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1. Introduction 
 

A tuned mass damper (TMD) is a passive control device 

which has been widely used to mitigate both wind-induced 

(Bortoluzzi et al. 2015) and pedestrian-induced vibrations 

on footbridges (Caetano et al. 2010, Dallard et al. 2001, 

Soong and Costantinou 1994, Van Nimmen et al. 2016). 

The TMD device is composed by three elements: (i) a mass, 

(ii) a viscous damper and (iii) a spring. The TMD mass is 

linked to the structure via the spring and the viscous damper 

(Fig.1a). The movement of the TMD mass and the structure 

must be adjusted via the tuning between the natural 

frequency of the damping device and the natural frequency 

of the vibration mode which needs to be controlled 

(Connor, 2003). Different methods have been proposed to 

obtain the most adequate TMD parameters depending on 

the nature of the excitation (Asami et al. 2002, Salvi and 

Rizzi 2016). Among the different proposals, the current 

trend (Casciati et al. 2014, Nagarajaiah and Jung 2014) for 

the design of TMD aimed at mitigating the walking 

pedestrian-induced vibrations on footbridges, proposes the  

use of some variant of the performance-based design  

                                           

Corresponding author, Assistant Professor 

E-mail: jfjimenez@us.es 
a 
Full Professor

 

 E-mail: andres@us.es 

 

 

method (Liang 2007). According to this method, the TMD 

design problem is transformed into a structural optimization 

problem (Arora 2007). The objective of this optimization 

problem is to obtain the TMD parameters (design variables) 

that, minimizing the cost of the TMD (objective function), 

ensure the compliance of the design requirements 

(constraints) established by the designer/owner/ 

manufacturer. As optimization method, a nature-inspired 

computational algorithm is usually employed, due to both 

the nonlinear relations between the constraints and the 

design variables and in order to guarantee that a global 

optimum solution is reached (Bekdas and Nigdeli 2011, 

Mirzai et al. 2017). Although these methods allow obtaining 

a more accurate estimation of the TMD parameters, the 

performance of TMDs installed on real footbridges is still 

not as good as it is expected (Caetano et al. 2010). The 

main factor, which causes the reduction of the TMD 

performance, is the variability observed in the different 

parameters that characterize the pedestrian-structure 

interaction model while the footbridge is in service 

(Casciati 2016, Venuti et al. 2016). In order to shed some 

light on this issue, the stochastic character of the pedestrian 

action was initially taken into account in the TMD design 

(Marano et al. 2010). Subsequently, the attention was 

focused on considering the uncertainty associated with the 

modification of the modal parameters of the structure 

(Jiménez-Alonso and Sáez 2017b, Lievens et al. 2016) 

induced by the changes of the operational and 
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environmental conditions (Hu et al. 2013, Soria et al. 

2016). Two approaches have been usually employed to 

simulate this uncertainty: (i) a probabilistic approach 

(Jiménez-Alonso and Sáez 2017b) and (ii) a fuzzy logic 

approach (Lievens et al. 2016, Ramezani et al. 2017). 

Regardless of the considered approach, the importance and 

necessity of considering this factor in the TMD design have 

been verified numerically (Jiménez-Alonso and Sáez 

2017b, Lievens et al. 2016). Notwithstanding, a sensibility 

study is needed in order to analyse the performance of the 

different design criteria together with the effect of the 

different design requirements and the different uncertainty 

levels on the TMD parameters. The main objective of this 

paper is precisely to perform such sensitivity study under a 

probabilistic approach. 

For this purpose, a robust optimization design method 

(Zang et al. 2005), based on a multi-objective optimization 

problem (Jiménez-Alonso and Sáez 2017b), is transformed 

herein into a constrained single-objective optimization 

problem with the aim to determine the most adequate TMD 

parameters under uncertainty conditions. The objective 

function is defined in terms of the mass of the TMD. As 

design variables, the TMD parameters are selected. Two 

types of constraints may be considered: (i) equality 

constraints, which allow considering different design 

criteria in order to constrain the form of the frequency 

response function of the structure (Asami et al. 2002); and 

(ii) inequality constraints, which allow guaranteeing the 

compliance of the design requirements established by the 

designer/owner/manufacturer (Butz et al. 2007, Setra 2006, 

Caetano et al. 2009). As optimization method, genetic 

algorithms are adopted. 

The uncertainty of the modal parameters of the 

footbridge is simulated via a probabilistic approach (Engen 

et al. 2017). The modal parameters of the footbridge 

(namely, the natural frequencies and associated damping 

ratios) are assumed as random variables (Hu et al. 2013, 

Soria et al. 2016). The probabilistic distribution function of 

the maximum dynamic response of the structure is 

estimated via the application of the Monte Carlo simulation 

method (Bucher 2009). This probabilistic distribution 

function allows defining the inequality constraints of the 

problem in terms of the considered uncertainty level. This 

probabilistic approach presents two advantages when 

compared to the methods based on fuzzy logic (Lievens et 

al. 2016, Marano and Cuaranta 2009, Ramezani et al. 

2017): (i) the method allows obtaining a direct relationship 

between the uncertainty level and the TMD parameters; and 

(ii) the probabilistic method is simpler and its use is more 

widespread among design and structural engineers. 

In order to validate numerically the proposed motion-

based design optimization method and to perform the 

sensitivity analysis, a steel footbridge, as reported in the 

French standard (Setra 2006), is considered as benchmark. 

A finite element model of the footbridge is performed. Its 

modal parameters are obtained from a numerical modal 

analysis. As the first vertical vibration mode of the 

footbridge is prone to vibrate due to the walking pedestrian-

induced excitation in vertical direction, the vibration 

serviceability limit state of the footbridge needs to be 

checked. The pedestrian action is defined according to the 

recommendations of the Synpex guidelines (Butz et al. 

2007). Two design scenarios are established considering 

two different design requirements (comfort and fatigue) and 

a high pedestrian traffic. The uncertainty associated with the 

value of its first vertical natural frequency and associated 

damping ratio is simulated considering them as uncorrelated 

normal random variables. The probabilistic distribution of 

the maximum vertical acceleration of the footbridge is 

obtained numerically via a Monte Carlo simulation (Wang 

and Chen 2017). A convergence analysis is performed to 

establish the sample size of the simulation. Provided that 

even the average maximum vertical acceleration of the 

footbridge is greater than the allowable vertical acceleration 

for each design scenario, a TMD is installed at the mid-span 

of the footbridge to reduce the pedestrian-induced vibration. 

The motion-based design optimization method has been 

implemented to determine the TMD parameters under 

uncertainty conditions. Finally, a comparison among the 

TMD parameters obtained considering three different 

design criteria (the conventional H∞  and H2  criteria 

(Asami et al. 2002) and a new criterion, Hopt, proposed by 

the authors (Jiménez-Alonso and Sáez 2017b)), different 

design scenarios and different uncertainty levels is 

performed. 

