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1. Introduction 
 

A large number of long-span bridges have been 

constructed in recent years and become crucial connection 

hinges to satisfy the requirement of transportation system 

development and social economic growth. However, with 

the increase of the span, the global stiffness of the bridge is 

reduced and it will be susceptible to the wind loading. 

Wind-induced vibration may lead to fatigue damage and 

even structural collapse which will cause a great adverse 

effect on the life-cycle cost of the bridge. The critical 

structural components of a long-span bridge are suffered 

from tremendous numbers of stress cycles induced by the 

traffic and wind loads, resulting in accumulated damage and 

eventually occurring structural failure. Especially for the 

bridges located in the coastal environment, wind-induced 

fatigue problem has received great attentions from the 

academic and industrial communities. 

In wind engineering, many investigations have been 

conducted on the stochastic characterization of wind 

properties for the evaluation of wind-induced fatigue  
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damage of the bridge during its operational stage. For this 

purpose, the joint probability distribution model of wind 

speed and direction needs to be constructed to characterize 

the wind properties over a long period. However, the 

traditional temporary measurement system only can obtain 

a small quantity of wind data around the bridge site, which 

are limited with regard to the whole design life of the 

bridge. In addition, most of the currently available 

probabilistic analysis methods just represent the features of 

wind measurement data by the descriptive statistics. In 

these methods, the wind parameters are estimated from a 

deterministic viewpoint, neglecting the uncertainty probably 

caused by the limited measurement data and measurement 

error. However, it is reasonable and necessary to take the 

effect of uncertainties of wind data for analysis of the wind 

properties around the bridge site (Alduse et al. 2015). 

In comparison with the traditional methods, Bayesian 

approach considers the parameter as variable and facilitates 

the uncertainty analysis of the parameters. It realizes the 

parameter inference with small dataset by absorbing prior 

information from the other sources (Pardo-lguzquiza 1999). 

Bayesian approach has been applied in various research 

fields such as economics (Beck et al. 2012), statistics 

(Marin et al. 2012), and civil engineering (Lam et al. 2014). 

Smith and Naylor (1987) developed the Bayesian estimator 

for three-parameter Weibull distribution which was used to 

model the distribution of wind speed and compared with the 

maximum likelihood method. The comparative result 

indicated that Bayesian approach gave a better performance. 
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Abstract.  The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy 

compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A 
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paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind 

monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the 
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parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is 

applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical 

simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In 

addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using 

the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is 

feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data. 
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Pang et al. (2001) employed the Bayesian estimation 

method to infer Weibull parameters using the wind speed 

data and concluded that Bayesian inference is practicable 

when wind data are limited. Erto et al. (2010) inferred the 

parameters of univariate wind speed distribution with one-

month data and compared with the parameters evaluated by 

the maximum likelihood estimator based on one-year 

samples. Yang et al. (2017) used Bayesian approach to 

improve surface wind speed prediction under extreme 

weather conditions in order to reduce negative effects from 

civil infrastructure. 

In this study, Bayesian inference approach is employed 

to update the wind parameters in the bivariate finite mixture 

distribution of wind speed and direction using limited 

monitoring data. For the proposed Bayesian inference 

approach, the selection of prior distribution, the definition 

of the likelihood function, and the calculation of posterior 

distribution are addressed in detail. The prior distributions 

of parameters are considered to follow normal distributions 

and the expectation and variance of distribution are 

determined in accordance with the results addressed in the 

companion paper. The likelihood function is formulated 

from the statistical model of the monitoring data. The multi-

dimensional and complex posterior distribution is solved by 

the slice algorithm of MCMC method. The performance of 

the proposed Bayesian inference approach is evaluated by 

the numerical simulation examples for univariate and 

bivariate models. Furthermore, the proposed Bayesian 

inference approach is used to update and optimize the 

parameters in the bivariate model using the wind 

monitoring data from the investigated bridge. 

