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1. Introduction 
 

Extracting energy from ambient environment to power 

microelectronic devices is an emerging technology to 

achieve autonomous operation. Conventionally, energy can 

be harvested from four essential sources: light, radio 

frequency, thermal gradient and vibration due to motions 

(Bhatnagar et al. 2015). The practicability of each energy 

source varies and the choice to harvest which energy source 

mostly depends on the availability of the energy source in 

the applications. For mobile and wearable applications, 

vibration energy harvesting has been demonstrated to be the 

most promising technology and therefore, is attracting much 

interest. 

Vibration energy harvesters convert mechanical 

vibrations to electrical energy by employing the three most 

common induction mechanisms: piezoelectric (Roundy et 

al.  2004, Yang  et al.  2009, Wang  et al.  2014), 

electromagnetic (Torah et al. 2008, Ju et al. 2013, Roundy 

et al. 2013) and electrostatic (Meninger et al. 2001, Yen et 

al. 2006, Kiziroglou et al. 2009). The utilization of each 

power transduction mechanism has its strengths and 

weaknesses and the decision to select a harvesting 

technology is mostly dependent on the applications. For 

miniaturization using micro-electro-mechanical-system  
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(MEMS) fabrication processes, electrostatic based 

microgenerators with pre-charged electret provide a unique 

opportunity to produce a sufficient amount of energy to 

power wireless sensors or actuators used in the mobile or 

wearable applications (Jefimenko et al. 1978, Tada 1992, 

Boland et al. 2003, Lo et al. 2008, Yang et al. 2014, Perez 

et al. 2016). 

In our previous work (Nguyen et al. 2017), we 

formulated an analytical model to describe the dynamic 

behavior of electret-based microgenerators under sinusoidal 

excitations with small excitation amplitudes, while in 

practice, large excitation amplitudes do also exist 

(Tsutsumino et al. 2006, Naruse et al. 2009, Chen et al. 

2013). The effect of multiple electrode crossing has been 

numerically investigated in the literature, however, with 

little in-depth insight into the operation mechanism of such 

devices (Renaud et al. 2015). As a result, this opens an 

interesting opportunity to extend the initially developed 

model to take into consideration a general excitation 

amplitude and provide an accurate prediction of power and 

voltage generated by the microgenerator. Hence, in this 

paper, we generalize the model developed in (Nguyen et al. 

2017) to highlight the addressed opportunity. 

The paper is organized as follows: Sect. 2 presents the 

theoretical formulation to model the microgenerator using 

linear circuit elements. A practical model of the 

microgenerator, including the effect of parasitic 

capacitances, is then presented in Sect. 3. In Sect. 4, the 

proposed model is validated by comparing it with 

numerically simulated results presented in the literature 

(Boisseau et al. 2010) and followed by a conclusion and an 

acknowledgment. 

 
 
 

Electret-based microgenerators under sinusoidal excitations: an analytical 
modeling 

 

Cuong C. Nguyen
1,2, Damith C. Ranasinghe2a and Said F. Al-Sarawi1b 

 
1Centre for Biomedical Engineering, School of Electrical and Electronic Engineering,  

University of Adelaide, Adelaide, SA 5005, Australia 
2Auto-ID Lab, School of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia 

 
(Received June 28, 2017, Revised January 28. 2018, Accepted February 8, 2018) 
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Fig. 1 Schematic of an electret-based cross-wafer 

microgenerator 

 

 

2. Theoretical model 
 

The electret-based microgenerator considered in this 

paper is a non-parametric structure in which the electrode 

width equals to the gap spacing between the two electrodes 

as illustrated in Fig. 1. The governing equation of the 

microgenerator which correlates the relative movement of 

the counter electrodes to the charge induced was derived by 

(Boland et al. 2003) as 

𝑑𝑄(𝑡)

𝑑𝑡
= − *

𝑄(𝑡)

𝑅𝐿𝐶0

𝐴0
𝐴(𝑡)

+
𝑉0
𝑅𝐿
+ (1) 

where 𝐶0  is the capacitance at 100 percent overlapping 

area 𝐴0, and 𝑉0 is the surface potential of the electret. The 

capacitance 𝐶0 can be calculated as 

1

𝐶0
=

𝑑

𝜀𝑑𝜀0𝐴0
+

𝑔

𝜀0𝐴0
⇒ 𝐶0 =

𝜀𝑑𝜀0𝐴0
𝑑 + 𝜀𝑑𝑔

 (2) 

where 𝜀𝑑 is the dielectric constant of electret, 𝜀0 is the 

permittivity of freespace, 𝑑 and 𝑔 are electret thickness 

and gap spacing between the two plates of the 

microgenerator, respectively. 

Eq. (1) shows a dependency of the induced charge 𝑄(𝑡) 
on the instantaneous overlapping area 𝐴(𝑡) , which is 

directly related to the type of external excitations.  

Therefore, to investigate the performance of the electret-

based microgenerator, it is essential to determine the 

correlation between the excitation 𝑥(𝑡) and instantaneous 

overlapping area 𝐴(𝑡). For the simplest case, which is a 

constant-speed rotation, the overlapping area is directly 

proportional to time and therefore, the solution of Eq. (1) 

can be easily obtained (Boland et al. 2003). For sinusoidal 

translations 𝑥(𝑡) =  𝑋 sin𝜔𝑡, the correlation between 𝐴(𝑡) 
and 𝑥(𝑡) is a triangle wave as shown in Fig. 2 which can 

be formulated as 

𝐴(𝑡) =
2𝐴0
𝜋
|arcsin ,sin *

𝜋𝑥(𝑡)

2𝑊
+-| (3) 

where 𝑊  is the electrode width of the electret-based 

microgenerator. 

