered constant in the
thickness direction, as in Kirchhoff-Love type thin FGM
plates. The majority of higher-order shear deformation
theories employed to investigate the mechanical behavior of
FGM plates contain five unknowns. In order to diminish the
number of variables used in the equilibrium equation,
satisfying the shear deformation effects on the bottom and
top surfaces of plate without employing shear correction
factor, many refined theories have been offered. Shimpi and
Patel (2006) have studied the free vibration of plate using
two variable refined plate theory. Nguyen et al. (2015) have
studied the bending, vibration and buckling analysis of FG
sandwich plates using a refined shear deformation theory.
Karami et al. (2017) were used a four variable refined plate
theory to study the wave propagation analysis in FG
nanoplates under in-plane magnetic field based on nonlocal
strain gradient theory. Karami and Janghorban (2016) have
been used one parameter and two-variable refined plate
theory to study the effect of magnetic field on the wave
propagation in nanoplates based on strain gradient theory.
Always, Karami and Janghorban (2018) were studied wave
propagation in fully clamped porous FG nanoplates.

From the literature, there have been many studies on the

bending, vibration and buckling behaviors of FGM plates
resting on elastic foundations (Ait Atmane et al. 2010,
Abualnour et al. 2018, Shahsavari et al. 2018, Ait Atmane
and Tounsi 2017). Meftah et al. (2017) studied the free
vibration of FG thick rectangular plates on elastic
foundation using a non-polynomial four variable refined
plate theory. Shahsavari et al. (2018) have studied the shear
buckling of single layer graphene sheets in hygrothermal
environment resting on elastic foundation based on different
nonlocal strain gradient theories. These foundations
considered include the Winkler and Pasternak type elastic
foundations.

In this paper, the vibration analysis of FGMs plates is
analyzed based on a simple and efficient hybrid quasi-3D
higher-order shear deformation plate theory. The highlight
of this theory is that, in addition to including the Winkler-
Pasternak elastic foundations and the thickness stretching
effect, the displacement field contains only five unknowns
against six or more displacement functions used in other
theories. Governing equations of motion for FGM plates are
derived from Hamilton’s principle. The closed form
solutions are obtained by using Navier technique, and
natural frequencies are found, for simply supported plates,
by solving the results of eigenvalue problems. Moreover,
the accuracy of the hybrid quasi-3D HSDT is examined by
comparing the present results with published ones.

The paper is organized as following. Section 2 outlines
the geometric configuration and material properties of
FGMs plates. Section 3 describes the theoretical
formulation methodology of FGMs, constitutive relations,
displacement field and strains, plate governing equations,
equations of motion in terms of displacements and
analytical solutions. The last section 4 is about numerical
results and discussions. Finally, further general aspects are
given in the conclusions.

2. Geometric configuration and material properties

Consider an FG plate of length a, width b, and
thickness h that is made of a FGM and resting on elastic
foundation (Fig. 1). The FGM is assumed to vary from the
ceramic-rich top surface (z = h/2) to the metal-rich bottom
surface (z = —h/2). The rectangular Cartesian coordinate
system x,y,z hasthe plane z = 0.

Mid-plate

Fig. 1 Geometry of FGM plate resting on Winkler-
Pasternak foundation



Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory 123

The effective Young’s modulus E of the FGM plate can
be expressed in a power law as (Reddy2000)

1 z\°
= P = += 1
P(z) = P, + (P, Pm)(2+ hj )

In which the variables with subscripts ¢ and m denote
the properties of the top and bottom surfaces of the plate,
respectively, and p is the power law index. The volume
fraction index p specifies the material variation profile
through the thickness. The value p =0 represents a
ceramic plate.