 

 

2. Methodology 
 

2.1 Bayes’ theorem 
 

In the statistical analysis, Bayes’ theorem, firstly 

proposed by Thomas Bayes (Bayes 1763), describes the 

probability of an event based on the existing knowledge 

from specialists and new field observations (Box and Tiao 

1992, Bernardo and Smith 2000). Form the Bayesian 

perspective, the error of the parameters should be 

considered by probability theory. Bayes’ theorem is 

formulated mathematically by 
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where Θ is the target model parameters to be updated, y is 

the new field observations, f(Θ) is the prior density function 

representing previous cognition before the new field 

observations are acquired, f(Θ|y) is the posterior density 

function with consideration of the new field observations, 

L(y|Θ) is the conditional likelihood function, and the 

integration over Θ in the denominator serves as a 

normalizing constant to make sure that the integration of 

posterior density function equals one. Based on the prior 

belief expressed by the prior density function f(Θ) and the 

field observations represented by the likelihood function 

L(y|Θ), the posterior probability can be formed as the 

proportional to the prior probability and likelihood function. 

One of the applications of Bayes’ theorem is Bayesian 

inference which is a method of statistical inference for the 

dynamic analysis of a sequence of data. In Bayesian 

inference, Bayes’ theorem is used to deduce and update the 

properties of an underlying probability distribution with 

more evidence and information available by computing the 

posterior probability. Bayesian inference is contrasted with 

descriptive statistics which is solely concerned with the 

properties of the observed data. With the assumption that 

the observed data are sampled from a large population, 

Bayesian inference can infer the properties of a population 

by analyzing the observed data drawn from the population. 

Bayesian inference acquires the posterior density function 

as a combination of two important parts: the prior density 

function and the likelihood function derived from a 

statistical model of the observed data. 

In this study, the observed wind monitoring data y 

contains two parts: wind speed variable, v, and wind 

direction variable, θ. Bayesian inference is used to conduct 

parameter inference and model optimization for the joint 

probability distribution model of wind speed and direction 

based on the observed data and prior modeling experience. 

For the statistical model in the likelihood function, the joint 

PDF of wind speed and direction assumes that the wind 

speed and direction follow the finite mixture distribution 

with conditionally independent component densities, and is 

expressed by 
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where f(v,θ;N,Θ) is the joint PDF of wind speed and 

direction, fv(v) is the PDF of wind speed, fθ(θ) is the PDF of 

wind direction, N is the number of components, and wj is 

the weight of each mixture component and it satisfies that 

the summation equals one as 

1
1
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The Weibull distribution with two parameters is selected 

to represent the wind speed distribution function fv(v), 

which is written as (Weibull 1951) 
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where α>0 is the scale parameter, and β>0 is the shape 

parameter. For the wind direction distribution fθ(θ), the von 

Mises distribution is applied which can be written as 
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where μ is the measure of the location, κ is similar to the 

variance in the normal distribution and represents the 

degree of concentration, and I0(κ) is the modified Bessel 

function of the first kind and order zero and can be 

expressed as 
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More specifically, the statistical model in the likelihood 

function, namely the joint PDF of wind speed and direction, 

can be presented as 
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In the statistical model, Θ represents the target model 

parameters to be updated, which contains the weight wi, 

scale parameter αi, shape parameter βi, location parameter 

μi, and concentration parameter κi for each component. It is 

assumed that these parameters are mutually independent, 

and thus the prior distribution is expressed as 
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The prior distributions of the parameters, except for the 

weight w, are considered to follow a Normal distribution. 

Taking the scale parameter α as an example, the probability 

density of the scale parameter α is referred to N (μα, σα
2) and 

can be expressed as 
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where μα is the expectation of the distribution, and σα is the 

standard deviation. Similarly, the prior distributions of the 

parameters β, μ and κ are N (μβ, σβ
2), N (μμ, σμ

2) and N (μκ, 

σκ
2) respectively. As for the weight parameter w, it is set to 

be constant. 