The absolute function included in Eq. (3) is to represent 

both the symmetry of the excitation and the non-negativity 

of instantaneous overlapping area 𝐴(𝑡). To investigate the 

performance of the electret-based microgenerator for a 

general value of the vibration amplitude 𝑋 to the electrode 

width 𝑊 - defined as 𝑘, a similar approach to the one 

considered in (Nguyen et al. 2017) is employed. The 

assumptions of periodic nature of the excitation and 

symmetry of the microgenerator are utilized, so that only a 

first half cycle of the excitation is analyzed. Within this 

time period, Eq. (3) can be represented using a piecewise 

function 

𝐴(𝑡)

𝐴0
= {

𝑥(𝑡)

𝑊
− 2𝑚, 2𝑚 <

𝑥(𝑡)

𝑊
≤ 2𝑚 + 1

2𝑚 + 2 −
𝑥(𝑡)

𝑊
, 2𝑚 + 1 <

𝑥(𝑡)

𝑊
≤ 2𝑚 + 2,

 (4) 

where 𝑚  is a natural number within [0, 𝑘/2)  and 

𝑘 = 𝑋/𝑊 is the ratio between the excitation amplitude and 

the electrode width. 

For example, when 𝑘 ∈ (0, 1], which corresponds to the 

small amplitude excitation case, only one value of 𝑚 = 0 is 

satisfied and the overlapping area can be expressed as 

𝐴(𝑡)

𝐴0
=
𝑥(𝑡)

𝑊
= 𝑘 sin𝜔𝑡 (5) 

which is consistent with the result in (Nguyen et al. 2017). 

It is important to note that the expression in (5) is not 

associated with an absolute operator as the one presented in 

(Nguyen et al. 2017) due to the assumption which considers 

only a first half cycle of the vibration. When 𝑘 ∈ (1, 2], 
there is also one value of 𝑚 = 0, but the overlapping area 

is a combination of two sub-functions given by 

𝐴(𝑡)

𝐴0
= {

𝑘 sin𝜔𝑡 , 0 <
𝑥(𝑡)

𝑊
≤ 1

2 − 𝑘 sin𝜔𝑡 , 1 <
𝑥(𝑡)

𝑊
≤ 2

 (6) 

Table 1 provides a list of values of 𝑚 and the number of 

sub-functions used to describe 𝐴(𝑡) under different values of 

𝑘. In general, the shape of the overlapping area, in the time 

domain, is analogous to a sinusoidal function that is folded 

(𝑘 − 1) times between 0 and 1 as illustrated in Fig. 3. As a 

result, 𝐴(𝑡) is a combination of (2𝑘 − 1) sub-functions. 

For simplicity, the following analysis is carried out with 

integer values of 𝑘. Nonetheless, a non-integer 𝑘 can also be 

analyzed by replacing the value 𝑘 only in the superscript 

index notation presented in the following by the ceiling value 

of 𝑘, while all the calculations relate to 𝑘 are unchanged. 

 

 

 

Fig. 2 Instantaneous overlapping area 𝐴(𝑡) is a triangle 

wave with respect to the displacement 𝑥(𝑡) 
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The expression of 𝐴(𝑡) given in Eq. (4) is substituted into 

Eq. (1) to solve for the induced charge 𝑄(𝑡). However, the 

non-linearity of the sinusoidal function associated in the 

overlapping area 𝐴(𝑡) complicates the solution and places a 

roadblock for a further analysis. To reduce the non-linearity 

and ease the analysis, one common approach is to approximate 

the sinusoidal function using a polynomial. The higher the 

order of the polynomial used, the more accurate the 

approximation. However, a too high order polynomial also 

accompanies a sophisticated solution and consequently, 

undesirable. As shown in Fig. 4 within the first half cycle of 

the excitation, a sinusoidal function can be approximated using 

a second order polynomial, also known as a parabolic function 

presented as 

sin𝜔𝑡 ≈
4𝜔𝑡

𝜋
 (1 −

𝜔𝑡

𝜋
* (7) 

Hence, Eq. (4) can be rewritten by replacing 𝑥(𝑡) by the 

parabolic function given in (7). The interval defining each sub-

function of the piecewise function presented in Eq. (4) is also 

rewritten by solving the corresponding inequalities given in 

Eq. (4) and expressed in term of time instance 𝑡𝑗. The resulting 

overlapping area 𝐴(𝑡) is then given by 

𝐴(𝑡)

𝐴0

= {
4𝑘
𝜔𝑡

𝜋
(1 −

𝜔𝑡

𝜋
* − 2𝑚, 𝑡2𝑚 ≤ 𝑡 < 𝑡2𝑚+1 𝑜𝑟 𝑡2𝑘−2𝑚 ≤ 𝑡 < 𝑡2𝑘+1−2𝑚

2𝑚 + 2 − 4𝑘
𝜔𝑡

𝜋
(1 −

𝜔𝑡

𝜋
* , 𝑡2m+1 ≤ 𝑡 < 𝑡2𝑚+2 𝑜𝑟 𝑡2𝑘−2𝑚−1 ≤ 𝑡 < 𝑡2𝑘−2𝑚,

 
(8) 

where 

 

 
 

𝑡𝑗 = {
𝜏𝑗 , 0 ≤ 𝑗 ≤ 𝑘
𝜋

𝜔
− 𝜏2𝑘+1−𝑗 , 𝑘 + 1 ≤ 𝑗 ≤ 2𝑘 + 1

 (9) 

and 𝜏𝑗 is defined as 

𝜏𝑗 = .1 −√1 −
𝑗

𝑘
/
𝜋

2𝜔
 (10) 

Here, 𝑡𝑗 can also be understood as the time instance that 

satisfies 𝐴(𝑡𝑗) = 0 or 𝐴(𝑡𝑗) = 𝐴0. The purpose of using the 

notation 𝜏𝑗  is to simplify the representation of the time 

instance 𝑡𝑗. Within each time interval [𝑡𝑗,  𝑡𝑗+1], 𝐴(𝑡) can be 

presented by one continuous sub-function. However, with such 

definition of the time instance 𝑡𝑗 given in Eq. (9), there is a 

special case in which 

𝑡𝑘 = 𝑡𝑘+1 =
𝜋

2𝜔
 (11) 

This corresponds to the time instance at the middle cycle of 

the excitation and the duration of the time interval [𝑡𝑘, 𝑡𝑘+1] 
is, therefore, zero. As a result, the two time instances 𝑡𝑘 and 

𝑡𝑘+1 are excluded from the following analysis. Thus, all of the 

notation indexes discussed later also exclude the two values 𝑘 

and (𝑘 + 1). 
The dynamic behavior of the microgenerator within each 

time interval as part of the overlapping area given in Eq. (8) is 

analyzed in the following sub-sections. 