The main outcomes of this study are: (i) the 𝐻𝑜𝑝𝑡  

criterion allows obtaining the most adequate TMD 

parameters to control the pedestrian-induced vibrations on 

footbridge under uncertainty conditions; (ii) an increase of 

the design requirements (comfort and fatigue requirements) 

originates a reduction of the height of the peaks of the 

frequency response function of the footbridge; and (iii) the 

proportional relationship existing between the uncertainty 

level and the TMD parameters. 

This paper is organized as follows. The formulation of 

the TMD-footbridge interaction model is presented in the 

second section. Additionally, in the same section, the main 

assumptions of the interaction model are enumerated, and 

the pedestrian action, simulated according to the 

recommendations of the Synpex guidelines (Butz et al. 

2007), is described. In the third section, a motion-based 

design optimization method is proposed and implemented 

to obtain the TMD parameters, that minimizing the weight 

of the damping device, ensure the compliance of the 

comfort and fatigue requirements of the TMD-footbridge 

system under uncertainty conditions. In the fourth section, 

the numerical validation of the proposed design method is 

performed. A benchmark footbridge is utilized for this 

purpose. A comparison between the TMD parameters 

obtained considering the different design criteria, the 

different design requirements and the different uncertainty 

levels is provided. Finally, some concluding remarks are 

drawn to close the paper. 

 

 

2. TMD-footbridge interaction model under walking 
load 

 

The TMD-footbridge interaction model may be 

formulated from the application of the principle of dynamic 
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equilibrium to the balance of two sub-models (Clough and 

Penzien, 1993): (i) the TMD device and (ii) the footbridge. 

A scheme of the TMD-footbridge interaction model is 

illustrated in Fig. 1(a). The formulation of the TMD-

footbridge interaction model, considered in this study, is 

based on the following assumptions: (i) there is a dominant 

vibration mode which needs to be controlled; (ii) the TMD 

is located at the position with the maximum vertical 

displacement (Fig. 1(b)) of the considered vibration mode; 

and (iii) the vibration modes are normalized to unity. The 

TMD is modelled as a single degree of freedom system 

characterized by three design parameters: the TMD mass, 

md  [kg], the TMD damping, cd  [sN/m], and the TMD 

stiffness, kd  [N/m]. On the other hand, the dynamic 

response of the footbridge is simulated via its modal 

decomposition, so that its dynamic behavior is characterized 

by the modal mass of the considered vibration mode, mf 
[kg], its modal damping, cf = 4 ∙ π ∙ mf ∙ ff ∙ ζf [sN/m], and 

its modal stiffness, kf = mf ∙ (2 ∙ π ∙ ff)
2 [N/m] (being ff. 

the natural frequency of the considered vibration mode and 

ζf its associated damping ratio). For the sake of simplicity, 

this interaction model is only developed here for the vertical 

direction, although it could be easily generalized to any 

other spatial directions. 

 

 

 
(a) 

 
(b) 

Fig. 1 (a) TMD-footbridge interaction model under 

vertical walking load (Caetano et al. 2009) and (b) TMD 

installed under the deck of a footbridge (Butz et al. 

2007) 

 

Therefore, the following system of coupled equations 

follows from dynamic equilibrium 

  ∙  ̈    ∙  ̇    ∙ ( ̇   ̇ )  𝑘 ∙    𝑘 
∙ (     ) =   

 ∙  ( ) (1) 

 

  ∙  ̈    ∙ ( ̇   ̇ )  𝑘 ∙ (     ) =    (2) 

where  ̈ ,  ̇ ,    are the vertical acceleration, velocity and 

displacement of the considered vibration mode of the 

footbridge [m/s
2
, m/s, m];  ̈ ,  ̇ ,    are the vertical 

acceleration, velocity and displacement of the TMD [m/s
2
, 

m/s, m];  𝑟 =       is the relative displacement between 

the TMD and the footbridge [m];   
  is the transpose of the 

considered vibration mode of the structure and  ( ) is the 

ground reaction force generated by pedestrian flows [N/m]. 

Eqs. (1) and (2) may be reorganized in matrix form to 

yield 

M ∙ z̈(t)  C ∙ ż(t)  K ∙ z(t) = F( ) (3) 

where 

M = [
   

   
] C = [

        
     

] 

 K = [
𝑘  𝑘  𝑘 
 𝑘 𝑘 

] F(t) = [  
 ∙  ( )
 

] 

(4) 

 

z̈(t) = [
 ̈ ( )

 ̈ ( )
] ż(t) = [

 ̇ ( )

 ̇ ( )
] z(t) = [

  ( )

  ( )
] (5) 

The resulting set of governing equations may be solved 

either in frequency or in time domain. Although the 

resolution in frequency domain may be advantageous, since 

it allows reducing the simulation time for this particular 

case, its implementation may become complex when the 

proposed formulation is generalized to other scenarios as, 

for instance, if multiple TMDs are provided to control the 

dynamic response of the structure. For this reason, the 

above system of equations will be herein integrated in time 

domain using the -Newmark method, with parameters 

β = 1/4  and γ = 1/2  in order to ensure an 

unconditionally stable solution (Clough and Penzien 1993). 

The ground reaction force,  ( ), is simulated herein, 

according to the recommendations of the Synpex guidelines 

(Butz et al. 2007), as a distributed harmonic force that 

represents the equivalent effect of a walking pedestrian flow 

 ( ) = 28 ∙ cos⁡(2𝜋 ∙ 𝑓𝑠 ∙  ) ∙ 𝑛′ ∙ 𝜓 𝐿 ⁄  [N/m]  (6) 

where 𝐿  is the length of the footbridge [m], 28 ∙

cos⁡(2𝜋 ∙ 𝑓𝑠 ∙  )  is the harmonic force due to a single 

pedestrian, being 280 the vertical dynamic load factor of the 

ground reaction force and 𝑓𝑠  the step frequency (it is 

assumed that it equals the natural frequency of the 

footbridge, 𝑓 , (Butz et al. 2007)); 𝑛′ is the equivalent 

number of pedestrians on the footbridge (i.e., number of 

synchronized pedestrians that originate the same response 

of the footbridge as 𝑛  arbitrary pedestrians with a 

dz

fz

fcfk

fm

dm

dk
dc

rz

TMD

Footbridge

)(tpT
i 
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randomly distributed step frequency (Butz et al. 2007)), 

whose value may be determined from 

𝑛′ =
1 .8 ∙ √𝜁 ∙ 𝑛

1.85 ∙ √𝑛
  if  

𝑑 < 1.  ⁡𝑃/ 2

𝑑 ≥ 1.  ⁡𝑃/ 2
 (7) 

with 𝑑  being the pedestrian density [𝑑=Person/m
2
], 𝜁  

being the damping ratio of the considered vibration mode. 