With the observed wind monitoring data continuously 

collected by the SHM system, the likelihood function can 

be formulated from the statistical model of the observed 

data, and the expression of the likelihood function is shown 

as 
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The posterior distribution of each parameter can be 

calculated in accordance with Eq. (1) by multiplying the 

prior probability distribution with the likelihood function 

and then divided by the normalizing constant. Due to the 

posterior distribution is the arithmetic product of a series of 

distributions, the application of the statistical model to the 

observed data will lead to that the posterior distributions 

become the integration of complex and multi-dimensional 

distributions and it is difficult to calculate its analytical 

integration. 

 

2.2 Markov Chain Monte Carlo 
 

MCMC method is increasingly adopted in Bayesian 

analysis to solve the complicated, intractable and multi-

dimensional posterior integration (Geyer 1992, Andrieu et 

al. 2003). The development of MCMC method has provided 

an insurance to compute large hierarchical models that 

require integrations over hundreds of unknown parameters. 

MCMC method is a general computational approach that 

supersedes analytical integration by summation over 

samples generated from the iterative algorithm, and it 

contains two main parts: Monte Carlo integration and 

Markov chain. 

In MCMC method, Monte Carlo integration is a 

technique for numerical integration using randomly 

generated simulation data. The basic idea of Monte Carlo 

integration is to independently generate a set of samples x(t) 

from the target distribution p(x) and use samples to 

approach the expectations of the complex distribution based 

on the summation of these samples, as expressed by 
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where E is the mathematical expectation of the target 

distribution p(x), and n is the number of samples. As shown 

in Eq. (11), the expectation can be approached with 

summation over a large set of samples based on the strong 

law of large numbers without analytical integration. It is 

obvious that the precision of the approximation largely 

depends on a large number of samples. Sampling can be 

carried out by several methods such as uniform sampling, 

stratified sampling, importance sampling, and rejection 

sampling. However, the random samples used in the Monte 

Carlo integration are statistically independent, thus a 

Markov chain is constructed to have the integrand as its 

equilibrium distribution. 

A Markov chain is a stochastic process presenting a 

sequence of random variables in which the probability of 

each variable only depends on its previous variable. A 

sequence of stochastic variables x (x1,x2,…,xt) is defined as 

Markov chain when it meets the following condition 

)|(),...,,|( tt1t1ttt22111t1t sxsxqsxsxsxsxq  
 (12) 

where x1 is the starting point, and q(xt+1=st+1|xt=st) is a 

transition function to determine the next state, i.e., x2, x3, 

…, xt. The new state is only conditional on the last state and 

not affected by the initial value. The procedure for 

generating the Markov chains is: (i) set the state t=1, (ii) 

generate an initial value s1 and set x1=s1, (iii) sample a new 

value st+1 from the transition function and set xt+1=st+1, and 

(iv) iterate step iii until t=T. In the procedure, the next state 

of the chain is only dependent with the previous state. More 

specifically, each Markov chain wanders around the state 

space and goes to the new state by the transition function. 

As described in the previous part, Monte Carlo 

integration estimates the characteristics of target 

distribution and Markov chain generates a sequential 

process to provide some stationary distribution for 

sampling. Generally, based on these two main parts, 

MCMC method aims to compute the integration based on 

the samples from the stationary chain. Choosing a proper 

transition distribution q(x), the samples from target 

distribution p(x) can be generated. The fundamental  
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flowchart of MCMC method is shown in Fig. 1. The change 

probability α of the current state plays an important role in 

the MCMC method. To avoid often rejecting the new value 

and falling into the local range, more solution space should 

be searched based on the superior acceptance probability to 

improve the efficiency of computation and accuracy of the 

result. There are several methods to reach this goal 

including the Metropolis-Hastings (MH) sampling 

(Metropolis et al. 1953, Hastings 1970), Gibbs sampling 

(Geman and Geman 1984, Gelfand and Smith 1990) and 

slice sampling (Neal and Radford 2003). 

