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1. Introduction 
 

High-speed rail (HSR) is currently emerging as an 

environmentally friendly mode of transport that can provide 

comfortable and convenient intercity passenger services. 

Under good management planning and traffic flow, it is 

greatly beneficial for a huge volume of people to strengthen 

social networks and business activities. To maintain 

desirable service quality and operation safety, it is 

paramount to develop innovative monitoring techniques that 

not only target the challenging practical issues induced by 

train dynamics but also aim to enhance the system 

reliability and ride quality of high-speed trains. 

Vibration is still an unavoidable problem to high-speed 

trains caused by rail irregularity, rail/wheel contact forces, 

vehicle  dynamics ,  and aerodynamic ins tab i l i ty 

(Remennikov and Kaewunruen 2008). These factors can be  
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either correlated with or independent of each other. A two-

stage suspension system (i.e., primary and secondary 

suspension systems) is usually adopted in high-speed trains. 

The efficacy of this double mechanical vibration isolation 

system depends on its damping and stiffness properties. 

Despite the rapid advancement of technology, vibration 

transmitted from bogies to car bodies via the suspension 

system is still a handicap. Although it is considered to pose 

only a mild risk of motion sickness given sufficiently good 

design and practice of train vehicles, vibration of passenger 

coaches can greatly affect ride comfort. In this connection, 

people exposed to train vehicle movements are fully 

suffering from dynamic and ambient influences, and both 

physiological and psychological components can be the 

determining factors. Several specifications such as GB5599 

and UIC 513R, that stipulate the acceptable ride index and 

vibration level of railway vehicles, are available. 

Researches available in the literature have reported that 

the vibration magnitude at a low-frequency range of 5-10 

Hz is mainly induced by wheel-rail contact bouncing at two 

sides of abrasion concave (Huang et al. 2013). Moreover, 

low-frequency vibration can efficiently transfer energy from 

rail/wheel into car body via the suspension system (Wang et 

al. 2016), and such low-frequency vibration effects can lead 

to uncomfortable feeling of passengers (Kim et al. 2003). In 
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Abstract.  High-speed rail (HSR) has been in operation and development in many countries worldwide. The explosive growth 

of HSR has posed great challenges for operation safety and ride comfort. Among various technological demands on high-speed 

trains, vibration is an inevitable problem caused by rail/wheel imperfections, vehicle dynamics, and aerodynamic instability. 

Ride comfort is a key factor in evaluating the operational performance of high-speed trains. In this study, online monitoring data 

have been acquired from an in-service high-speed train for condition assessment. The measured dynamic response signals at the 

floor level of a train cabin are processed by the Sperling operator, in which the ride comfort index sequence is used to identify 

the train’s operation condition. In addition, a novel technique that incorporates salient features of Bayesian inference and time 

series analysis is proposed for outlier detection and change detection. The Bayesian forecasting approach enables the prediction 

of conditional probabilities. By integrating the Bayesian forecasting approach with time series analysis, one-step forecasting 

probability density functions (PDFs) can be obtained before proceeding to the next observation. The change detection is 

conducted by comparing the current model and the alternative model (whose mean value is shifted by a prescribed offset) to 

determine which one can well fit the actual observation. When the comparison results indicate that the alternative model 

performs better, then a potential change is detected. If the current observation is a potential outlier or change, Bayes factor and 

cumulative Bayes factor are derived for further identification. A significant change, if identified, implies that there is a great 

alteration in the train operation performance due to defects. In this study, two illustrative cases are provided to demonstrate the 

performance of the proposed method for condition assessment of high-speed trains. 
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reality, various wheel conditions of train vehicles may result 

in different levels of ride discomfort that can act as an 

indicator reflecting the operation and service quality of 

high-speed trains. A vibration-based indicator in terms of 

the Sperling index has been widely used to describe the ride 

quality (Nakagawa et al. 2010). 

The dynamic performance of high-speed trains is greatly 

affected by route status, rail/wheel conditions and ambient 

environments. In particular, wheels act as one of crucial 

components in high-speed trains; their operational behavior 

is decisive to the train’s service life and running quality. It is 

known that abnormal impact loads can be generated by the 

defect of wheels, including wheel flats, wheel spalling, 

corrugation and polygonization (Vernersson 1999, Nielsen 

and Johansson 2000, Barke and Chiu 2005a, Remennikov 

and Kaewunren 2008). All these problems can be classified 

as out-of-roundness of wheels. Imperfections of wheel 

treads can bring a detrimental impact, in which the 

generated dynamic loads may cause serious damage to both 

tracks and vehicle components (Nielsen and Johansson 

2000, Barke and Chiu 2005a). Most of the conventional 

inspection techniques used for detection of wheel defects 

are lack of accuracy and are usually conducted in an offline 

manner. A literature review summarizing various techniques 

in relation to fault/defect detection applications in railway 

engineering is available (Barke and Chiu 2005b). 