In Eq. (6) 𝜓 is the reduction coefficient, which takes into 

account the probability that the footfall frequency 

approaches the natural frequency under consideration (Butz 

et al. 2007). Its value may be obtained in vertical direction 

from (for pedestrians walking) 

𝜓 =

{
 
 
 
 
 

 
 
 
 
 

 
1

0.45
(𝑓  1.25)

1

1  
1

0.20
(𝑓  2.1 )

 
0.25

0.90
(𝑓  2.5 )

 .25

 .25  
0.25

0.40
(𝑓  4.2 )

 

   

if  

𝑓 < 1.25

1.25 ≤ 𝑓 < 1.7 

1.7 ≤ 𝑓 < 2.1 

2.1 ≤ 𝑓 < 2.3 

2.3 ≤ 𝑓 < 2.5 

2.5 ≤ 𝑓 < 3.4 

3.4 ≤ 𝑓 < 4.2 

4.2 ≤ 𝑓 < 4.6 

4.6 ≤ 𝑓 

 [Hz] 

(8) 

First, the different design scenarios must be established 

according to the expected pedestrian traffic class (Table 1), 

the location and the relevance of the footbridge. 

Subsequently, the design requirements established by the 

designer/owner/manufacturer of the structure must be 

checked.  

 

 

 

Table 1 Traffic classes and pedestrian densities according 

to the Synpex guidelines (Butz et al. 2007) 

Traffic 

Class 
Density 𝑑 Description 

TC1 15 P Very weak traffic 

TC2 <0.20 P/m2 Comfortable and free walking 

TC3 <0.50 P/m2 
Unrestricted walking, significantly dense 

traffic 

TC4 <1.00 P/m2 
Uncomfortable situation, obstructed 

walking 

TC5 <1.50 P/m2 Unpleasant walking, very dense traffic 

 

 

Table 2 Comfort classes according to the Synpex guidelines 

(Butz et al. 2007) 

Comfort class Degree Allowable vertical acceleration ( ̈𝑙 𝑚) 

CL1 Maximum <0.50 m/s2 

CL2 Medium 0.50-1.00 m/s2 

CL3 Minimum 1.00-2.50 m/s2 

CL4 Discomfort >2.50 m/s2 

 

 

Two design requirements are usually considered: (i) a 

comfort requirement, which establishes the comfort class 

(Table 2) that the footbridge must satisfy and (ii) a fatigue 

requirement, which limits the maximum relative 

displacement between the TMD and the footbridge in order 

to avoid fatigue problems in the TMD (Caetano et al. 2009, 

Weber et al. 2006). 

 

 

3. Motion-based design of TMD under uncertainty 
conditions 
 

The design of the TMD parameters may be carried out 

via the application of a performance-based design 

optimization method (Connor 2003, Liang 2007). The main 

purpose of this design method is to obtain the TMD 

parameters that, minimizing the cost of the damping device, 

ensure the compliance of the design requirements 

established by the designer/owner/manufacturer. As the 

design requirements, which need to be accomplished, are 

defined in terms of both the accelerations of the structure, 

 ̈ , and the relative displacement,  𝑟, between the TMD 

and the structure, this design process may be understood as 

a motion-based design optimization method (Jiménez-

Alonso and Sáez 2017a). 

For the TMD design, the following equivalent 

parameters are normally defined: the mass ratio, μ =
md mf⁄ ; the frequency ratio, δd = fd ff⁄  (where fd is the 

natural frequency of the TMD); and, ζd, the damping ratio 

of the TMD 

md = μ ∙ mf  (9) 

 

cd = 4 ∙ md ∙ π ∙ δd ∙ ff ∙ ζd (10) 

 

kd = md ∙ (2 ∙ π ∙ δd ∙ ff)
2 (11) 

The proposed approach is based on the general scheme 

of a constrained single-objective optimization problem 

(Nocedal and Wright 1999), which may be expressed as 

Minimize 𝑓(𝜃 )  (12) 

 

Subject to 
𝑔𝑒𝑞,𝑗(𝜃 ) = 𝑔𝑒𝑞,𝑗

∗ 𝑗 = 1,2,… , 𝑠

𝑔𝑗(𝜃 ) ≤ 𝑔𝑗
∗ 𝑗 = 1,2,… , 𝑘

  (13) 
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𝜃 
𝑙 ≤ 𝜃 ≤ 𝜃 

𝑢⁡𝑖 = 1,2,… , 𝑛  (14) 

where ⁡𝑓(𝜃 ) is the objective function, 𝑔𝑒𝑞,𝑗(𝜃 ) is the jth 

equality constraint, 𝑔𝑒𝑞,𝑗
∗  is the threshold of the jth equality 

constraint, s is the number of equality constraints, 𝑔𝑗(𝜃) is 

the jth inequality constraint, 𝑔𝑗
∗ is the threshold of the jth 

inequality constraint, k is the number of inequality 

constraints, 𝜃 
𝑙 are the lower and 𝜃 

𝑢 the upper bounds of 

the design variables, 𝜃 , and 𝑛  is the total number of 

design variables. 

This general approach is particularized herein to take 

into account four key aspects: (i) the minimization of the 

weight of the TMD (objective function); (ii) the nonlinear 

relation between the TMD parameters (the design variables) 

and the constraints (optimization algorithm); (iii) the 

consideration of the uncertainties associated with the 

modification of the modal parameters of the structure 

(inequality constraints); and (iv) the selection of a design 

criterion to constrain the form of the frequency response 

function of the structure, Ha (in terms of accelerations), 

according to the considered design criterion. 

The first aspect is taken into account via the definition 

of the objective function in term of the TMD mass ratio, μ, 

since the cost of the TMD depends mainly on this parameter 

(Arora 2007). 

The second aspect may be addressed by selecting as 

optimization method a nature-inspired computational (NIC) 

algorithm. Concretely, genetic algorithms have been chosen 

here for this purpose (Koh and Perry 2010). It is well-

known that gradient-based optimization methods may have 

difficulties to solve accurately nonlinear optimization 

problems, since they may present several local minimums. 

However, NIC algorithms have been widely applied to 

obtain the global minimum in different structural 

engineering applications (Wang et al. 2015). Among these 

NIC algorithms, genetic algorithms have proven their 

effectiveness to solve nonlinear optimization problems. 

Genetic algorithms (Nocedal and Wright 1999) minimize 

the considered objective function with the aim of obtaining 

a global solution, using for this purpose a cooperative 

population which is iteratively modified, according to 

several random rules (initialization, crossover, reproduction 

and mutation). 

The third aspect, the consideration of the uncertainties 

of the modal parameters of the structure, is undertaken via a 

probabilistic approach (Jiménez-Alonso and Sáez 2017b). 

Herein, it is assumed that the change of the modal 

parameters of the footbridge is only originated by the 

modification of the operational and environmental 

conditions (Hu et al. 2012, Soria et al. 2016). Therefore, we 

assume that the numerical model used to simulate the 

dynamic response of the structure has been updated based 

on the experimental identification of the modal parameters 

of the structure (Zivanovic et al. 2007). According to this 

approach, both the natural frequency and the damping ratio 

of the vibration mode, which needs to be controlled, may be 

modelled as uncorrelated random variables which follow a 

predetermined probabilistic distribution function. In 

consequence, the response of the structure is equally 

governed by a probabilistic distribution function. In order to 

estimate this function, the Monte Carlo method may be used 

(Wang and Chen 2017, Bucher, 2009). For this purpose, a 

sample of the possible states of the structure (random sets of 

natural frequencies and associated damping ratios) must be 

generated. The sample size is determined via a convergence 

study, in order to guarantee that the sample size is large 

enough to ensure an accurate estimation of the dynamic 

response of the structure under a preselected significance 

level. The probabilistic distribution function of the response 

allows defining the inequality constraints under a 

probabilistic approach. In this manner, the TMD-footbridge 

system must meet the design requirements according to the 

confidence level established by the 

designer/owner/manufacturer. 