 

2.3 Slice sampling 
 

Although the MH and Gibbs algorithms have been used 

in plenty of fields and make much contribution, there still 

exist some disadvantages and need suitable algorithms. The 

Gibbs algorithm needs to consider the sampling from non-

standard distribution and the MH algorithm needs to find an 

appropriate distribution for efficient sampling. In this study, 

the slice sampling algorithm is used to overcome such 

problems (Wakefield et al. 1991, Higdon 1998, Damien et 

al. 1999, Neal and Radford 2003). The slice sampling 

algorithm reduces the degree of computation difficulty and 

there is no need to provide an appropriate distribution in 

comparison with the MH and Gibbs algorithms. 

The slice sampling algorithm is selected to uniformly 

sampling a point from an arbitrary curve by drawing several 

thin uniform-height horizontal slices. It is processed by the 

following three-step procedure: 

1. Set an initial value x0 which satisfies f(x0)>0 and get a 

vertical line x=x0 within the region of f(x); 

2. A y value between 0 and f(x0) will be sampled, as 0<y 

<f(x0), then draw a horizontal slice at the y height. Sample a 

point x1 from the line segments of the curve within the 

interval D=(xL,xR), where xL and xR are the intersections of 

the horizontal line and curve, i.e., f(xL)=f(xR)=y; and 

3. Keep the process repeated with the new x until the 

assumed number of samples is achieved. 

For the slice sampling algorithm, it is important to set 

the initial value because the sampling progress will be 

interrupted owing to the overflow mistake. In this study, the 

initial value is set as the expectation of prior distribution to 

guarantee the initial point is located in the domain of the 

target function f(x). In order to sample from a distribution 

for a stochastic variable x with the density function 

proportional to f(x), the joint distribution p(x,y) of x and an 

auxiliary variable y is defined as a uniform distribution, 

which is expressed as 
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where M is the integration of f(x) over x. The marginal 

density of x is obtained by 
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Finally, the stochastic variable x can be sampled by 

sampling the joint distribution p(x,y) and ignoring the 

auxiliary variable y. 

 

 

3. Numerical simulation 
 

The numerical simulation is performed to investigate the 

effectiveness of the proposed method. The parameters of the 

univariate model and bivariate model are updated by 

Bayesian inference based on the simulated data. 

 

3.1 Parameter inference for univariate model of wind 
speed 
 

In this section, a numerical simulation example of 

parameter inference for a univariate model of wind speed is 

conducted. The univariate model of wind speed regardless 

of wind direction as expressed by Eq. (4) is employed. It is 

assumed that the distribution of wind speed follows a 

Weibull distribution with the scale parameter α=4 and shape 

parameter β=2, and its PDF can be written as f(v;4,2). The 

one-year wind monitoring data include a total of 52,560 

mean wind speed individuals simulated by the Monte Carlo 

method and are divided into 365 days with 144 mean wind 

speed individuals for each day. The setting of the Weibull 

parameters is considered to guarantee that the simulated 

wind data comply with the meteorological characteristics at 

the investigated bridge site to make sure the sampling data 

are close to the real situation. 

The scale parameter α and the shape parameter β in 

wind speed distribution are supposed to be mutually 

independent and both follow the Normal distribution with 

non-zero expectation and the variance representing the error 

of the corresponding parameter. For the scale parameter α, 

the initial expectation of the distribution is randomly 

selected to make the simulated wind speed data between 0 

and 14 m/s. For the variance of parameter α, the initial 

 

Fig. 1 Flowchart of MCMC method 

Start

t = 1

Initiating the starting state x1 = s1

Sampling x* from transition function

x* ~ q(x| xt)

Generating u from uniform distribution
u ~ U (0,1)

t > T

End

t = t + 1

N

Y

u < α=p(x*)q(xt| x*)

xt+1 = x*

Y

xt+1 = xt

N
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value is set as 10 being large enough without prior 

information. Similarly, the initial expectation of the shape 

parameter β is set from 1 to 8 and the variance of the 

parameter is set to be 10. The simulated wind data of the 

first day are selected as the new field observations and the 

MCMC method is used to calculate the posterior 

distribution of two parameters. The slice sampling 

algorithm is applied to efficiently sample in the target 

distributions and the sample size in each sample process is 

set as 4,000, which makes the Markov chain is stationary 

and the value fluctuates within a relatively narrow interval. 