 

2.1 Time interval 𝑡2𝑚 ≤ 𝑡 < 𝑡2𝑚+1  or 

𝑡2𝑘−2𝑚 ≤  𝑡 <  𝑡2𝑘+1−2𝑚 

 

Within this time interval, the overlapping area is defined 

according to Eq. (8). Eq. (1) can, therefore, be written as 

𝑑𝑄1(𝑡)

𝑑𝑡
= −2

𝑄1(𝑡)

𝑘𝑅𝐿𝐶0 *
4𝜔𝑡
𝜋
 (1 −

𝜔𝑡
𝜋
) −

2𝑚
𝑘
+
+
𝑉0
𝑅𝐿
3 (12) 

 

  
(a) 𝑘 = 2 (b) 𝑘 = 3 

Fig. 3 Instantaneous overlapping area is represented by a piecewise function which is analogous to a sinusoidal function 

folded into (𝑘 − 1) segments between 0 and 1 in the y-axis 

Table 1 Example of range of 𝑚  and the number of 

segments expressed the overlapping area 𝐴(𝑡)  with 

different values of 𝑘 

𝑘 𝑚 Number of sub-functions 

1 0 1 

2 0 2 

3 0, 1 3 

4 0, 1 4 

5 0, 1, 2 5 

337



 

Cuong C. Nguyen, Damith C. Ranasinghe and Said F. Al-Sarawi 

 

 

Fig. 4 Within a first half cycle of the excitation, a sinusoidal 

function can be approximated using a parabolic function 

 

 

The induced charge 𝑄1(𝑡) can be solved by employing 

integrating factor method combined with the result 3.194-1 in 

(Gradshteyn et al. 2014) and the Euler's transform of 

hypergeometric functions in the result (5.5) in (Temme 2011). 

Further details of the solution are included in Appx. A. The 

solution of Eq. (12) can then be expressed as 

𝑄1(𝑡) = 𝛽1 (
𝑡2𝑘+1−2𝑚 − 𝑡

𝑡 − 𝑡2𝑚
*
𝛾2𝑚

− 
𝑉0(𝑡 − 𝑡2𝑚)(𝑡2𝑘+1−2𝑚 − 𝑡)

𝑅𝐿(1 + 𝛾2𝑚)(𝑡2𝑘+1−2𝑚 − t2𝑚)

× 𝐹2 1 (1, 2; 2 + 𝛾2𝑚;
𝑡 − 𝑡2𝑚

𝑡2𝑘+1−2𝑚 − 𝑡2𝑚
*

 (13) 

where 𝛽1  is an arbitrary constant, 𝐹2 1(𝑎, 𝑏; 𝑐; 𝑧)  is a 

hypergeometric function, and 

𝛾𝑗 =
𝜋

4𝑘𝜔𝑅𝐿𝐶0√1 −
𝑗
𝑘

 
(14) 

At time 𝑡 = 𝑡2𝑚, there is no overlap between the two 

plates of the electret-based microgenerator and therefore, no 

charge is induced or 𝑄1(𝑡2𝑚) = 0. This results in 𝛽1 = 0 

and a simpler solution is obtained. In spite of that, the non-

linearity of the hypergeometric function in Eq. (13) is quite 

complicated and consequently, does not allow modeling the 

microgenerator using linear circuit elements. Therefore, we 

employ the series expansion of hypergeometric functions to 

linearize the solution for further analysis. By expanding the 

hypergeometric function in Eq. (13), the solution of charge 

𝑄1(𝑡) can be written as 

𝑄1(𝑡) = −
𝑉0(𝑡 − 𝑡2𝑚)(𝑡2𝑘+1−2𝑚 − 𝑡)

𝑅𝐿(1 + 𝛾2𝑚)(𝑡2𝑘+1−2𝑚 − 𝑡2𝑚)

× 𝐹2 1 (1, 2; 2 + 𝛾2𝑚;
𝑡 − 𝑡2𝑚

𝑡2𝑘+1−2𝑚 − 𝑡2𝑚
*

= −
𝑉0(𝑡 − 𝑡2𝑚)(𝑡2𝑘+1−2𝑚 − 𝑡)

𝑅𝐿(1 + 𝛾2𝑚)(𝑡2𝑘+1−2𝑚 − 𝑡2𝑚)

× (1 +
2

2 + 𝛾2𝑚

𝑡 − 𝑡2𝑚
𝑡2𝑘+1−2𝑚 − 𝑡2𝑚

+⋯*

 (15) 

 

Owing to the microscale of the microgenerator, the 

system capacitance 𝐶0  is small and often less than 10 pF. 