Regarding the fourth aspect, a design criterion must be 

established in order to constrain the form of the frequency 

response function of the structure. Two types of design 

criteria may be considered depending on whether equality 

constraints are included or not in the optimization problem. 

In the first case, which is adopted conventionally by the 

most recent design guidelines (Butz et al. 2007, Setra 2006), 

equality constraints are included in the formulation. These 

equality constraints are imposed to force the frequency 

response function of the structure, Ha , to adopt a pre-

established shape. As the form of the frequency response 

function, Ha, is strongly conditioned by the frequency ratio, 

δd , and damping ratio, ζd , of the TMD, the equality 

constraints normally act directly on these two parameters, 

establishing their values. Among the different proposals, 

two criteria are usually considered to define the equality 

constraints (Asami et al. 2002): (i) the H∞ criterion and (ii) 

the H2  criterion. Under the H∞  criterion (Den Hartog 

1956), the form of the frequency response function of the 

structure is modified in order to minimize the dynamic 

response of the structure under a harmonic excitation; 

whilst, in accordance with the H2 criterion (Crandall and 

Mark 1963), the frequency response function is adapted to 

reduce the dynamic response of the structure under a 

random excitation. 

In this way, the formulation of the design optimization 

algorithm based on the H∞  and H2  criteria may be 

written in a unified fashion as 

find (μ, δd, ζd), optimize f(μ) = μ, subject to  

geq,1(μ, δd) = δd  h1(Hi(μ)) =  

geq,2(μ, ζd) = ζd  h2(Hi(μ)) =  

g1(μ, δd, ζd) =
z̈f,α
z̈lim

 1 ≤  

g2(μ, δd, ζd) =
zr,α
zr.lim

 1 ≤  

 
(15) 

where h1(⋅) is a function (Table 3) that constrains the 

frequency ratio in terms of the considered design criterion, 

Hi(μ) (being i a subscript that reflects the selected design 

criterion: H∞ or H2), h2(⋅) is a function (Table 3) that 

constrains the damping ratio of the TMD in terms of the 

considered design criterion, z̈f,α is the percentile 
th

 of the 

probability distribution function of the maximum vertical  
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accelerations of the structure; z̈lim  is the allowable 

acceleration required by the designer/owner (Table 2), zr,α 

is the percentile 
th

 of the probability distribution function 

of the maximum vertical relative displacements between the 

TMD and the footbridge and zr,lim is the allowable relative 

displacement between the TMD and the footbridge 

recommended by the manufacturer. 

In the second case, only inequality constraints are 

applied to the optimization problem. In this manner, the 

form of the frequency response function, Ha, is freely 

adjusted to the particular conditions of each design 

problem. This second design method may be advantageous 

under the uncertainty conditions associated with the change 

of the modal parameters of the footbridge. Under these 

circumstances, the relaxation of the optimization problem  

 

 

 

 

may favour finding solutions (TMD designs) which better 

match the particular requirements of the problem, reducing, 

as a consequence, the cost of the damping device (Jiménez-

Alonso and Sáez 2017b). Herein, this third design criterion 

is denominated as the Hopt criterion. Thus, the formulation 

of the motion-based design optimization algorithm may be 

expressed as 

find (μ, δd, ζd), optimize f(μ) = μ, subject to 

g1(μ, δd, ζd) =
z̈f,α

z̈lim
 1 ≤  

g2(μ, δd, ζd) =
zr,α

zr.lim
 1 ≤  

 
(16) 

The main steps of the proposed motion-based design 

optimization method are illustrated in Fig. 2. It is important 

to point out here that the objective of this paper is to  

Table 3 Functions (h1(⋅) and h2(⋅)) to define the equality constraints in terms of the two conventional criteria, H∞ and 

H2 (Asami et al. 2002) 

 H∞ H2 

h1 
1

1  μ
 

1

1  μ
√1  

μ

2
 

h2 √
3μ

8(1  μ)
 √

μ(4  3μ)

8(1  μ)(2  μ)
 

 

Fig. 2 Layout of the motion-based design optimization method under uncertainty conditions 

Experimental validation

Final design

Initial design

Numerical simulation

Determine an

initial design 

Evaluate  

Satisfy 

motion-based 

objectives?

No

Improve design

Yes

Modify

Minimize

Subject to

Construction

Function, requirements and 

constraints  

)( if 

i

*

*
,,

)(

)(

jij

jeqijeq

gg

gg









u
ii

l
i  

0

)( if 

*

*
,,

)(

)(

jij

jeqijeq

gg

gg









Updated F.E.M. 

Uncertainty simulation. 

Subject to

u
ii

l
i  

732



 

Motion-based design of TMD for vibrating footbridges under uncertainty conditions 

 

 

analyze the performance of the approach based on the Hopt 

criterion, so that the formulations based on the H∞ and H2 

criteria are only included for comparison purposes. 

Once the final design variables are obtained and after 

the TMD is built and installed on the footbridge, designers 

must carry out experimental tests to verify that all the 

comfort and fatigue requirements are fulfilled. For this 

purpose, two experimental tests are usually conducted 

(Caetano et al. 2010): (i) ambient vibration tests in order to 

estimate experimentally the modal properties of the 

footbridge and (ii) pedestrian tests in order to correlate 

numerically and experimentally the dynamic response of 

the footbridge under one or more pedestrians at controlled 

step frequencies. 

 

 

4. Numerical validation. 
 

4.1 Description of the benchmark footbridge and 
preliminary numerical modal analysis 

 
For our purposes, a numerical footbridge, which is used 

by the French standard (Setra 2006) to illustrate the 

procedure to check the vibration serviceability limit will be 

adopted as benchmark. The footbridge is configured by a 

simple span of 38.85 m of length. The structural system is 

formed by two lateral steel Warren-trusses, braced 

transversally between their lower chords by strut elements 

and a reinforced concrete slab of 0.10 m of thickness. The 

trusses are curved with a vertical curvature radius of 450 m. 

The height of the trusses is 1.21 m and their lateral 

separation is 2.90 m. The width of the concrete slab is 2.50 

m. The slab is supported by the strut elements configuring a 

composite steel-concrete section. Both the upper and lower 

chords of the trusses consist of rectangular hollow section 

400x200x12 mm, and the diagonal and strut elements 

consist of rectangular hollow section 120x120x8 mm. Its 

supports are pinned at one side and vertically simple 

supported at the other side (Fig. 3). 