The expectation and variance values of the Markov chain 

can be calculated for posterior distributions of parameters. 

The expectation and variance of posterior distribution serve 

as prior information and are combined with the wind speed 

data of the next day to generate a new posterior distribution. 

The process is sequentially repeated day by day. Fig. 2 

shows the dynamic change of the parameters with the 

continuously added wind speed data. 

As shown in Fig. 2, it can be found that the values of the 

scale parameter and shape parameter have a strong 

fluctuation at the beginning. It is obvious that the values 

have a sharp change and approaches to the true value with 

only a small quantity of iteration.  

 

 

 

 
(a) Estimation of the scale parameter 

 
(b) Estimation of the shape parameter 

Fig. 2 Bayesian parameter inference for univariate model 

using simulated data 

 

 

 

By the continuous iteration, the values of two 

parameters both tend to be steady and converge to the true 

value within a short time. With the newly added data, the 

curve changes nearby the real value. At the end of the 

curve, it nearly coincides with the line of the true value. The 

BIC value is used to evaluate the model based on two 

different estimation methods. Comparison results of the 

predicted distribution based on the proposed Bayesian 

parameter inference method and the SQP algorithm-based 

finite mixture modeling method (the detailed procedure of 

method is shown in the companion paper) are listed in Table 

1. The initial values of scale parameter and shape parameter 

are 2.7393 and 0.8995 and approach to 4 and 2 within less 

than twenty iterations. It is found that the characteristic of 

100-day data can be predicted by use of only 20-day data 

based on the proposed method. What’s more, the proposed 

method provides a qualified uncertainty analysis of the 

parameter and a judgment about the credibility of the 

parameter. The BIC values illustrate that the parameter 

values inferred by the proposed method better represent the 

simulated wind speed data. 

 

3.2 Parameter inference for bivariate model of wind 
speed and direction 
 

The bivariate model of wind speed and direction 

considering the effect of wind direction better describes the 

characteristics of wind monitoring data and interprets the 

validity of the proposed method for the two-dimensional 

problem. In this case, the Weibull-von Mises mixture 

model, as presented in Eq. (7), with one component is 

utilized to produce the idealized data and its PDF can be 

expressed as 
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where α is the scale parameter, β is the shape parameter for 

Weibull distribution, μ is the location parameter and κ is the 

concentration parameter for von Mises distribution. 

There are four parameters in the bivariate model need to 

be inferred, i.e., the scale parameter α, shape parameter β, 

location parameter μ, and concentration parameter κ. 

Considering the domain of the function and the 

climatological features of the site of the investigated bridge, 

the simulated values of scale parameter α and shape 

parameter β are selected as same as those in the univariate 

model. For the parameters in von Mises distribution, the 

simulated values of the location parameter μ and the 

concentration parameter κ are set as π and 10, respectively. 

The planar dataset including wind speed and direction from 

one year are produced based on the Weibull-von Mises 

mixture distribution f(y;4,2,π,10) using the MCMC method. 

They are divided into 365 days with 144 mean wind speed 

and the corresponding direction individuals for each day. 

The histogram of the simulated wind data is shown in Fig. 