The external load 𝑅𝐿  can vary from a few kΩ to a few 

hundred MΩ. In addition, the targeted vibration frequency, 

from the application point of view, is very low, which is in 

the order of 2 Hz for human motion (Yun et al. 2011). As a 

result, 𝜔𝑅𝐿𝐶0 is very small, making the lowest order term 

in the series expansion become the dominant term. We can, 

therefore, approximate the hypergeometric function to the 

lowest order term to obtain a closed-form solution of 

induced charge 𝑄1(𝑡) as 

𝑄1(𝑡) = −
𝑉0(𝑡 − 𝑡2𝑚)(𝑡2𝑘+1−2𝑚 − 𝑡)

𝑅𝐿(1 + 𝛾2𝑚)(𝑡2𝑘+1−2𝑚 − 𝑡2𝑚)
 (16) 

Given the induced charge in Eq. (16), the electric 

current passing through the external load and the output 

voltage can respectively be calculated as 

𝐼1(𝑡) = −
𝑑𝑄1(𝑡)

𝑑𝑡

=
𝜋𝑉0 (1 −

2𝜔𝑡
𝜋
)

𝜔𝑅𝐿(1 + 𝛾2𝑚)(𝑡2𝑘+1−2𝑚 − 𝑡2𝑚)

 (17) 

 

𝑉1(𝑡) = 𝑅𝐿𝐼1(𝑡) =
𝜋𝑉0 (1 −

2𝜔𝑡
𝜋
)

𝜔(1 + 𝛾2𝑚)(𝑡2𝑘+1−2𝑚 − 𝑡2𝑚)
 (18) 

We then investigate the two important characteristics of 

the microgenerator: short circuit current and open circuit 

voltage in order to utilize linear circuit elements to model 

the microgenerator. The short circuit current can be 

determined as the external load is set to zero, while the open 

circuit voltage is obtained when the load approaches infinity 

𝐼𝑠𝑐1(t) = lim
𝑅𝐿→0

𝐼1(𝑡) =
4𝑘𝜔𝐶0𝑉0

𝜋
 (1 −

2𝜔𝑡

𝜋
* (19) 

 

𝑉𝑜𝑐1(𝑡) = lim
𝑅𝐿→∞

𝑉1(𝑡) =
𝑉0

√1 −
2𝑚
𝑘

 (1 −
2𝜔𝑡

𝜋
* 

(20) 

The results in (19) and (20) show that the short circuit 

current is directly proportional to the open circuit voltage, 

which represents the characteristic of a resistor. The 

microgenerator can, therefore, be modeled as a reverse-

sawtooth voltage source 𝑉𝑠𝑐1(𝑡)  in series with an 

equivalent internal resistance 𝑅𝑖1  defined as 

𝑅𝑖1 =
𝑉𝑜𝑐1(𝑡)

𝐼𝑠𝑐1(𝑡)
=

𝜋

4𝑘𝜔𝐶0√1 −
2𝑚
𝑘

=
𝑅0

8𝑘√1 −
2𝑚
𝑘

 
(21) 

where 𝑅0 = 1/(𝑓𝐶0). 
 

Remark 1. 𝑅0 is a direct analogy to the equivalent 

resistance of a switch capacitor 𝐶0  at a switching 

frequency 𝑓  as presented in (Franco 2002: 187-88). 

Therefore, the dynamic behavior of the electret-based 

microgenerator in this case is analogous to the operation 

mechanism of a switch capacitor. 
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Fig. 6 Illustration of different time intervals 

corresponding to different electrodynamic responses of 

the electret-based microgenerator 

 

 

The equivalent circuit of the electret-based 

microgenerator is presented in Fig. 5(a). In addition, for the 

case of small amplitude excitations or 𝑘 ≤ 1, 𝑚 can only 

equal to 0, the open circuit voltage and the equivalent 

internal resistance reduce to 

{
𝑉𝑜𝑐1(𝑡) = 𝑉0 (1 −

2𝜔𝑡

𝜋
*

𝑅𝑖1 =
𝑅0
8𝑘
,

 (22) 

which is consistent with the results formulated in (Nguyen 

et al. 2017). 

 

2.2 Time interval 𝑡2𝑚+1 ≤ 𝑡 < 𝑡2𝑚+2 or 𝑡2𝑘−2𝑚−1 ≤
𝑡 < 𝑡2𝑘−2𝑚 
 

There is also a special case in the second branch of 

Eq. (8), which occurs when the ratio 𝑘 is an even number. 

In this case, the overlapping area has a repeated time 

instances 𝑡𝑘 and 𝑡𝑘+1, which is illustrated in Fig. 6. As 

stated in the paragraph right after Eq. (11), these two time 

instances are excluded and the time interval considered will 

be [𝑡𝑘−1,  𝑡𝑘+2]. In addition to these repeated time instances 

when 𝑘 is an even number, the integration in the time 

interval [𝑡𝑘−1,    𝑡𝑘+2] illustrated as the yellow-shaded 

region in Fig. 6 is different and therefore, is presented 

separately. In the following sections, the term “special case”  

 

 

indicates the time interval [𝑡𝑘−1,  𝑡𝑘+2] when 𝑘 is even, 

while the “general case” will cover the rest. 

 

2.2.1 General case 
The overlapping area in this case corresponds to the 

non-highlighted regions shown in Fig. 6. Within this time 

interval, the overlapping area is defined according to Eq. (8) 

and hence, Eq. (1) can be rewritten as 

𝑑𝑄21(𝑡)

𝑑𝑡
= −2

𝑄21(𝑡)

𝑘𝑅𝐿𝐶0 *
2𝑚 + 2
𝑘

−
4𝜔𝑡
𝜋
 (1 −

𝜔𝑡
𝜋
)+
+
𝑉0
𝑅𝐿
3 (23) 

Eq. (23) can be solved using integrating factor method 

and the solution can be expressed as 

𝑄21(𝑡) = 𝛽21 (
𝑡 − 𝑡2𝑚+2
𝑡 − 𝑡2𝑘−2𝑚−1

*
𝛾2𝑚+2

−
𝑉0(𝑡 − 𝑡2𝑚+2)(𝑡 − 𝑡2𝑘−2𝑚−1)

𝑅𝐿(1 + 𝛾2𝑚+2)(𝑡2𝑘−2𝑚−1 − 𝑡2𝑚+2)

× 𝐹2 1 (1, 2; 2 + 𝛾2𝑚+2;  
𝑡 − 𝑡2𝑘−2𝑚−1

𝑡2𝑚+2 − 𝑡2𝑘−2𝑚−1
*

 (24) 

The details of solving Eq. (23) can be found in Appx. B. 