3. Theoretical formulation

3.1 Constitutive relations

The linear constitutive relations of the FG plates are written
as

Ox (Qu Qn Q3 O 0 0 || &x
Oy Qaz Q2 Q3 0 0 0 &
0, _ Qiz Q3 Q3 O 0 0 |] e @)
Ty, 0 0 0 Qu O 0 ||7y
Ty 0 0 0 0 Qx5 0 ||7x
T [0 0 0 0 0 Qgllry

Where (o'x,o'y,o'zlz'yzlz'lez'xy) and (gx,gy,gzlyyzl

Vg ! 7Xy) are the stress and the strain components,

respectively. The stiffness coefficients Qij are given by

E(z)(1 -
Qi = Q2 = Qg3 = % (32)
E
Q2 = Qi3 = Q3 = (:I.—VZV—)E]Z.)-H/) (3b)
Qa4 = Qs5 = Qg6 = 2(|1E(+Z)V) (3¢)

3.2 Displacement field and strains

Basic assumptions for the displacement field of the plate,
including the transverse normal stress effect are given as (Mahi
etal. 2015)

ow ow,
ST f@O= 000D (@a)

u(Xx, ,z,t:u X, ,t—Z
(X, Y, 2,t) = Ug (X, y,t) ™

V(X, Y, Z,t) = vo(X, y,t) — z% + f(z)%(x, y, t) (4b)

(4c)
W(X, \z th) = Wb(X, y/t) + g(Z){DZ(X, y/t)

Where u, and v, are the in-plane displacements of the
geometrical mid-plane of the plate along the x and y
directions. w;, and w; are the bending and shear components
of the transverse displacement, respectively, and the additional
displacement ¢, accounts for the effect of normal

stress. f(z) and g(z) represent shape functions defining the

distribution of the transverse shear strains and stress through
the thickness.

Based on the thick plate theory and including the thickness
stretching effect (effect of transverse normal stress), the basic
assumptions for the displacement field of the FG plate can be
expressed as follows (Abualnour et al. 2018)

u(x,y,z,t) = ug(x, y,t) - z% + Ky f(z)j@(x, y,t)dx (5a)
X

V(X, Y, 2) = vo(X, y,t) - z% +k, f(z)Ie(x, y, t)dy (5b)

5¢c
W(X, Y, z,t) = Wo(X, Y, t) + g(2)p, (X, y,1) (¢)
The coefficients k,and k, depend on the geometry of

the FG plate. The displacements field of the present theory,
satisfying the conditions of transverse shear stresses (and
hence strains) on the top and bottom surfaces of the plate, is
given in simpler form as

owb do
u(x,y,z,t) =upg(x, y,t) —z— + k1 A' f(z)—
(X, y,2,t) =up(x, y,1t) 6x+1 ()dx

(6a)
v(X,y,2) = vo(X, y,t) - z%bJrkzﬁ- f(z)(cji_i )
w(X, Y, z,t) = wh(x, y,t) + g(2)p(X, y,t) )

It is clearly seen that the displacement field in Eq. (6)
handles only five unknowns, i.e., ug, vy, wp,fand .

In this study, the shape functions f(z) and g(z)are
chosen based on the trigonometric form (Mahi et al. 2015)

3
f(z):ntanh2Z 4__z

27 h  3h2coshg)? Q)

9(z)=1- 4[5]2 ®

h

The non-zero strains associated with the new
displacement field in Eq. (6) are

ol e [k kx
gyt =16y b+ 21k b+ T2 k] (9a)
) e kY Ky
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;/yz = f' ySZ 7/]);2
{m} (Z){y%} + 9(2){7;} (9b)

g, = 9'(2)e? (9c)

where

(10a)

B D2 W,
kb ox?
o%w,

Y (10b)
D% W,
oXoy

-2

2
i
kS OX
. 0%0
ks = k28|y (10C)
Xy 0%0

(k,A+k ,B")
Oxoy

(10d)

(10e)

a9(2)
0z

It can be seen from Eq. (9) that the transverse shear strains
(7y,and y,,) are equal to zero at the top (z = h/2) and
the bottom (z = —h/2) surfaces of the FG plate.

We used the Navier type procedure to resolve integrals
used in the above equations. We can express them as

£ = P 9= (10f)

2
, — de:B'aH,
OXoy  OX oxoy

2
L PYNRPL
oy

(11)
je ax= a2 ja dy = 820
OX oy

The coefficients A'and B'are depending on the solution
type obtained by Navier method. We give below A', B', k;
and k,

. 1
L RPN

« and g are defined in Eq. (27).