In general, wayside detection systems can be pursued to 

provide a plenty of information for assessment of vehicle 

performance. For instance, the wheel impact monitor 

(WIM) as a non-contact method can quantify the extent of 

wheel defects. However, the modeling of forces exerted on 

tracks is required to be known before testing. In addition, 

the conventional inspection techniques for the detection of 

wheel defects are often one-off and cannot achieve long-

term continuous monitoring. Some investigations have been 

devoted to formulating dynamic models for the simulation 

and detection of wheel defects (Bian et al. 2013, 

Alexandrou et al. 2016). Due to the high complexity of train 

system and rail structure, the model-based techniques are 

rather cumbersome and time-consuming. The adopted 

assumptions or simplifications in modeling can greatly 

affect the accuracy and reliability of the formulated models 

and model-based fault detection. With the emergence of 

advanced sensing technologies (Laory et al. 2013), the use 

of data-driven techniques (also referred to as model-free 

approaches) fully based on the monitoring data of system 

responses and environments has increased in popularity for 

health monitoring of structural systems in recent years. 

There are a number of merits that can be gained from 

structural health monitoring (SHM) systems (Spencer et al. 

2004, Ko and Ni 2005, Brownjohn 2007, Lynch 2007, Ni et 

al. 2009, Ou and Li 2010). 

Successful implementation of online SHM systems to 

various infrastructures has been reported, such as long-span 

bridges (Wong 2004, Ni et al. 2011, Yun et al. 2011), high-

rise buildings (Lin et al. 2005, Kijewski-Correa et al. 2006, 

Ni et al. 2017), underground tunnels (Mohamad et al. 2012, 

Ding et al. 2013, Ye et al. 2013), and rail infrastructure 

(Barke and Chiu 2005b, Hu et al. 2015, Wang et al. 2018). 

The use of online SHM systems allows comparing static 

and dynamic monitoring data to provide a prompt 

evaluation of the structural condition (Niu et al. 2012, 

Zhang et al. 2015). Over the past two decades, a variety of 

SHM-based damage identification and condition assessment 

methods, such as artificial neural network (Ni et al. 2002, 

Geem et al. 2007), support vector machine (Yang et al. 

2005, Bornn et al. 2009), statistical pattern recognition 

(Worden and Manson 2007, Sohn and Oh 2009), principal 

component analysis (Elangovan et al. 2011, Gharibnezhad 

et al. 2015), reliability-based evaluation (Catbas et al. 2008, 

Xia et al. 2012), Bayesian inference (Jiang and Mahadevan 

2008, Kuok and Yuen 2012), and Gaussian process-based 

modeling (Dervilis et al. 2016, Wan and Ni 2018) have 

been proposed. 

Ni et al. (2015) recently developed a Bayesian approach 

for successive evaluation of ride comfort, where the online 

monitoring data of acceleration responses are acquired from 

an on-board sensing system to evaluate the Sperling index 

evolutionarily. The Bayesian forecasting framework enables 

the prediction of conditional probabilities, while the 

Sperling index is a good indicator competent to quantify the 

running performance of high-speed trains. Hitherto, there is 

only a paucity of research devoted to the evaluation of ride 

comfort with the use of online monitoring data (Kim et al. 

2004). In the present study, the integration of Bayesian 

forecasting approach with time series analysis is proposed 

for online condition assessment of an in-service high-speed 

train capitalizing on the monitoring data acquired from an 

on-board sensing system deployed on the train.  

The dynamic behavior of an in-service train, which 

would be affected by the wheel quality, can be captured by 

the on-board sensing system deployed on it. The monitoring 

data used in the present study are those acquired from an 

instrumented in-service high-speed train before and after 

wheel lathing (a process of making out-of-round wheels 

perfectly round again in the depot), with the purpose to 

identify potential change in wheel quality on the basis of the 

monitoring-derived Sperling index sequence. The dynamic 

linear model (DLM) and Bayesian forecasting approach are 

applied to achieve this target. In the framework of Bayesian 

inference, both Bayes factor and cumulative Bayes factor 

are derived to determine whether the current observation is 

an outlier or a significant change due to the occurrence of 

wheel defects. The evaluation results by the proposed 

approach can be updated with reduced uncertainties when 

new monitoring data are available. The present work is also 

beneficial to scheduling the condition-based maintenance 

plan for high-speed train wheels. 