4(a). 
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Table 1 Comparison results between the two methods 

Parameter 
SQP-based 

method 

Proposed method True 

value Initial Final 

Weibull 

distribution 

Scale 

parameter (α) 
3.9823 2.7393 4.0056 4 

Shape 

parameter (β) 
1.9461 0.8995 1.9903 2 

BIC 208,875 \ 208,843 \ 

 

 

 

 

 

As the same as the Weibull distribution in the univariate 

model, the scale parameter α and shape parameter β follow 

the normal distributions. For the parameters in von Mises 

distribution, the initial expectation of the location parameter 

μ is set in the range from 0 to 2π and the variance of the 

parameter is set as 10. Similarly, the initial expectation of 

the concentration parameter κ is set in the range from 0 to 

15 and the variance of the parameter is set as 10. With the 

random expectations within their ranges, the prior of the 

scale parameter α, shape parameter β, location parameter μ,  

  
(a) Estimation of scale parameter (b) Estimation of shape parameter 

  
(c) Estimation of location parameter (d) Estimation of concentration parameter 

Fig. 3 Bayesian parameter inference for bivariate model using simulated data 

  
(a) Histogram of simulated data (b) Predicted bivariate model of wind speed and direction 

Fig. 4 Histogram and predicted joint PDF based on the proposed method 
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Table 2 Comparison of the two methods 

Parameter 
SQP-based 

method 

Proposed method True 

value Initial Final 

Weibull 

distribution 

Scale 

parameter (α) 
3.9746 1.8948 3.9802 4 

Shape 

parameter (β) 
2.0016 5.0891 1.9936 2 

von Mises 

distribution 

Location 

parameter (μ) 
3.1423 0.7852 3.1420 π 

Concentration 

parameter (κ) 
10.0237 4.9459 10.0190 10 

BIC 239,133  239,124  

 

 

and concentration parameter κ are N (1.89,10), N (5.09,10), 

N (0.78,10) and N (4.95,10), respectively. The process of 

parameter inference is repeated day by day with the same 

way for the univariate distribution. 

The variations of the four parameters are shown in Fig. 

3. The location parameter converges to the true value within 

the minimum quantity of iteration. The value of the 

concentration parameter has a relative higher fluctuation 

than the other three parameters. Through the iterative and 

continuous learning, the expectation values of the posterior 

distributions tend to be steady rapidly and become closer to 

the real value within a few days. The detailed results of 

parameter inference and the comparison between the two 

methods are listed in Table 2. It can be found that the values 

of parameters start from the random start values and finally 

converge to the true values which are closer than the 

parameters values based on SQP-based method. The BIC is 

applied to evaluate the performance of the predicted 

bivariate model based on the proposed method and SQP-

based method. The BIC value of the predicted bivariate 

model based on the proposed method is lower than that 

based on the SQP-based method, which means that the 

bivariate model inferred by the proposed method can better 

represent the simulated wind data. The bivariate model of 

wind speed and direction based on the proposed method is 

shown in Fig. 4(b). 

 

 

4. Application to the investigated bridge 
 

The detailed information about the investigated bridge 

was shown in the companion paper as well as the SHM 

system and the anemometers measuring the wind data. The 

daily wind data are extracted from one-year monitoring 

wind data in 2015. After removing the abnormal and 

uncollected data, there are total 323 days within one year 

are employed for study in this section. Different from the 

numerical simulation study where the prior is 

noninformative, in this real application example, the 

parameters calculated by the SQP algorithm with the 

corresponding multi-start points and the distribution of each 

parameter serves as prior information. In the companion 

paper, the results indicated that the finite mixture model, 

namely Weibull-von Mises mixture model of wind speed 

and direction, fitted the wind data with three components. 

Table 3 Prior information of parameters 

Prior information Expectation Variance 

Component 1 2 3 1 2 3 

Weibull 

distribution 

Scale 

parameter (α) 
2.46 2.41 2.42 0.03 0.04 0.04 

Shape 

parameter (β) 
2.25 2.17 2.20 0.11 0.14 0.14 

von Mises 

distribution 

Location 

parameter (μ) 
2.35 2.40 2.46 4.02 4.56 4.78 

Concentration 

parameter (κ) 
34.91 24.81 27.39 2.39 5.69 8.60 

 

 