3.3 Plate governing equations

Hamilton’s principle is employed to derive the equations of
motion. It can be stated as (Reddy 2002, Bennoun et al. 2016)

t
O=I(5U+5Ve—5K)dt (13)
0

The variation of strain energy is expressed as

§U:J.[GXJL‘X+D'y§£y+o'ZJ£Z+rxy(5}/xy+ry25yyz+rXZ§7XZ]dAdV

\Y
:ﬂwuNyagg+nguny5y9y+M95k9+M9M9+
A (14)
mBy 5 iy
FME KT+ MY Sk + My 5Ky + Q52 6 7% + 5526 Az + Qe 6 7% "
+5>5<z5;’}<z
where A is the top surface and stress resultants
N,M,S and Q are given by
h/2
b .
(NilMi /Mis): _[(1:2: Foidz, (i = x y, %),
-h/2
h/2 (15)
N, = Ig’(z) o, dz
-h/2
and
h/2
(S;Z,S)S,Z)Z J‘g(rxz'ryz}jzl
-h/2
h/2 (16)
(Q;Z,Q)SIZ): If'(z'xz,ryz)jz
-h/2
SV = I fod WodA an

A
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fe = KWW— KS
8X2 ayZ

(18)

The plate kinetic energy is expressed by

6K = I [U6 G+ v + i ] p(z) dV
v

:j{ (lig 6 g + g 8 g + vig Vi) + Jolvitg 6 5 + ¢, & i)

)
|1[U06§W0+ﬂ50 V 65W0+%§ )

o2 D B[%g}] (19)

oy 6w0 0(5W0 cwo o&wo +Ky (klA')Zi“” g8 )zaé@
X o oy

2iig 256 aeaawoJ o5 [awo 50 MMWOJ]WowZﬁwz]d

—Jol ky A
2t IR

X X X &

where (lg, 13, 12, 31, J2, Jg, Ko, K») are mass inertias given

below by formulas (20a) and (20b). p(z) is the mass density.

h/
(lo, 11, 12, 31) = j

-h/

2
b2 2 @) (20a)
2

h/2

(J2, 30, Ko, K) = (zf(z), 9(2) 9%(2) fz(z))p(z) dz  (20b)
2

~h/
Substituting the expressions for & U , 0Ve and ¢ K from
Egs. (14), (17) and (19) into Eqg. (13) and integrating by
parts and collecting the coefficients of sug ,dvy,dwg, 56

and oS¢, , the equations of motion of the plate are
expressed by

sug s Mo Moy oy o gy 020

OX oy X OX

N, oN j
Svg 1 —L+—2 = |0Vo—|1%+J1k2B'%

o X oy oy

2pp b aZMb asz
Fw aa'le + ayzy +2 My*y —fo = IgW + Jo¢p +

X X
(%o, Yoy iy + 3 (klA'ﬁm g 00 9)

ox oy o2
M
5O 0 —KMS —koM$ — (kA + kB L 4 (21)
oxoy
S .
klA' anz Jrk B ¥ Q)’Z :7J1(k1A' auO +k Bra\IO)
oy ox oy
, ,62" 0% , 020
(klA 0 1 k,B 0y — K, ((k, A )27+(k B")? =)
6x aX ay

asy, | 08y )

oy 6;((2 WYZ_N = JoWy + Ko,
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Using Egs. (6) in (20), the stress resultant of FG plate is
related to the total strain by