 

 

2. Instrumentation system 
 

An on-board sensing system comprising piezoelectric-

type and optical fiber sensors, which are deployed at both 

motor and trailer bogies, axle boxes, gearboxes and floor of 

coaches for acceleration, strain, temperature and noise 

measurement, has been implemented on a high-speed 

passenger train to continuously collect online monitoring 

data during its routine operation (Wang et al. 2016). Fig. 1 
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illustrates the accelerometers deployed at the floor level of a 

coach and the data acquisition unit during the monitoring. 

In accordance with the specifications (China National 

Bureau of Standards 1985, International Union of Railways 

1994), the acceleration data collected at different locations 

of the coach floor are used to calculate the Sperling index 

and evaluate the ride quality in real time. During the on-

board monitoring, the train was operated at maximum 

speeds of 200 to 250 km/hr. 

The acceleration responses in both lateral and vertical 

directions collected at the interior floor of a trailer car are 

used in this study. The acceleration data were acquired at a 

sampling rate of 1000 Hz. By calculating at each time slot 

the Sperling index from the measured accelerations, the ride 

quality index sequence is obtained which characterizes the 

operation condition of the high-speed train traveling along 

the whole route. To verify the effectiveness of the proposed 

Bayesian forecasting and time series analysis procedure for 

train condition assessment, the acceleration monitoring data 

acquired from the train before and after wheel lathing are 

used in the study.  

 

 

3. Methodology 
 

The proposed method for online condition monitoring of 

in-service trains is presented in the sub-sections below. 

Following this method, the online monitoring data of 

accelerations acquired from the in-service train at each time 

segment are synthesized to obtain the Sperling index 

sequence. Next, a time series analysis is employed to model 

the dynamic process of the comfort index evolution over 

time for the purpose of eliciting a continuous monitoring 

and assessment procedure. To provide an early warning on 

damage or deterioration prior to structure failure or costly 

repair, Bayesian forecasting is incorporated into time series 

analysis to diagnose potential anomaly of the operation 

status. As such, a built-in detection algorithm is constructed. 

When a significant change is detected, potential defects of 

the train are alarmed. 

 

 

 

 

3.1 Sperling index 
 

The Sperling index is a specific indicator that can be 

used to quantify the comfort feeling of passengers due to 

external factors of a running train vehicle (Nakagawa et al. 

2010). This index is capable of reflecting the running train 

status under various operation conditions. Making use of 

the acquired acceleration data, the Sperling index can be 

calculated using Eq. (1). In general, the smaller the values 

are, the better the ride quality is. The formula for computing 

the Sperling index is (Zhou et al. 2009) 

 
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where n is the number of frequency contents {f1, f2, f3, …, 

fn} of the measured time-domain acceleration after applying 

the fast Fourier transform (FFT); Wi stands for the Sperling 

index value of each contributed component: 
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where Ai is the acceleration at the frequency fi (Hz) and F(fi) 

is the frequency modification factor that is a piecewise-

linear function of fi (China National Bureau of Standards 

1985). The Sperling index is obtained for every 100 seconds 

to form a ride quality index sequence which represents the 

operation condition of the monitored train in each time 

segment as illustrated in Fig. 2. 

 

 

Fig. 2 Original signals and obtained Sperling indices in 

different time segments 

 

  

Monitoring location 

Accelerometer Laptops 
Car body floor 

 

Fig. 1 Accelerometers and data acquisition unit for online monitoring of an in-service high-speed train 
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3.2 Dynamic linear model 
 

The dynamic linear model (DLM) (West and Harrison 

1999, Petris et al. 2009) can be regarded as a special case of 

generic state-space models. It is commonly used for time 

series analysis in the context of Bayesian inference. The 

DLM is an integration of the state equation given in Eq. (3) 

with varying parameters and the observation equation given 

in Eq. (4): 

,T

t t t tY F θ v     ~ (0, )t tv N V  (3) 

 

1 ,t t t tθ Gθ ω     ~ (0, )t tω N W  (4) 

where Ft is a p1 vector of known parameters; Gt is a p×p 

matrix of known constants; t is a p×1 vector of unknown 

parameters; vt is an observation noise term to represent the 

measurement error that corrupts the observation Yt; t is an 

evolution noise term to denote a stochastic change in the 

state vector t; {Vt} and {Wt} are two independent 

sequences of independent Gaussian random vectors with 

mean zero and known variance; and Yt is the observation 

series at time t. With Eqs. (3) and (4), the evolving 

relationship between the measurement and unknown state 

parameters can be obtained. 