Table 4 Comparison of the two methods 

Parameter SQP-based method Proposed method 

Component 1 2 3 1 2 3 

Weight (w) 0.59 0.22 0.19 0.33 0.33 0.33 

Weibull 

distribution 

Scale 

parameter (α) 
2.15 2.58 2.54 2.48 1.98 2.36 

Shape 

parameter (β) 
2.15 2.58 2.54 1.28 2.61 1.96 

von Mises 

distribution 

Location 

parameter (μ) 
5.83 1.58 0.98 4.25 6.41 1.34 

Concentration 

parameter (κ) 
0.29 33.99 32.67 1.51 1.21 9.06 

BIC 314,725 306,299 

 

 

Therefore, the proposed finite mixture model with three 

components is used as the likelihood function to depict the 

dataset with the given parameters. In the mixture model of 

three components, weights of each component are set as one 

third and the prior distribution of twelve parameters is 

determined by the parameter estimation calculated in the 

companion paper. There are total 7,053 parameter 

estimation results by the SQP algorithm with the 

corresponding multi-start points and 64 results with lower 

values of the fitness function are selected from all results to 

calculate the expectations and variances as prior 

information of the parameters. The prior expectations and 

variances of the scale parameters α, shape parameters β, 

location parameters μ, and concentration parameters κ in the 

mixture model are listed in Table 3. 

Based on the calculated prior information of parameters 

and wind monitoring data, the joint probabilistic modeling 

of wind speed and direction is conducted by Bayesian 

inference. The value changes of four kinds of parameters 

are shown in Fig. 5. It can be found that all parameters 

change greatly at the beginning of the iteration and 

gradually become convergence after adding a number of 

daily wind monitoring data. Especially for the location 

parameter, concentration parameter, and scale parameter, 

the nine parameters in three components converge and 

become steady quickly. The shape parameters continuously 

change with more monitoring data, while tend to stable. The 

parameters after adding 323-day wind monitoring data are 

regarded as the final parameters for the joint probabilistic 

model of wind speed and direction. The fitness performance 

of the obtained model is compared with that of the optimal 

model in the companion paper based on the BIC.  
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Comparing with the BIC value of the optimal model in the 

companion paper, which is 314,725, the BIC value of the 

inferred model is 306,299, which means that the inferred 

model has a better performance. Through Bayesian 

inference, the joint probabilistic model can be updated by 

new monitoring data and better represents the distribution 

characteristics of wind speed and direction at the bridge 

site. The detailed result of parameter inference and 

comparison between the two methods are listed in Table 4. 

 

 

5. Conclusions 
 

This study addressed the Bayesian inference of the 

parameters in the bivariate finite mixture distribution of 

wind speed and wind direction considering the uncertainty 

caused by instrument error and limited monitoring data. The 

parameters of the univariate model and the bivariate model 

were inferred to illustrate the practicability of the proposed 

method. Based on the estimation results using the SQP 

algorithm, the slice algorithm was utilized to compute the 

complex integration, and the finite mixture distribution with 

three components served as the likelihood function to match 

the SHM data. The proposed method estimated the 

parameters effectively and precisely and provided a more 

suitable probability model to fit the data. 

 

 

 

The results are summarized as follows: (i) the slice 

algorithm of MCMC can effectively solve the multi-

dimensional and complicated posterior integration; (ii) the 

proposed Bayesian inference provides a dynamic 

description for the parameters in the bivariate model of 

wind speed and direction and provides a better model fitting 

the wind monitoring data to represent the wind stochastic 

characteristics at the bridge site; and (iii) the parameter 

estimated using limited and a small quantity of part of data 

can compete with the parameter estimated using the whole 

year data. The proposed Bayesian inference can contribute 

to predicting the future trend of wind speed and direction 

with available limited monitoring data. 
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(a) Estimation of scale parameter (b) Estimation of shape parameter 

  
(c) Estimation of location parameter (d) Estimation of concentration parameter 

Fig. 5 Bayesian parameter inference for bivariate model using monitoring data 
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