At time 𝑡 = 𝑡2𝑘−2𝑚−1 , there is no area overlap, 

resulting in no charge induced and therefore, 𝛽21  = 0. 

Similar to the approach presented in Sect. 2.1, the 

hypergeometric function in Eq. (24) is approximated to the 

lowest order term for the given reasons to obtain the closed-

form solution as 

𝑄21(𝑡) = −
𝑉0(𝑡 − 𝑡2𝑚+2)(𝑡 − 𝑡2𝑘−2𝑚−1)

𝑅𝐿(1 + 𝛾2𝑚+2)(𝑡2𝑘−2𝑚−1 − 𝑡2𝑚+2)
 (25) 

Given the closed-form solution of the induced charge 

𝑄21(𝑡)  in Eq. (25), the output current and voltage are 

respectively calculated as 

𝐼21(𝑡) = −
𝑑𝑄21(𝑡)

𝑑𝑡

=
−𝜋𝑉0 (1 −

2𝜔𝑡
𝜋
)

𝜔𝑅𝐿(1 + 𝛾2𝑚+2)(𝑡2𝑘−2𝑚−1 − 𝑡2𝑚+2)
 

 (26) 

 

𝑉21(𝑡) = 𝑅𝐿𝐼21(𝑡)

=
−𝜋𝑉0 (1 −

2𝜔𝑡
𝜋
)

𝜔(1 + 𝛾2𝑚+2)(𝑡2𝑘−2𝑚−1 − 𝑡2𝑚+2)
 

 (27) 

 

 

(a) A voltage source in series with an internal resistance (b) A current source 

Fig. 5 The electret-based microgenerator under a sinusoidal excitation with angular frequency 𝜔 can be modeled using 

linear circuit elements. Lumped parasitic capacitance is added to refine the model for accurate predictions 
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The short circuit current and open circuit voltage of the 

electret-based microgenerator in this case can be written 

respectively as 

𝐼𝑠𝑐21(𝑡) = lim
𝑅𝐿→0

𝐼21(𝑡) = −
4𝑘𝜔𝐶0𝑉0

𝜋
 (1 −

2𝜔𝑡

𝜋
* (28) 

 

𝑉𝑜𝑐21(𝑡) = lim
𝑅𝐿→∞

𝑉21(𝑡) =
−𝑉0

√1 −
2𝑚 + 2
𝑘

 (1 −
2𝜔𝑡

𝜋
* 

(29) 

 
Similar to the result obtained in Sect. 2.1, the short 

circuit current given in (28) is directly proportional to the 

open circuit voltage given in (29) which is, again, the 

characteristic of a resistor. Hence, the microgenerator can 

be modeled as a sawtooth voltage source 𝑉𝑜𝑐21(𝑡) in series 

with an equivalent internal resistance 𝑅𝑖2  illustrated in Fig. 

5(a), where 

𝑅𝑖2 =
𝑅0

8𝑘√1 −
2𝑚 + 2
𝑘

. 
(30) 

To employ index-based notations to ease the further 

analysis, the internal resistances given in Eqs. (21) and (30) 

can be written as 

𝑅𝑖
(𝑛) =

{
  
 

  
 

𝑅0

8𝑘√1 −
𝑛 + (𝑛 mod 2)

𝑘

, 0 ≤ 𝑛 ≤ 𝑘 − 1

𝑅0

8𝑘√1 −
(2𝑘 − 𝑛) + [(2𝑘 − 𝑛) mod 2]

𝑘

, 𝑘 + 2 ≤ 𝑛 ≤ 2𝑘

 (31) 

where mod is the modulo operator and the superscript (𝑛) 
indicates that the variables are applicable in the time 

interval [𝑡𝑛,   𝑡𝑛+1] as illustrated in Fig. 7. Here, the values 

𝑘 and (𝑘 + 1) are excluded from the superscript index 

(𝑛). The voltage sources specified in (20) and (29) can be 

rewritten in a single form as 

𝑉𝑜𝑐
(𝑛)(𝑡) = (−1)𝑛

8𝑘𝑅𝑖
(𝑛)

𝑅0
 𝑉0 (1 −

2𝜔𝑡

𝜋
* (32) 

 
2.2.2 Special case 
In this case, 𝑘 is an even number and therefore, there is a 

value of 𝑚 such that 𝑘 = 2𝑚 + 2, resulting in a repeated or 

double time instance that causes the overlapping area to be 

zero, illustrated as the yellow-shaded region shown in Fig. 6. 

The time interval considered for this case is presented as 

𝑡𝑘−1 ≤ 𝑡 ≤ 𝑡𝑘+2 
Eq. (1) is, therefore, simplified to 

𝑑𝑄22(𝑡)

𝑑𝑡
= −[

𝑄22(𝑡)

𝑘𝑅𝐿𝐶0 (1 −
2𝜔𝑡
𝜋
)
2 +

𝑉0
𝑅𝐿
 ] (33) 

Appx. C presents the detailed formulation of the 

solution of Eq. (33). The solution of induced charge 𝑄22(𝑡) 
can be expressed as 

𝑄22(𝑡) = 𝛽22𝑒

−𝜋

2𝑘𝜔𝑅𝐿𝐶0(1−
2𝜔𝑡
𝜋
)
+
𝜋𝑉0
2𝜔𝑅𝐿

 (1 −
2𝜔𝑡

𝜋
*

−
𝑉0
𝑅𝐿

𝜋2𝑒

−𝜋

2𝑘𝜔𝑅𝐿𝐶0(1−
2𝜔𝑡
𝜋
)

4𝑘𝜔2𝑅𝐿𝐶0

× Ei 0
𝜋

2𝑘𝜔𝑅𝐿𝐶0 (1 −
2𝜔𝑡
𝜋
)
1

 (34) 

where 𝛽22  is an arbitrary constant and  i(𝑧)  is the 

exponential integral function. 