In this study, the Sperling index sequence obtained using 

the measured vibration data is viewed as the measurement 

in the DLM formulation, where a second-order DLM is 

employed to model the dynamic process. The underlying 

rationale is to decompose a time series with the observed 

measurement into several mathematical elements including 

values and gradients (Lipowsky et al. 2010). Thus, Eqs. (3) 

and (4) can be rewritten as 

,t t tY μ v 
   

2~ (0, )t obsv N σ
 

(5) 

 

1 1 1 ,t t t tμ μ β ω   
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2
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(7) 

where the state vector has two elements, μt and βt, which 

denote the current level of the parameter values and the 

current rate of change of the parameters (i.e., gradients), 

respectively. In the form of a state-space model, they can be 

written as 

=
t
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(8) 

where level and trend are the variances of the parameter 

values and the change rate of the parameters, respectively. 

The measurement variance is equivalent to the square of its 

standard deviation obs. 

3.3 Bayesian forecasting 
 

Bayesian inference is a promising approach for 

statistical analysis. It can be derived from the well-known 

Bayes’ rule by computing the posterior probability of the 

model parameters from prior information and measurement 

mixtures. Using the Bayesian inference, it is easy to update 

a previous evaluation with a new likelihood when new 

observation data are available. To integrate the Bayesian 

inference into time series analysis, the following notation is 

introduced 

( ) ~ ( , ),t t t tP θ D N m C   1 2, ,...,t tD Y Y Y  (9) 

where {Y1, Y2, …, Yt} stand for the observations.  

The above equation presents the PDF of the state 

parameter  at time t based on the measurements. This PDF 

is normally distributed with a mean of m and a variance of 

C. If the state at time t is given, the posterior distribution of 

the state parameter and the prediction for one-step forecast 

at time t+1 can be obtained by the following equations 

(Petris et al. 2009) 

1 1 1( ) ~ ( , )t t t tP θ D N a R  
 (10) 

 

1 1 1( ) ~ ( , )t t t tP Y D N f Q  
 (11) 

where 
1( )t tP θ D

 and 
1 1 1( ) ~ ( , )t t t tP Y D N f Q  

 are the 

posterior distribution of the state parameters and the one-

step forecasting distribution, respectively. The means and 

variances of the above two distributions can be calculated 

as follows 

1 1t t ta G m    (12) 

 

1 1 1

T

t t tf F a     (13) 

 

1 1 1 1

T

t t t t tR G C G W      (14) 

 

1 1 1 1 1

T

t t t t tQ F R F V       (15) 

If we obtain the measurement Yt+1 at time t+1 in this 

inference process, the corrections are due to Eq. (9) and the 

distribution of the state parameters is updated to P(t+1|Dt+1) 

~ N(mt+1|Ct+1) where the mean and the variance are given 

by 

1 1 1 1t t t tm a A e      (16) 

 

1 1 1 1 1

T

t t t t tC R A A Q       (17) 

where et+1=Yt+1ft+1 and At+1=Rt+1Ft+1/Qt+1. In the subsequent 

sub-sections, a special logic called the Bayes factor will be 

adopted to identify outliers and significant changes. 
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3.4 Detection algorithm 
 
3.4.1 Outlier detection 
In the present study, the detection logic is based on the 

calculation of Bayes factor to identify potential outliers and 

defects. As mentioned before, the Bayesian forecasting 

approach enables the generation of PDFs for the next 

observation. In this process, the detection is carried out by 

comparing the measurement with the current model 

(forecast distribution for the current time, denoted as 

“Model 0”) and the alternative model (achieved by shifting 

a prescribed offset of mean value h of the current model, 

denoted as “Model 1”). Thus the Bayes factor is obtained 

from the ratio of the two models as 

PDF value of Model  1

PDF value of Model  0
tH   (18) 