ay
oX
[ S S ) N
Ny M1 A2 0 By B2 0 By B, 0 X3 £l
Ny| |2 A2 O Bi2 Bz 0 B By 0 Xp3| | Ao g
Ny| |0 0 A 0 0 Bg 0 0 By 0 3Y25‘X
b S 0°wp
M)é Big Bl 0 Dip D12 0 Dy D 0 Vi3 6)(72
My| |B2 B2 0 D1z Dz 0 D} D3 0 Y3 P | (22a)
ngooseeooonooogso ’?
M| B B, 0 Dfy Df 0 MY MY, 0 v oy
Myl e, B, 0 D, D5, 0 HS, HS, O ¥ BET)
. 2 By 12 D2 1 H2 23 o
Myl |0 o B, 0 0 D% 0 0 HS 0 8
N, 56 b 0 86 k0
X13 X23 0 Vi3 Y3 0 Y7 Yya 0 233_ (klAUrsz')%
[
s s s ] kZB' o6 klAI o0
Syz _ Gas Asg oy OX (22b)
Sy.] |G As| %22 O
e OX
s s s ] kZB % kg A %
Qu | _|Fas Gas oy ox (220)
Q% Fss Gsss_ (23 90,
L % ox
where
h/2
(A 25.8;) = [Qul g% 2k (23a)
-h/2
h/2
s _
(Dy.B;.D;) = IQ“ 22, £(2),2 f(2)z (23b)
~h/2
h/2
(Hs, F;.Gs) = IQ,J f2(2), 12 (2), ' (9@ )z (230)
“h/2
h/2
(% ¥4, %5 24) = [tz 0@ @d (@3
-h/2

3.4 Equations of motion in terms of displacements

Introducing Eq. (22) into Eq. (21), the equilibrium
equations can be expressed in terms of displacementsu, |,

Vg, Wy, 0 and ¢, by following formulas.
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A1 diglg + Agg ol + (Arp + Agg) dipVg
= By Ay Wo — (Byp + 2Bgg) dypoWo +

(kyBf) + kyBgp) d10 + (K A' + k,B)Bggy 00 + Xi50h0,  (24a)
= lgliy — 1,dyViy + (kyA)Jd,6

(Arz + Agg) digllp + Agg di1Vp + Agp daoVo

= (Bya + 2Bgg) dyy Wy — By dppWg +

(k;B) + kyB3,)dy0 + (ki A" + k,B")Bggdy 1,0 + X,30,0, (24b)
= lgVy — 1,d,Viy + J1k,B'd,0

By digtp + (Bya + 2Bgg) dyplip + (Byp + 2Bgg) digaVp
+ ByalypVp — Dyg dyg1Wo — Daalyoa Wy

— 2(Dy, + 2Dgg) dygp0Wg + (ki Dy + ko Dpy) dy10

+ (kyDy, + kyD3,)d500 + 2(ky A" + K,B') Dggdy 100
+Y130130, + Yosdopp, — fo = oWy + Jo¢),

1, (dylip + dyVig) — 1,V 20 + J, (k A'dy 16 + k,B'd 00

(24c)

— (kyBry + kpBgp) diug — (kyBy, + k;B3,) dyvg
— Bgs(kiA' + kpB") (dipUg + di1aVo)
+ (k;Dp1 + Ko Dp,) digWo + (K Dy + kpD35)d55Wo
+ 2Dgg(k A + kyB) dyq oW
— (k*Hsy + ko 2HS, + 2kik,He,) 0 + (kg A)? Foedy 10
+ (kB2 Fyd 000 — Heg(ky A + kyB")? dypp0
= (kyY13 + KoY33)p, + kiA'Gssdy 0,
+ K,B'G34d 00, = —J;(k A'dyliy + k,B'd,Vy )
+ 3, (kg A'dy Vil + Ky B'd Vg )
— Ky (k220310 + (kB2 d 0

(24d)

—X13diUg — X30,Vg + Yi3011Wo + Y3055,
+ (ky(Ggs — Yi3) + ko(Gay — Y22))0 + ASsdys0,  (24e)
+ Agydo0, — Zzap, = JoWg + Ko,

where d;;, dj; , djji, and d; are given by
2 3
d; :8_, diy :8—’
OXiOX OX;OXOX,
(25)
d o° d 6 (i,j,l,m=12)
im=————0i =— (i,j,I,m=12).
i oo ooy o

3.5 Analytical solutions

A simply supported rectangular FGM plate is considered
with length aand width b under transverse load q. Using

Navier’s solution method, the expressions of displacements
(ug Vg, Wy, 6 and ¢,) are given by

ug Umn cos(a x)sin( A3 y)e_i“’t
Vo| oo w | Vin sin(ax)cos(sy)e! @t
wo = Z Z Wi sin(a x)sin( g y)e! @1 (26)