Owing to the continuity of the overlapping area in this 

time interval, the induced charge 𝑄22(𝑡)  is also 

continuous. This continuity requires the equality of the left-

handed limit to the right-handed limit, which can be 

expressed as 

lim
𝑡→(

𝜋
2𝜔
)
−𝑄22(𝑡) = lim

𝑡→(
𝜋
2𝜔
)
+
𝑄22(𝑡) (35) 

As a result of this continuity condition, 𝛽22 = 0. 

We also employ the assumption of very small 𝜔𝑅𝐿𝐶0 
combined with the asymptotic representation of exponential 

integral function presented in the result 8.215 (Gradshteyn 

et al. 2014) to present the solution of induced charge 

𝑄22(𝑡) as 

𝑄22(𝑡) =
𝜋𝑉0
2𝜔𝑅𝐿

 (1 −
2𝜔𝑡

𝜋
* −

𝑉0
𝑅𝐿

𝜋2𝑒

−𝜋

2𝑘𝜔𝑅𝐿𝐶0(1−
2𝜔𝑡
𝜋
)

4𝑘𝜔2𝑅𝐿𝐶0

×
2𝑘𝜔𝑅𝐿𝐶0 (1 −

2𝜔𝑡
𝜋
)

𝜋

× 21 +
2𝑘𝜔𝑅𝐿𝐶0 (1 −

2𝜔𝑡
𝜋
)

𝜋
 +⋯3

≈ −2𝑘𝐶0𝑉0 (1 −
2𝜔𝑡

𝜋
*
2

 (36) 

Given the linearized solution in (36), we can calculate 

the electrical current passing through the external load 𝑅𝐿 

as 

𝐼22(𝑡) = −
𝑑𝑄22(𝑡)

𝑑𝑡
= −

4𝑘𝜔𝐶0𝑉0
𝜋

(1 −
2𝜔𝑡

𝜋
* (37) 

The result in (37) shows that the output current is 

independent of the load resistance 𝑅𝐿 , which is the 

characteristic of a current source. Therefore, the 

microgenerator, in this case, can be modeled as a current 

source 𝐼22(𝑡) as shown in Fig. 5(b). 

In summary, an electret-based microgenerator excited by 

a sinusoidal vibration can be modeled as a voltage source in 

series with an internal resistance as shown in Fig. 5(a). 

There is only one special case when 𝑘 is an even number, 

the microgenerator can be modeled as a pure current source 

within the time interval [𝑡𝑘−1,  𝑡𝑘+2] as shown in Fig. 5(b). 
 
 
3. Effect of parasitic capacitances 
 

The theoretical model developed in Sect. 2 neglects the 

effect of parasitic capacitances due to the harvesting circuit 

wiring and fringe capacitance within the microgenerator itself. 

Those unavoidable capacitances result in reducing the amount 

of energy transferred to the load. Consequently, the 

performance of the microgenerator is reduced, resulting in a 

notable discrepancy between the theoretical model 

prediction and measured data (Bartsch et al. 2009). To 

accurately predict the performance of the electret-based 

microgenerator, parasitic capacitances are lumped into a 

single capacitance 𝐶𝑝  connected in parallel with the 

external load, 𝑅𝐿 , as shown in Fig. 5. The governing 

equation of the circuit including 𝐶𝑝 as shown in Fig. 5(a) 

is given by 
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𝐶𝑝
𝑑𝑉𝑅𝐿

(𝑛)(𝑡)

𝑑𝑡
=
𝑉𝑅𝐿
(𝑛)(𝑡)

𝑅𝑝
(𝑛)

−
𝑉𝑜𝑐
(𝑛)(𝑡)

𝑅𝐿
 (38) 

where 𝑅𝑝
(𝑛) = 𝑅𝐿  𝑅𝑖

(𝑛)
. 

The solution of Eq. (38) can be expressed by 

𝑉𝑅𝐿
(𝑛)(𝑡) = 𝑐(𝑛)𝑒

−𝑡

𝑅𝑝
(𝑛)
𝐶𝑝 + 𝜙(𝑛)(𝑡) 

(39) 

where 𝑐(𝑛)  is an arbitrary constant, and 𝜙(𝑛)(𝑡) is the 

steady state response defined as 

𝜙(𝑛)(𝑡) =
(−1)𝑛8𝑘𝑅𝑝

(𝑛)
𝑉0

𝑅0
(1 −

2𝜔𝑡

𝜋
+
2𝜔𝑅𝑝

(𝑛)
𝐶𝑝

𝜋
+ (40) 

For the special time interval [𝑡𝑘−1, 𝑡𝑘+2] when 𝑘  is 

even, the microgenerator is equivalent to the circuit shown 

in Fig. 5(b) in which the governing equation is given by 

𝐶𝑝
𝑑𝑉𝑅𝐿

(𝑘−1)(𝑡)

𝑑𝑡
+
𝑉𝑅𝐿
(𝑘−1)(𝑡)

𝑅𝐿
= 𝐼22(𝑡) (41) 

The solution of Eq. (41) can be presented as 

𝑉𝑅𝐿
(𝑘−1)(𝑡) = 𝑐(𝑘−1)𝑒

−𝑡
𝑅𝐿𝐶𝑝 + 𝜓(𝑡) (42) 

where 

𝜓(𝑡) = −
4𝑘𝜔𝑅𝐿𝐶0V0

𝜋
(1 −

2𝜔𝑡

𝜋
+
2𝜔𝑅𝐿𝐶𝑝

𝜋
* (43) 