Since the PDFs of both models are normally distributed, 

the Bayes factor can be further obtained as 

2

2

2 ( )
exp

2

t t

t

T

h Y f h
H

Q

    
  

 
 (19) 

where Ht is a monotonic straight line in terms of a 

logarithmic scale, which means that a larger Bayes factor 

will provide a better fit between the measurement and the 

alternative model. In the case of Ht =1, it implies that the 

probability measures from both models are equal. On the 

other hand, the plus and minus signs in Eq. (19) are used to 

detect the outliers with positive and negative deviations, 

respectively (Lipowsky et al. 2010). According to Jeffreys 

(1961), the threshold value for outlier detection can be set 

as Hmin = 10. However, the shift value of h should be 

determined in accordance with the required confidence 

level. In this study, h = 1.645t at a 90% confidence level is 

used. Thus, an uncertainty limit (ucl) can be determined by 

the following equation 

2minln( )

2
t

H h
ucl σ

h
   (20) 

In the case of h = 1.645t and Hmin = 10, the uncertainty 

limit is equal to 2.22t. The observation would be identified 

as an outlier when its deviation from the mean value of the 

current model is larger than ucl. 

 

3.4.2 Change (defect) detection 
To discriminate between outliers and significant 

changes, the cumulative Bayes factor is developed, which is 

defined as the product of k consecutive Bayes factors 

1

( )
t

t t

t k

H k H
 

    max1,2,...,k l  (21) 

where lmax denotes the maximum number of Bayes factors 

considered. The maximum cumulative Bayes factor is 

calculated by the following equation 

( ) max( ( ))t t t tL H l H k     max1 tl l   (22) 

 

where lt refers to the run length by counting the number of 

recent and consecutive observations that contribute to the 

maximum value of Lt. It is recursively calculated by 

1
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
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
   

1

1

1
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if L

if L
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
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
 (23) 

The threshold value of lt is lmin = 4, as suggested by Pole 

et al. (1994). In this procedure, a notification of change at 

time t when Lt > Hmin is denoted as the time of notification 

(i.e., TON = t). When a change is detected and recorded, it 

is defined as the time of change occurrence (i.e., TOC = t  

lt + 1). 

In short, there are two steps in the outliner identification 

and change (defect) detection. The first step is to calculate 

the Bayes factor and to judge if the observation is an outlier 

or not. The criterion for catching an outlier is presented as 

Ht > Hmin and Ht-1 ≤ Hmin. If this condition is not satisfied, 

the procedure will turn to the change (defect) detection. In 

the second step, the cumulative Bayes factor Lt and the run 

length lt will be calculated. In contrast to the outlier 

detection, the significant change (defect) is triggered by the 

following two criteria (Lipowsky et al. 2010): 

(i) The occurrence of two consecutive Bayes factors 

is Ht > Hmin, which is equivalent to Lt > Hmin
2; and 

(ii) The concurrence of Lt > Hmin and lt > lmin is resulted. 

Once a change is detected, the retrospective refinement 

will be conducted by re-setting the time to TOC and by 

adjusting the mean value of Model 0 to the measurement (ft 

= Yt). The flowchart of the algorithm is given in Fig. 3. 

 

 

4. Analysis results and discussion 
 

The measured vibration signals of the car body at the 

floor level are processed by the proposed technique. In 

terms of the Sperling index, the original data collected are 

converted into the ride quality index sequence at time 

intervals of 100s, which reflects the operation condition of 

the high-speed train. In the assessment procedure, a second-

order DLM is formulated to model the dynamic process. 

 

 

Fig. 3 Flowchart of the proposed algorithm 

End

Yes

Yes

No

No

Start at time t

Ht > Hmin and 

Ht-1 ≤ Hmin

Lt > H2
min or

Lt>Hmin and lt>lmin

Reject yt as a potential outlier

1) Issue signal of possible changes

2) Reset time → t=t – lt + 1

3) Model adjustment → ft = yt

Next time step

t=t+1
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Then, the Bayesian forecasting approach is applied to 

conduct one-step prediction prior to the next observation. 

Two metrics, Bayes factor and cumulative Bayes factor, are 

worked out for outlier detection and change detection. The 

vibration signals acquired from the car body under different 

wheel quality conditions (before and after wheel lathing) 

are used. The proposed procedure is applied to identify the 

alteration in operation performance stemming from wheel 

defects. Figs. 4 and 5 show two cases in accordance with 

the monitoring data acquired from different intervals of the 

rail line.  