0 ==l x . sin(a x)sin(A y)eia’t

¥z ®mn sin(a x)sin( S y)e

it

where U, , Vion + Won + Xy and @, unknown
displacement coefficients must be determined, w is the
Eigen frequency associated with (m,n)Eigen mode. «
and g are expressed as

a=mr/a f=nx/b (27)

Substituting Eq. (26) into Eq. (24), the analytical
solutions can be then defined by

S11 512 S13 S14 815
S12 S22 S23 824 S25

2

$13 S23 S33 S34 S35 |- @

Umn 0
S14 S24 S34 S44  S45 v .

mn
$15 825 S35 S45 S55
- Wmn =10/ (28)
M1 omp Mg Mg ms ]|l
M2 M2 Mp3 M4 M5 | o ||

m3 m23 mM33 M34 M35
M4 M24 M34 M44 M45
my5 m25 M35 M45 M55

where elements of sjj and mijj are stiffness and mass
matrices respectively. These elements are given by

s11.= a®M1 + PR, s12 = a2 + Aes),
s13 =~ B11 — a2 (Ba + 2Bgg),

s14 = ~a(kiBS) + koBS) + af?Bs (KA +koB),
sp2 = o e + BP0,

s03 = —a?B(B12 + 2Bgg) — foBo2, (29)

815 = aX13,

$24 = —ﬁ(lefz + k28§2) + azﬂ(klA +koB )886’
s25 = —fX23,

s33 = a®Dy1 + fD9n + 26242 (Dyy + 2Dgg) +
Ky + Ks(@? + p2),
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s34 = kDS + (kpa? + k1 B2)DS, + 2kD3,

~2a%p2 (kA + kB DS,

s35 = a?V13 + f2Yz3,

S44 = k12Hls1 + k22H§2 + 2k1k2Hls2 +
a?BPkqA + kB )P HEs + al(kiA)?FS
+ f2(kaB)?F .,

S45 = lels3 + szzs3 + azklA'G§5 + ﬂzsz|GZ4,

2,8 2,8
S5 = /-\55+ﬁ Apg + 233

m1=mp2 =1lg, M =5 =mpg5=my5 =0,
m3 =-aly, myg = akAlg, ms =0,
mp3 =411,

Mog = BkoB Iy, ma3 = Ig + 12(a? + B2),

ma3g = —Jg(l(]_Aloe2 + kgBl,Bz),

mag = K((kiA)2a? + (kB )2 %), mgs = Jg,
ms5 = Ko

4. Numerical results

In this study, various numerical examples are presented
to verify the accuracy of the present HSDT in predicting the
natural frequency of simply supported plates. The analytical
solution of the present work is compared with those of other
theories. FG plates made of two material combinations of
metal and ceramic: Al/ZrO, and Al/Al,O; are considered.

Their corresponding material properties are given in Table 1.

Table 1 Material properties of metal and ceramic

Metal Ceramic
properties Aluminum Alumina Zirconia
Al Al,O4 Zr0,
Young’s
modulus 70 380 200
E(GPa)
Poisson’s
ratio 0,3 0,3 0,3
0
Mass density 7, 3800 5700

p(kg/m®)

4.1 Results of vibration analysis

4.1.1 Example 1

On the one hand, numerical results for vibration analysis
are presented (Table 2). A comparison of the results of the
natural frequency obtained by the present theory for simply
supported isotropic square plate is given. For convenience, the
following non-dimensional natural frequencies and non-
dimensional parameters of foundations are used

& =wa? [ph/Dg (30)

ks = K5a2 / DO (32)
Dg = Eh3 /[12(1 _ vz)} (33)

Table 2 presents the first eight no-dimensional natural
frequencies. The obtained results are compared with 3-D
exact solutions developed by Leissa (1973), Zhou et al.
(2002), Nagino et al. (2008), a FSDT computed via DQM
(differential quadrature element method) given by Liu and
Liew (1999), and the HSDT theories studied by Shufrin and
Eisenberger (2005), Hosseini-Hashemi et al. (2011),
Akavci (2014) and Mantari (2015).