The finite element model of the structure is built with 

both beam elements, BEAM188 (2 nodes per element, 6  

 

 

d.o.f. in each node), and shell elements, SHELL181 (4 

nodes per element, 6 d.o.f. in each node). The finite element 

(FE) package Ansys (Ansys 2017) has been used for this 

purpose. The footbridge is modelled using a mesh of 646 

beam elements and 540 shell elements (Fig. 3). A linear 

behavior is considered for the constitutive law of the two 

materials, reinforced concrete and steel. The mechanical 

properties adopted are: (i) for the reinforced concrete, a 

Young’s modulus,   = 31    MPa, a Poisson’s ratio, 

  =  .2  and a density,   = 25   kg/m
3
; and (ii) for 

the steel, a Young’s modulus,  𝑠 = 21     MPa, a 

Poisson’s ratio,  𝑠 =  .3 , and a density,  𝑠 = 785  

kg/m
3
.
 
The structural damping ratio of the structure, 𝜁 , is 

0.6%, according to the recommendations of the Synpex 

guidelines (Butz et al. 2007). 

The numerical modal parameters of the footbridge have 

been obtained via a numerical modal analysis based on the 

finite element model of the structure. For the purpose of this 

study, it is assumed that this numerical model reflects 

adequately the dynamic behavior of the structure, so it can 

be considered an “updated” finite element model of the 

structure. The natural frequency (ff = 2.14 Hz) of the first 

vertical vibration mode (Fig. 3) is within the range 

(1.25  2.3  Hz) that characterizes the pedestrian-structure 

interaction in vertical direction (Butz et al. 2007), so that it 

is necessary to check the vibration serviceability limit state 

of the structure. The recommendations of the Synpex 

guidelines (Butz et al. 2007) have been followed herein for 

this purpose. Additionally, the modal mass of the 

considered vibration mode, mf = 347 6  kg, has been 

determined via the numerical modal analysis. 

According to these guidelines, two design scenarios 

have been taken into account. For the determination of the 

ground reaction force,  ( ), a walking pedestrian density 

of 1 P/m
2
 has been considered for both design scenarios 

(Table 1). In order to ensure the compliance of the comfort 

requirement established by the designer/owner, in each 

design scenario, the maximum vertical acceleration of the 

footbridge,  ̈ , must be lower than an allowable vertical 

acceleration,  ̈𝑙 𝑚, which depends on the required comfort 

class (Table 2). In the first design scenario (D.S. I), the  

 

Fig. 3 Finite element model of the benchmark footbridge and first vertical vibration mode (Setra 2006) 

38.85 m

1.21 m

First vertical vibration mode ff=2.14 Hz
Section A-A

A

A

400x200x12 mm 120x120x8 mm

R=450 m

2.90 m

120x120x8 mm
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allowable vertical acceleration is established in 1.00 m/s
2
, 

whist, in the second design scenario (D.S. II), the allowable 

vertical acceleration is established in 0.50 m/s
2
. If these 

requirements are not met, a TMD must be installed to 

reduce the amplitude of the pedestrian-induced vibrations 

below the mentioned threshold. The TMD design will be 

performed considering the proposed motion-based design 

optimization method. As requirement for the TMD design, 

the maximum vertical relative displacement between the 

TMD and the footbridge,  𝑟, is limited to 20 mm to avoid 

fatigue problems in the spring of the damping device 

(Caetano et al. 2009). Finally, the variation of the modal 

parameters of the structure due to the changes in the 

operational and environmental conditions is modelled via a 

probabilistic approach. 

In summary, the main steps of the procedure to ensure 

the compliance of the vibration serviceability limit state are: 

(i) to check if any vibration mode of the benchmark 

footbridge is prone to vibrate due to pedestrian-induced 

excitations. 

(ii) if so, to determine the modal mass, modal damping 

and modal stiffness of the affected vibration mode and the 

ground reaction force for each considered design scenario. 

(iii) to simulate numerically the variation of the modal 

parameters of the benchmark footbridge associated with the 

modification of the operational and environmental 

conditions. 

(iv) to assess numerically the vibration serviceability 

limit state of the benchmark footbridge under uncertainty 

conditions. 

(v) if the comfort requirements are not met, the dynamic 

response of the structure is controlled by the 

implementation of a TMD. 

 

 
 
4.2 Numerical simulation of the uncertainty: a 

probabilistic approach 
 

As it was previously mentioned, the uncertainty of the 

modal parameters of the structure is simulated via a 

probabilistic approach. Concretely, in this study, the first 

vertical natural frequency of the footbridge, ff , and its 

associated damping ratio, ζf, are considered as uncorrelated 

random variables. According to the results provided by 

several researchers, these variables are assumed to follow a 

normal probabilistic distribution function with a range of 

variation of ±10% (Hu et al. 2012, Soria et al. 2016). In 

order to obtain the probabilistic distribution function of the 

maximum dynamic response of the structure, the Monte 

Carlo method has been used (Bucher 2009). In each 

simulation the first vertical natural frequency of the 

footbridge, ff , its associated damping ratio, ζf , and –

accordingly- the ground reaction force, p(t), have been 

modified. 

The selection of the sample size is one of the key points 

in the Monte Carlo simulations. For this aim, a convergence 

analysis has been performed. The mathematical package 

Matlab (2017) has been used for this purpose. The 

probabilistic distribution function of the maximum dynamic 

response of the structure (maximum vertical acceleration) 

has been estimated considering different sample sizes. The 

variation of this probabilistic distribution function in terms 

of the sample size (number of simulations that need to be 

calculated to define the probabilistic distribution function) 

has been analyzed for four characteristic percentiles (50
th

, 

67
th

, 95
th

 and 99
th

). The convergence analysis has been 

conducted for two systems: (i) the benchmark footbridge 

without TMD and (ii) the benchmark footbridge with TMD. 

For the second system, the TMD parameters have been 

 

Fig. 4 Convergence analysis of the response of the TMD-footbridge interaction model under uncertainty conditions 

considering the 𝐻∞ criterion (where  ̈ ,∝ is the percentile  th
 of the probability distribution function of the maximum 

vertical acceleration of the footbridge) 
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determined, for this convergence analysis, considering the 

H∞ criterion, the 99
th

 percentile of the uncertainty level and 

the first design scenario (D.S.I). Fig. 4 illustrates the 

convergence analysis performed for the second system. The 

four considered percentiles 
th

 of the probabilistic 

distribution function of the vertical maximum acceleration 

of the footbridge, z̈f,α , are represented versus the number 

of simulations of each sample. As Fig. 4 shows the four 

curves stabilize their response if the sample size (number of 

simulations) is greater than 40000. This sample size ensures 

a significance level of 0.01 and an accuracy of 0.01 m/s
2
 for 

the estimation of the probabilistic distribution function of 

the vertical accelerations of the structure and it has been 

considered as sample size for this study. 

Finally, the histogram of a sample (with 40000 

simulations) of the maximum vertical acceleration of the 

benchmark footbridge is shown in Fig. 5. Concretely, Fig. 