 

 

 

Fig. 4 Original model for ride quality index prediction in 

Case 1 

 

 

 

Fig. 5 Original model for ride quality index prediction in 

Case 2 

 

 

 

Fig. 6 Bayesian dynamic linear model for outlier  

detection in Case 1 

 

 

 

Fig. 7 Bayesian dynamic linear model for outlier 

detection in Case 2 

 

 

 

The condition assessment results by applying the 

proposed procedure to the above two sets of sequences are 

provided in Figs. 6 to 11. As an example, the data at the 

time interval t  [0, 63] shown in Fig. 5 were measured 

from the train after wheel lathing, while the other 

correspond to the status before wheel lathing. In applying 

the proposed procedure, the shift parameter is set as h = 

1.645, resulting in an uncertainty limit of ucl = 2.22. 

 

 

 

 

Fig. 8 Bayesian dynamic linear model for change 

detection in Case 1 

 

 

 

Fig. 9 Bayesian dynamic linear model for change 

detection in Case 2 

 

 

 

 

Fig. 10 Refined model for ride quality index prediction in 

Case 1 

 

 

 

Fig. 11 Refined model for ride quality index prediction in 

Case 2 
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In Figs. 4 and 5, the actual values (red points) in terms 

of the Sperling indices obtained at equal time intervals are 

from the original vibration signals, while the results of one-

step forecasting (guess of mean value) obtained by DLM 

are presented by a blue solid line and a 90% prediction 

interval is denoted by a grey shadow. The Bayes factor and 

the accumulative Bayes factor are used for outlier detection 

and change detection, respectively. The detection results for 

the above two cases are shown in Figs. 6 to 9. It is observed 

that, although some observations fall outside of the 90% 

prediction interval, the corresponding Bayes factors are 

within the threshold of Hmin = 10 as shown in Figs. 6 and 7, 

implying that there is no outlier detected. This observation 

can be explained since the measurements are held by a 95% 

prediction interval induced by setting Hmin = 10 (ucl = 

2.22) in the outlier detection. 

On the other hand, Figs. 8 and 9 show the results of the 

cumulative Bayes factor for change detection. It can be seen 

that the evaluation results exceed the threshold line of Lmin 

= 10 at t = 201 (i.e., TON1 = 201) and t = 67 (i.e., TON2 = 

67) in the two cases, respectively. Meanwhile, the 

corresponding run lengths for the two cases are lt (= 6) > 

lmin (= 4) and lt (= 5) > lmin (= 4), respectively. In other 

words, both situations fulfill the conditions as there is a 

significant change. The identified occurrence time instants 

of change in these two cases are t = 196 (i.e., TOC1 = 

TON1lt+1 = 196) and t = 63 (i.e., TOC2 = TON2lt+1 = 63), 

respectively. These results are in good agreement with the 

actual time point of inflicting wheel lathing. 

In accordance with the real-time identification of change 

occurrence, the model refinement by altering the guessed 

mean value is carried out by the proposed strategy. The 

newly predicted results (blue solid line) are shown in Figs. 

10 and 11. It is clearly observed that the prediction at the 

time of change occurrence in the refined models agrees well 

with the actual measurement, and it offers better 

performance than the original model. 

 

 

5. Conclusions 
 

Operation safety and ride comfort are imperiled by the 

technical demands for increasing the running speed of high-

speed trains, in which the quality of wheels is a dominant 

factor affecting the running stability. Besides, the dynamic 

response of high-speed trains is also subject to the influence 

of ambient conditions. Integrating a data-driven strategy for 

online monitoring and assessment enables engineers to trace 

the health status of high-speed trains. To achieve this target, 

it is highly desired to develop innovative techniques for 

real-time condition identification and assessment. 

In the present work, an on-board sensing system has 

been installed on an in-service high-speed train to collect a 

variety of monitoring data during the routine operation. A 

vibration-based indicator in terms of the Sperling index is 

adopted for pre-processing the measured signals. The 

obtained ride quality index sequences are used to indicate 

the operational condition of the train. A novel technique that 

integrates Bayesian forecasting with time series analysis is 

used to conduct a probabilistic assessment of the train 

condition. Two metrics, Bayes factor and cumulative Bayes 

factor, are applied respectively for outlier detection and 

change detection. The present study is demonstrated by 

using the monitoring data acquired under different wheel 

conditions (before and after wheel lathing). Two illustrative 

cases are presented to examine the effectiveness of the 

proposed method. 
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