Inspection of the table 2, it can be seen that the values
obtained by the present computation are very close with
those given by 3-D exact and HSDTs theories with
decreasing of thickness ratio 1000 to 5.

On the other hand, FG plates are studied (Al/Al,O3).
The main aim of this computation is to verify the obtained
results with 3-D exact solution performed by Jin et al.
(2014) and Mantari (2015). For this purpose, the non-
dimensional fundamental frequencies @ are given in Table
3, for different values of power law index p and thickness

ratio. In this part, the relations of non-dimensional natural
frequencies and parameters of elastic foundation were used
(see Egs. (34) to (40)). Again, an excellent agreement
between the results is seen (for square and rectangular
plates).

o=ohfpm/En (34)

B=whpc /Eg (35)

& =(wa? /h).fpm / Em (36)

B =(wa® /h)/pc / Ec 37)
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Table 2 Non-dimensional fundamental frequencies @ :a)az,/p h/ D, for simply supported isotropic square plates

al/h Theory Mode (m,n)
(1,1) 1,2) (2.2) (1.3) (3.1) (2.3) (3.2)
1000 Leissa (1973) 19.7392  49.3480 49.3480 78.9568  98.6960 98.6960 128.3021  128.3021
Zhou et al. (2002) 19.7115 493470 49.3470 78.9528  98.6911 98.6911 128.3048  128.3048
Akavci (2014) 19.7391  49.3476  49.3476  78.9557  98.6943 98.6943 128.3020  128.3020
Mantari (2015) 19.7405 49.3486  49.3486  78.9580 98.6967 98.6967 128.3049  128.3049
Present 19.7391  49.3475 49.3475 78.9557  98.6943 98.6943 128.3019  128.3019
100 Liu and Liew (1999) 19.7319  49.3027 49.3027 78.8410  98.5150 98.5150 127.9993  127.9993
Nagino et al. (2008) 19.7320  49.3050 49.3050 78.8460  98.5250 98.5250 128.0100  128.0100
Akavci (2014) 19.7322  49.3045 49.3045 78.8456  98.5223 98.5223 128.0346  128.0346
Mantari (2015) 19.7332  49.3086 49.3086  78.8550  98.5365 98.5365 128.0346  128.0346
Present 19.7323 49.3049 49.3049 78.8467  98.5241 98.5241 128.0146  128.0146
10 Liu and Liew (1999) 19.0584  45.4478 454478 69.7167  84.9264 84.9264 106.5154  106.5154
Nagino et al. (2008) 19.0653 45.4869 454869 69.8093  85.0646 85.0646 106.7350  106.7350
Akavci (2014) 19.0850 45,5957 455957  70.0595  85.4315 85.4315 107.3040  107.3040
Mantari (2015) 19.1190 45.7339 457339 70.3148 85.7622 85.7622 107.7376  107.7376
Present 19.0914 45.6286 45.6286  70.1297  85.5289 85.5289 107.4422  107.4422
5 Shufrin and Eisenberger 17.4524  38.1884 38.1884 55.2539  65.3130 65.3130 78.9864 78.9864
(2005)
Hosseini-Hashemi et al. 17.4523  38.1883 38.1883 55.2543  65.3135 65.3135 78.9865 78.9865
(2011)
Akavci (2014) 175149  38.4722 38.4722 55.8358 66.1207 66.1207 80.1637 80.1637
Mantari (2015) 175899  38.6582 38.6582 56.0674 66.3474 66.3474 80.3365 80.3365
Present 175324 38.5275 38.5275 55.9053 66.1815 66.1815 80.1826 80.1826
Table 3 Comparison of non-dimensional fundamental
frequencies @ =wh./pm / Em of Al/Al,O3 FG plates Kk, = Kwa“ D (39)
b/a a/h P _Theory
Jinetal Mantari Present
(2014) (2015) _
1 10 0 0118 01137 0113 k,=K.a’/D (39)
1 0.0870 0.0883 0.0882 ]
2 0.0789 0.0806 0.0806 with
5 0.0741 0.0756 0.0755 — 3 2 2
5 0 04169 0.4183 0.4170 D=h"/120-v*)[p(8+3p+ p°)Em
1 0.3222 0.3271 0.3261 2 (40)
2 0.2905 0.2965 0.2961 +32+ p+ pHEN/IL+ )2+ PIE+ P
5 0.2676 0.2726 0.2720
2 0 1.8470 1.8543 1.8538 The effect of power law index p on the non-dimensional
1 1.4687 1.4803 1.4798 fundamental frequency of moderately thick square plates
2 13095 1.3224 1.3237 (a/h=10) for two FGMs (Al/ZrO, and Al/Al,05) is displayed
> 1.1450 1.1565 1.1547 in Fig. 2. It can be seen that the non-dimensional frequency
2 100 00719 0.0719 0.0718 is higher when the Al,O; is employed in the top surface.
1 00550 0.0558 0.0560 Also from this figure, the eigenfrequency of a homogeneous
2 0.0499 0.0510 0.0513 material (Al/ Al) is shown as reference value.
5 0.0471 0.0480 0.0482 The Fig. 3 shows the effect of the aspect ratio a/b on the
5 0 0.2713 0.2721 0.2713 non-dimensional fundamental frequency for moderately
1 02088 0.2121 0.2123 thick plates (a/h=10, p=1) for the above two FGMs
2 0.1888 0.1928 0.1938 (Al/ZrO, and Al/Al,Oz). Again we see that the non-
3 (5) g'ég% géggg (l)éggg dimensional frequency is higher when the material Al,O3 is
1 0'7937 1'0371 1'0381 used in the top surface. However, the non-dimensional
' ' : frequency is close to that of a homogenous material
2 0.7149 0.9297 0.9335 (Aluminum) for small values of the aspect ratio a/b
5 0.6168 0.8248 0.8253 )
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Fig. 3 Effect of the aspect ratio a/b on the non-dimensional
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The effect of the aspect ratio a/b on the non-dimensional
frequency of FG plates resting on Winkler-Pasternak
foundation is shown in Fig. 4. We can expect from this