5.a shows the histogram of a sample of the original 

benchmark footbridge without TMD, and Fig. 5.b shows its 

counter for the footbridge with TMD designed according to 

the 𝐻∞ criterion. As it is shown in Fig. 5, the effect of the 

installation of the TMD is clear, reducing not only the 

maximum vertical acceleration of the footbridge but also 

modifying the shape of the histogram. For this particular 

case, the histogram of the benchmark footbridge without 

TMD is not well fitted by any conventional probabilistic 

function; whilst the histogram of the benchmark footbridge 

with TMD is fitted adequately by a log-normal probabilistic 

function. The TMD reduces not only the maximum vertical 

acceleration but also its range of variation. 

 

 

 
(a) 

 
(b) 

Fig. 5 Histograms of the dynamic response (vertical 

accelerations) of the benchmark footbridge a) without 

TMD and b) with TMD considering the 𝐻∞ criterion 

Table 4 Percentile 
th

 of probabilistic distribution function 

of the maximum vertical acceleration of the benchmark 

footbridge without TMD 

th 50 67 95 99 

 ̈ ,∝ [m/s2] 4.64 6.47 7.71 7.92 

 

4.3 Numerical assessment of the vibration 
serviceability limit state of the footbridge under 
uncertainty conditions. 

 

As indicated above in order to assess numerically the 

vibration serviceability of the footbridge, the probabilistic 

distribution function of the maximum vertical acceleration 

of the footbridge without TMD is estimated via a Monte 

Carlo simulation. The values corresponding to four 

percentiles (50
th

, 67
th

, 95
th

 and 99
th

) of this probabilistic 

distribution function are shown in Table 4. Even the 

average value of the probabilistic distribution of the 

maximum vertical acceleration,  ̈ ,50, is greater than the 

allowable acceleration,  ̈𝑙 𝑚 , established for each 

considered design scenario ( ̈𝑙 𝑚 = 1.   m/s
2
 for D.S. I 

and  ̈𝑙 𝑚 =  .5  m/s
2
 for D.S. II). For this reason, the 

dynamic response of the benchmark footbridge must be 

controlled via the installation of a TMD at the mid-span. 

 

4.4 Motion-based design of the TMD parameters of 
the benchmark footbridge under uncertainty conditions. 

 

In order to meet the comfort requirement of the 

footbridge, a TMD is installed at its mid-span. The TMD is 

designed based on the proposed motion-based design 

optimization method. The three previously mentioned 

design criteria (H∞, ⁡H2 and ⁡Hopt) have been compared in 

order to find out which is the one that better adapts to the 

particular variability of this problem. Additionally, the 

effect of the comfort requirements (different design scenario) 

and uncertainty level (different percentile) on the TMD 

parameters is analyzed. 

A search domain for each TMD parameter has been 

established in order to guarantee that the TMD parameters 

obtained maintain an adequate engineering significance: (i) 

mass ratio, 𝜇 ∈ [ .    . 7] , (ii) frequency ratio, 

𝛿 ∈ [ .85  1.  ], and (iii) damping ratio, 𝜁 ∈ [ . 2  
 .2 ]. 

As optimization algorithm, genetic algorithms have been 

used. A population of 100 design vector has been selected. 

As stop criteria two conditions have been included: (i) the 

maximum number of iterations has been set to 100 and (ii) 

the tolerance of the maximum variation of the objective 

function has been set to 10-5. 

Table 5 summarizes the detailed TMD parameters in 

terms of the uncertainty level for each design criteria and 

design scenario. 

Finally, the frequency response function (in terms of 

accelerations), 𝐻𝑎, of the benchmark footbridge is obtained 

considering the three design criteria, the two design 

scenarios and the different confidence levels. Fig.  6 

illustrates the different frequency response functions 

obtained by assuming that the modal parameters of the 
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footbridge adopt their average values (ff =2.14 Hz and 

ζf =  .6%) and varying the TMD parameters in terms of the 

design criteria, uncertainty levels and design scenarios. As it 

is clearly shown in Fig. 6, the motion-based design 

optimization method modifies the shape of the frequency 

response function in order to meet the different constraints 

of the problem. 

Some relevant conclusions may be obtained from the 

analysis of the Fig. 6: (i) the increase of the comfort 

requirement leads to a reduction in the peaks of the 

frequency response function and to an increase in the 

distance between the original natural frequency of the 

structure and the new two natural frequencies generated by 

the installation of the TMD; (ii) the increase of the 

uncertainty level generates the same effect but at lower 

scale; and (iii) the shape of the frequency response function 

depends strongly on the considered design criteria. 

Finally, a comparative study is performed to analyze the 

effect of the variation of the first vertical natural frequency 

of the footbridge on the form of its frequency response 

function, when considering the different design criteria. The 

frequency response function of the structure, with and 

without TMD, is obtained considering three characteristic 

values of its first vertical natural frequency (a minimum 

value, ff = 1.92 Hz; an average value, ff = 2.14 Hz; and  

a maximum value, ff = 2.35 Hz), a fixed uncertainty level 

(95
th

 percentile) and the design scenario II.  

 

 

 

Fig. 7 illustrates the comparison among the frequency 

response functions (in terms of accelerations) obtained for 

the different cases. As Fig. 7 illustrates, the form of the 

frequency response function varies significantly among the 

three considered design criteria. This variation is especially 

remarkable for the Hopt criterion, and it is originated by 

the different frequency ratio, δd, obtained for the TMD 

design according to the different design criteria. The Hopt 

criterion takes advantage of the fact that the ground reaction 

force, p(t) , is reduced significantly when the vertical 

natural frequency of the footbridge becomes greater than 

2.10 Hz. According to this criterion, the TMD is tuned 

around the lower bound of the variation range of the natural 

frequency; so that, when the natural frequency of the 

structure varies (increasing its value), the frequency 

response function of the structure presents a peak located in 

the range of frequencies where the ground reaction force is 

minimum. On the other hand, the conventional criteria (H∞ 

and H2) lead to a more averaged value of the frequency 

ratio, which implies that if the TMD is de-tuned, the 

frequency response function may present a peak located in 

the range of frequencies where the ground reaction force is 

maximum, making necessary an increase in the damping 

ratio of the TMD in order to guarantee an adequate dynamic 

behavior of the structure. 

  

  

  

 
 

Fig. 6 Frequency Response Function, 𝐻𝑎 , for the different design criteria, uncertainty levels and design scenarios 

(ff =2.14 Hz and ζf =  .6 %) 
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Table 5 TMD parameters versus the uncertainty level for each design criteria and design scenario 

 𝜇 [%] 𝛿  [-] 𝜁  [%] 

D.S. th 𝐻∞ 𝐻2 𝐻𝑜𝑝𝑡 𝐻∞ 𝐻2 𝐻𝑜𝑝𝑡 𝐻∞ 𝐻2 𝐻𝑜𝑝𝑡 

I 

50 0.65 1.20 0.61 0.994 0.991 0.976 4.92 5.45 3.86 

67 1.28 1.57 0.73 0.987 0.988 0.968 6.88 6.23 4.19 

95 2.16 2.67 1.14 0.979 0.980 0.943 8.90 8.09 5.22 

99 2.72 3.36 1.38 0.974 0.976 0.935 9.96 9.05 5.26 

II 

50 3.52 4.46 2.58 0.966 0.968 0.938 11.29 10.39 5.55 

67 4.05 5.15 2.99 0.961 0.963 0.929 12.08 11.13 5.78 

95 5.58 7.15 4.02 0.947 0.950 0.909 14.08 13.03 6.91 

99 6.52 8.39 4.61 0.939 0.942 0.899 15.15 14.05 7.74 

 
(a) 

 
(b) 

 
(c) 

Fig. 7 Comparison of the Frequency Response Function, 𝐻𝑎, for different values of the first vertical natural frequency of 

the structure, 𝑓 , considering the different design criteria, a fixed uncertainty level (95
th

 percentile) and the design 

scenario II. (a) 𝑓 = 1.92⁡ Hz, (b) 𝑓 = 2.14 Hz and (c) 𝑓 = 2.35 Hz 
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4.5 Discussion of the results. 
 