To obtain a complete solution that includes the effect of 

parasitic capacitance 𝐶𝑝, the constants 𝑐(𝑛) in Eq. (39) and 

𝑐(𝑘−1) in Eq. (42) must be determined by applying the 

condition of continuity of the output voltage 𝑉𝑅𝐿
(𝑛)(𝑡) 

which means that 𝑉𝑅𝐿
(𝑛)(𝑡𝑛+1), the voltage at the end of the 

current time interval [𝑡𝑛,  𝑡𝑛+1],  must equal to 

𝑉𝑅𝐿
(𝑛+1)(𝑡𝑛+1), the voltage at the beginning of the next time 

interval [𝑡𝑛+1,   𝑡𝑛+2]. In addition, the voltage at the end of 

the output cycle must be the same as the voltage at the 

beginning of the output cycle. These conditions can be 

mathematically presented as 

2
𝑉𝑅𝐿
(𝑛)(𝑡𝑛+1) = 𝑉𝑅𝐿

(𝑛+1)(𝑡𝑛+1),    when 0 ≤ 𝑛 ≤ 2𝑘 − 1

𝑉𝑅𝐿
(0)(0) = 𝑉𝑅𝐿

(2𝑘)
(
𝜋

𝜔
) 

 (44) 

Eq. (44) results in a system of (2𝑘 − 1)  linear 

equations in term of 𝑐(𝑛) and can be presented as 

𝑨𝒄 = 𝒃 (45) 

where 𝑨 is a (2𝑘 − 1)-by-(2𝑘 − 1) matrix, 𝒄 is a vector 

containing (2𝑘 − 1)  constants 𝑐(𝑛) , and 𝒃  is a (2𝑘 −
1)-dimensional vector. 

For a general case without the repeated time instances 

causing zero overlapping area, the matrix 𝑨 is given in 

Eq. (46). Each row of matrix 𝑨 has only two non-zero 

elements, one is on the diagonal and one is next to the right 

of the diagonal. The last row is different, in which one 

element is still on the diagonal, while the other is in the first 

column. Here, it is important to note that the supercript 

indexes 𝑘 and (𝑘 + 1) are excluded. That means the 𝑘-th 

row has two elements with their respective superscript 

indexes are (𝑘 − 1) and (𝑘 + 2). 

𝑨 =

(

 
 
 
 
 
 
𝑒

−𝑡1

𝑅𝑝
(0)
𝐶𝑝 −𝑒

−𝑡1

𝑅𝑝
(1)
𝐶𝑝 0 ⋯ 0

0 𝑒

−𝑡2

𝑅𝑝
(1)
𝐶𝑝 −𝑒

−𝑡2

𝑅𝑝
(2)
𝐶𝑝 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 𝑒

−𝑡2𝑘

𝑅𝑝
(2𝑘−1)

𝐶𝑝 −𝑒

−𝑡2𝑘

𝑅𝑝
(2𝑘)

𝐶𝑝

−𝑒

−𝑡0

𝑅𝑝
(0)
𝐶𝑝 0 ⋯ 0 𝑒

−𝑡2𝑘+1

𝑅𝑝
(2𝑘)

𝐶𝑝 )

 
 
 
 
 
 

 (46) 

The general form of vector 𝒃 is presented in Eq. (47). 

Similar to matrix 𝑨, the element on the 𝑘-th row of vector 

𝒃 is the subtraction of two terms with their indexes as 

(𝑘 +  2) and (𝑘 − 1). 

𝒃 =

(

  
 

𝜙(1)(𝑡1) − 𝜙
(0)(𝑡1)

𝜙(2)(𝑡2) − 𝜙
(1)(𝑡2)

⋮
𝜙(2𝑘)(𝑡2𝑘) − 𝜙

(2𝑘−1)(𝑡2𝑘)

𝜙(0)(𝑡0) − 𝜙
(2𝑘)(𝑡2𝑘+1) )

  
 

 (47) 

For the special case where the ratio 𝑘  is an even 

number, the representation of the matrix 𝑨 and vector 𝒃 

are slightly different from the general case given in Eqs. (46) 

and (47). The only modification needed is in (𝑘 − 1)-th 

and 𝑘-th rows as highlighted in (48) and (49), while the rest 

is unchanged. 

𝐀 = (⋯ 𝑒

−𝑡𝑘−1

𝑅𝑝
(𝑘−2)

𝐶𝑝 −𝑒

−𝑡𝑘−1

𝑅𝑝
(𝑘−1)

𝐶𝑝 0 ⋯

⋯ 0 𝑒

−𝑡𝑘+2

𝑅𝑝
(𝑘−1)

𝐶𝑝 −𝑒

−𝑡𝑘+2

𝑅𝑝
(𝑘+2)

𝐶𝑝 ⋯

,

     ↓

𝐀 = (⋯ 𝑒

−𝑡𝑘−1

𝑅𝑝
(𝑘−2)

𝐶𝑝 −𝑒
−𝑡𝑘−1
𝑅𝐿𝐶𝑝 0 ⋯

⋯ 0 𝑒
−𝑡𝑘+2
𝑅𝐿𝐶𝑝 −𝑒

−𝑡𝑘+2

𝑅𝑝
(𝑘+2)

𝐶𝑝 ⋯

,

 (48) 

 

𝒃 = (

⋮
𝜙(𝑘−1)(𝑡𝑘−1) − 𝜙

(𝑘−2)(𝑡𝑘−1)

𝜙(𝑘+2)(𝑡𝑘+2) − 𝜙
(𝑘−1)(𝑡𝑘+2)

⋮

,

        ↓

𝒃 = (

⋮
𝜓(𝑡𝑘−1) − 𝜙

(𝑘−2)(𝑡𝑘−1)

𝜙(𝑘+2)(𝑡𝑘+2) − 𝜓(𝑡𝑘+2)
⋮

,

 (49) 

 

 

Fig. 7 An illustration of the superscript 𝑛 corresponding to 

the time interval [𝑡𝑛, 𝑡𝑛+1] when 𝑘 = 2. The indices 𝑘 

and (𝑘 + 1) are excluded from the analysis  
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Given the exact result of the output voltage by solving 

the system of linear Eq. (45), the time average power can 

then be calculated as the total energy generated in each time 

interval divided by the output cycle, which can be presented 

as 

𝑃𝑎𝑣𝑔 =
2

𝑇
∫
[𝑉𝑅𝐿

(𝑛)(𝑡)]
2

𝑅𝐿
𝑑𝑡

𝑇
2

0

 (50) 

where 𝑇 = 2𝜋/𝜔 is the cycle of the excitation. 