result that if the parameter K increases, the eigenfrequency

increases, for a given aspect ratio a/b and parameter kW.
Figs. 5 and 6 show the effect of elastic foundation
parameters K, and K respectively on the nondimensional

frequency of FG square plates made of Al/Al,O;. It can be
seen from this result that the curves, displayed on Fig. 5,

present a linear trend for different values of K. However,
the curves are greater slope to that obtained in Fig. 6. For
this purpose, the influence of parameter kS
eigenfrequncies is greater compared to that of parameter

k
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Fig. 4 Variation of non-dimensional fundamental frequency

B=whpc/Ez of Al/ALO; FG rectangular plates
resting on elastic foundation versus the aspect ratio (a/h=10,
p=1)

Fig. 5 Variation of non-dimensional fundamental frequency
o =(w a2/ h)yom / Em of Al/AI,O; FG square plates

resting on elastic foundation versus the parameter K, (K,
=10, p=1)
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5. Conclusions

In the present paper, a free vibration analysis of
advanced composites plates resting on Winkler-Pasternak
elastic foundation, using an efficient hybrid quasi-3D
higher-order shear deformation theory was studied. This
theory accounts for the thickness stretching and shear
deformation effects without requiring an appropriate shear
correction factor. It contains only five unknown functions
and then five governing equations are only obtained.
Moreover, the number of unknowns is reduced and is less
than other theories found in the literature. The governing
equations are deduced by utilizing Hamilton’s principle.
The equations of motion are solved analytically using the
Navier’s type solution. Furthermore, natural frequencies are
obtained by solving the results of eigenvalue problems. The
effects of power law index, thickness ratio and two-parameter
elastic foundation on the natural frequencies are analyzed. The
key conclusions that emerge from the numerical results can be
summarized as follows:

* The accuracy of proposed hybrid quasi-3D higher-order
theory is an excellent agreement compared with the FSDT and
with other closed-form solutions published in the literature.

* For thick plates, the stretching effect is more pronounced
and it needs to be taken account.

» The foundation stiffness affects the vibration of FGM
plates.
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