Following the previous comparative study, the 

differences among the performance of the different design 

criteria under the different requirements and uncertainty 

conditions are next highlighted. In particular as the Hopt 

criterion is concerned, Fig. 8 illustrates the variation of the 

TMD mass ratio for the three design criteria in terms of the 

uncertainty level. The two design scenarios have been 

depicted separately (Figs. 8(a) and 8(b)). From the analysis 

of Fig. 8, it may be concluded that the Hopt  criterion 

allows obtaining the best TMD parameters. This criterion 

reduces the value of the objective function, the TMD mass 

ratio, μ , with respect to the other two criteria. This 

reduction is strongly influenced by the comfort 

requirements, reaching an averaged reduction coefficient of 

45.56% for the first design scenario and 35.81% for the 

second. The other TMD parameters follow the same trend. 

Finally, the effect of the uncertainty in the TMD 

parameters is clear. An increase of the uncertainty level 

leads to an increase of the TMD parameters. According to 

Fig. 8 the relationship between the TMD mass ratio, 𝜇, and 

the uncertainty is quasi-linear in the range from the 50
th

 to 

the 95
th

 percentile. However, if the uncertainty level is 

greater, the increase of the TMD parameters follows an 

exponential function. In consequence, it may be an adequate 

criterion to consider this value as the upper limit of the 

uncertainty in real applications, in order to reach a balance 

between the cost of the TMD and the safety. 

 

 

 
(a) 

 
(b) 

Fig. 8 TMD mass ratio,⁡𝜇, versus de uncertainty level for 

each design criterion and design scenario (a) D.S. I and 

(b) D.S. II) 

 

 

 

5. Conclusions 
 
The main contributions of this paper are: (i) the proposal 

and implementation of a motion-based design optimization 

method to determine the best TMD parameters which allow 

mitigating the pedestrian-induced vibrations on footbridges 

under uncertainty conditions and (ii) to analyze the 

influence of both the design requirements and the 

uncertainty level in the TMD parameters. 

The motion-based optimization design method is 

formulated as a constrained single-objective optimization 

problem, where the objective function is defined in terms of 

the TMD mass ratio, 𝜇 , the design variables are the 

equivalent TMD parameters, (𝜇, 𝛿 , 𝜁 ), and equality and 

inequality constraints are included to constrain the form of 

the frequency response function of the structure and to 

guarantee the compliance of the comfort and fatigue 

requirements of the TMD-footbridge system under 

uncertainty conditions. Three design criteria have been 

considered: (i) the 𝐻∞ criterion, (ii) the 𝐻2 criterion and 

(iii) the 𝐻𝑜𝑝𝑡  criterion. As optimization method, genetic 

algorithms have been used. The uncertainty associated with 

the variation of the modal parameters of the structure has 

been simulated herein by a probabilistic approach, assuming 

that the modal parameters of the structure are random 

variables. The Monte Carlos simulation method has been 

used to estimate numerically the probabilistic distribution 

function of the maximum dynamic response of the structure 

under pedestrian action. 

As benchmark, a footbridge, which is prone to vibrate 

due to walking pedestrian-induced excitation in vertical 

direction, has been chosen. A TMD has been installed at the 

mid-span of the structure to mitigate the pedestrian-induced 

vibrations. The pedestrian load is defined as an equivalent 

harmonic load according to the recommendations of Synpex 

guidelines. Two design scenarios have been considered in 

terms of the comfort requirements. The TMD parameters 

have been obtained via the implementation of the motion-

based design optimization method considering the 

uncertainty conditions. A sensibility study has been 

performed to analyze the influence of the three mentioned 

design criteria, the design requirements and the uncertainty 

level on the TMD parameters. 

This study shows that the 𝐻𝑜𝑝𝑡  criterion provides the 

best cost-effective TMD parameters under uncertainty 

conditions. The frequency response function obtained using 

this criterion adapts better to the pedestrian-structure 

interaction problem. Additionally, this study shows how the 

TMD mass increases quasi-linearly with the uncertainty 

level and illustrates the effect of the design requirements on 

the peak of the frequency response function of the 

footbridge. 

Nevertheless, further studies are needed, both to better 

characterize the probabilistic distribution function that 

define the change of the modal parameters of the structure 

during its overall life-cycle and to assess experimentally the 

performance of the TMD designed according to the 

proposed method. 

 

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

50 55 60 65 70 75 80 85 90 95 100

m
[%

]

th

TMD mass ratio under design scenario I

Hinf H2 Hopt

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

50 55 60 65 70 75 80 85 90 95 100

m
[%

]

th

TMD mass ratio under design scenario II

Hinf H2 Hopt

738



 

Motion-based design of TMD for vibrating footbridges under uncertainty conditions 

Acknowledgments 
 
This work was partially funded by the Spanish Ministry 

for Science under the research projects DPI2014-53947-R 

and BIA2015-71942-REDT. 

 

 

References 
 
Arora, J.S. (2007), Optimization of Structural and Mechanical 

Systems, World Scientific Publishing Co. Pte. Ltd, Singapore. 

Ansys (2017), Mechanical Release http://www.ansys.com/ 

Asami, T., Nishihara, O. and Baz, A.M. (2002), “Analytical 

solutions to H∞ and H2 optimization of dynamic vibration 

absorbers attached to damped linear systems”, J. Vib. Acoust.,  

124(2), 284-295. 

Bekdas, G. and Nigdeli, S.M. (2011), “Estimating optimum 

parameters of tuned mass dampers using harmony search”, Eng. 

Struct., 33(9), 2716-2723. 

Bortoluzzi, D., Casciati, S., Elia, l. and Faravelli, L. (2015), 

“Design of a TMD solution to mitigate wind-induced local 

vibrations in an existing timber footbridge”, Smart Struct. Syst., 

16(3), 459-478. 

Bucher, C. (2009), Computational Analysis of Randomness in 

Structural Mechanics, CRC Press Taylor & Francis Group, 

London, United Kingdom. 

Butz, C.H., Heinemeyer, C.H.; Goldack, A., Keil, A., Lukic, M., 

Caetano, E. and Cunha, A. (2007), “Advanced Load Models for 

Synchronous Pedestrian Excitation and Optimised Design 

Guidelines for Steel Footbridges (SYNPEX)”. RFCS-Research 

Project RFS-CR-03019. 

Caetano, E., Cunha, A., Magalhães, F. and Moutinho, C. (2010), 

“Studies for controlling human-induced vibration of the Pedro e 

Inês footbridge, Portugal. Part 2: Implementation of tuned mass 

dampers”, Eng. Struct., 32(4), 1082-1091. 

Caetano, E., Cunha, A., Raoul, J. and Hoorpah, W. (2009), 

Footbridge Vibration Design, CRC Press Taylor and Francis 

Group, Leuden, The Netherlands. 

Casciati, S. (2016), “Human induced vibration vs. cable-stay 

footbridge deterioration”, Smart Struct. Syst., 18(1), 17-29. 

Casciati, S., Chassiakos, A.G. and Masri, S.F. (2014), “Toward a 

paradigm for civil structural control”, Smart Struct. Syst., 14 (5), 

981-1004. 

Clough, R.W. and Penzien, J. (1993), Dynamics of structures, 

McGraw-Hill Book Company, New York, United States. 

Connor, J. (2003), Introduction to Structural Motion Control, 

Prentice Hall, Pearson Education, Inc., New Jersey, United 

States. 

Crandall, S.H. and Mark, W.D. (1963), Random Vibration in 

Mechanical Systems, Academic Press, New York, United States. 

Dallard, P., Fitzpatrick, A.J., Le Bourva, S., Low, A., Smith, R., 

Wilford, M. and Flint, A. (2001), “The London Millenium 

Footbridge”, Struct. Engineer, 79(22), 17-33. 

Den Hartog, J.P. (1956), Mechanical Vibrations, 4th ed., 

McGraw-Hill, New York, United States. 

Engen, M., Hendriks, M., Köhler, J., Ø verli, J.A. and Â ldstedt, E. 

(2017), “A quantification of the modelling uncertainty of non-

linear finite element analyses of large concrete structures”, 

Struct. Saf., 64: 1-8. 

Hu, W.H., Caetano, E. and Cunha, A. (2013), “Structural health 

monitoring of a stress-ribbon footbridge”, Eng. Struct., 57: 578-

593. 

Jiménez-Alonso J.F. and Sáez, A. (2017a), “Motion-based design 

of a slender steel footbridge and assessment of its dynamic 

behaviour”, Int. J.Steel Struct., 17(4), 1459-1470. 

Jiménez-Alonso J.F. and Sáez, A. (2017b), “Robust optimum 

design of TMDs to mitigate pedestrian induced vibrations using 

multi-objective genetic algorithms”, Struct. Eng. Int., 4,492-501. 

Koh Ghee, C. and Perry, M.C. (2010), Structural Identification 

and Damage Detection using Genetic Algorithms, CRC Press, 

Taylor and Francis Group, London, United Kingdom. 

Liang, Q.Q. (2007), “Performance-based optimization: A review”, 

Adv. Struct. Eng., 10(6), 739-753.  

Lievens, K., Lombaert, G., De Roeck, G. and Van den Broeck, P. 

(2016), “Robust design of a TMD for the vibration 

serviceability of a footbridge”, Eng. Struct., 123, 408-418. 

Marano, G.C. and Cuaranta, G. (2009), “Robust optimum criteria 

for tuned mass dampers in fuzzy environments”, Appl. Soft 

Comput., 9(4), 1232–1243.  

Marano, G.C., Greco, R. and Sgobba, S. (2010), “A comparison 

between different robust optimum design approaches: 

Application to tuned mass dampers”, Probabilist. Eng. Mech., 

25(1), 108-118.  

Matlab, R. (2017), http://www.mathworks.com/. 

Mirzai, N.M., Zahrai, S.M. and Bozorgi, F. (2017), “Proposing 

optimum parameters of TMDs using GSA and PSO algorithms 

for drift reduction and uniformity”, Struct. Eng. Mech., 63(2), 

147-160. 

Nagarajaiah, S. and Jung, H.J. (2014), “Smart tuned mass dampers: 

Recent developments”, Smart Struct. Syst., 13(2), 173-176. 

Nocedal, J. and Wright, S.J. (1999), Numerical Optimization, 

Springer, New York, United States. 

Ramezani, M., Akbar Bathaei, A. and Seyed Mehdi Zahrai, S.M 

(2017), “Designing fuzzy systems for optimal parameters of 

TMDs to reduce seismic response of tall buildings”, Smart 

Struct. Syst., 19(3), 269-277.   

Salvi, J. and Rizzi, E. (2016), “Closed-form optimum tuning 

formulas for passive Tuned Mass Dampers under benchmark 

excitations”, Smart Struct. Syst., 17(2), 231-256. 

Setra (2006), Guide méthodologique passerelles piétonnes 

(Technical Guide Footbridges: Assessment of vibration 

behaviour of footbridge under pedestrian loading). 

Soong, T.T. and Costantinou M.C. (1994), Passive and active 

control structural vibration control in civil engineering, 

Springer, State University of New York at Buffalo. Buffalo, 

United States. 

Soria J.M., Díaz I, García-Palacios, J. and Ibán N. (2016), 

“Vibration monitoring of a steel-plated stress-ribbon footbridge: 

uncertainties in the modal estimation”, J. Bridge Eng. - ASCE, 

21(8), C5015002. 

Van Nimmen, K., Verbeke, P., Lombaert, G. and De Roeck, G. 

(2016), “Numerical and experimental evaluation of the dynamic 

performance of a footbridge with tuned mass dampers”, J. 

Bridge Eng. - ASCE, 21(8), C4016001. 

Venuti, F.V., Racic, V. and Corbetta, A. (2016), “Modelling 

framework for dynamic interaction between multiple 

pedestrians and vertical vibrations of footbridges”, J. Sound 

Vib., 379, 245-263. 

Wang, X., Gao, X.Z. and Zenger, K. (2015), An Introduction to 

Harmony Search Optimization Method, SpringerBriefs in 

Applied Sciences and Technology, Dordrecht, The Netherlands. 

Wang, Z. and Chen, W. (2017), “Confidence-based adaptive 

extreme response surface for time-variant reliability analysis 

under random excitation”, Struct. Saf., 64, 76-86.   

Weber, F., Feltrin, G. and Hult, O. (2006), Guidelines for 

structural control, Structural Engineering Research Laboratory, 

Swiss Federal Laboratories for Materials Testing and Research, 

Dubendorf, Switzerland. 

Zang C., Friswell M.I. and Mottershead J.E. (2005), “A review of 

robust optimal design and its application in dynamics”, Comput. 

Struct., 83, 315-326. 

Zivanovic, S., Pavic A. and Reynolds P. (2007), “Finite element 

modelling and updating of a lively footbridge: The complete 

739

http://www.ansys.com/
http://www.mathworks.com/


 

Javier F. Jiménez-Alonso and Andrés Sáez 

process”, Eng. Struct., 301(1-2), 126-145. 

 
 

740