 
 
4. Validation and discussion 
 

An electret-based microgenerator with the parameters 

shown in Table 2 is utilized to validate the proposed 

analytical model developed in Sect. 3. The device consists 

of two conductive plates separated by various values of air 

gap 𝑔 as shown in Table 2. The out-of-plan length of the 

two plates is 10 mm. Each plate is etched and patterned 

with twenty 0.5-mm wide electrodes, resulting in an active 

overlapping area 𝐴0 = 100 mm
2
. A 20 µm thick electret 

made from Teflon PTFE with dielectric constant 𝜀𝑑 = 2.1 

is corona-charged to obtain a surface potential of -100 V 

and attached to one plate. Sinusoidal vibrations with 

amplitudes equal to 1 and 1.5 mm, corresponding to 𝑘 = 2 

and 𝑘 = 3 , respectively, are applied to create relative 

motion between the two plates for electric power 

generation. The analytical results of the considered 

microgenerator are then calculated and compared with the 

numerical simulation results obtained from the finite 

element modeling (FEM) and numerical methods presented 

in (Boisseau et al. 2010). The lumped parasitic capacitance 

𝐶𝑝  can be determined either by measuring the intrinsic 

capacitance of the energy harvesting system or fitting the 

numerical results of time average power. In this section, we 

employ the latter approach to obtain 𝐶𝑝 as shown in Table 

3. The values of the minimum and maximum capacitances, 

𝐶min and 𝐶max used in the simulation are also summarized 

in Table 3. 

Fig. 8 shows the calculated time-average output power 

generated from the microgenerator using the proposed 

analytical model and the numerical simulation. In general, 

the analytical results are in good agreements with the 

numerical simulation, particularly, the ability to accurately 

predict the effective power peak generated from the 

microgenerator. The discrepancy between the analytical 

model and numerical simulation is mainly due to the 

approximation made in Eq. (7). At a small value of air gap, 

for example 𝑔 = 100 µm as shown in Figs. 8(a) and 8(d), 

the analytical model can accurately predict the output power 

at low values of load resistance, while notable errors can be 

observed at larger values of 𝑅𝐿. This is consistent with the 

assumption of small 𝑅𝐿𝐶0 made in Eq. (16). As the air gap 

increases, the stray capacitances induced by fringing fields 

become more significant compared to the maximum 

overlapping capacitances. Since the developed analytical 

model does include the effect of parasitic capacitances 

presented in Sect. 3, the analytical results at higher 𝐶𝑝 

provide a more accurate prediction of the power peaks and 

the optimal load resistances as shown in Figs. 8(b)-8(f). In 

practice, the parasitic capacitances induced by external 

harvesting circuitry and the microgenerator itself are often 

in the order to 10 pF, while the capacitances of 

microgenerators are only a few pF (Bartsch et al. 2009, 

Chen et al. 2013). The analytical model is, therefore, 

capable of predicting the effective power generated from 

practical electret-based microgenerators. 

The estimated output voltage obtained for the given 

microgenerator is also evaluated. The results in Fig. 9 

shows an adequate fit between the analytical model and the 

numerical simulation. The difference between the two 

signal shapes is, again, due to the approximation and the 

linearization made in Sect. 2. Another discrepancy is the 

sharp peaks of the output voltage at each time instance 

compared with the rounded curve of the numerical 

simulation. This mismatch is due to the non-differentiation 

of the theoretical overlapping area 𝐴(𝑡)  at each time 

instance 𝑡𝑗 in the analytical model as highlighted by the 

black circles shown in Fig. 10. Nevertheless, the analytical 

model can provide a good prediction of the output voltage 

with reasonable accuracy. 

 

 
5. Conclusions 

 

In summary, we successfully developed and formulated an 

analytical model for electret-based microgenerators under 

general sinusoidal excitations. Within a cycle of an excitation, 

the electrodynamics of a microgenerator changes from a 

regular to a reverse-sawtooth voltage source in series with an 

internal resistance or to a current source and vice versus. 

Parasitic capacitances are also included to refine the model for 

a more accurate prediction of output voltage and power. 

Table 2 Parameters of the device presented in 

(Tsutsumino et al. 2006) are used to validate the 

analytical model 

Parameter Value 

𝐴0 100 mm2 

𝑊 0.5 mm 

𝜀𝑑 2.1 

𝑉0 -100 V 

𝑑 20 µm 

𝑔 100 µm, 175 µm and 200 µm 

𝑓 20 Hz 

𝑋 1 mm and 1.5 mm 

Table 3 Lumped capacitances used in the analytical 

calculation and FEM capacitances used in the numerical 

simulation under different air gap distances and 𝑘, units 

are in µm for air gap 𝑔 and pF for capacitances. 

𝑔 𝐶min 𝐶max 
𝐶𝑝 

𝑘 = 2 𝑘 = 3 

100 1.92 8.58 3.00 0.20 

150 1.89 6.02 3.15 1.80 

200 1.87 4.70 3.50 2.70 
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

 

Fig. 8 Output powers generated from the microgenerator using the analytical model are in good agreement with the 

simulation under various excitation amplitudes and air gap distances. The left figures are for 𝑘 = 2, while the right ones are 

for 𝑘 = 3. The air gap values from top row to bottom row are respectively 100 µm, 150 µm and 200 µm 

  

 
(a) 𝑘 = 2 (b) 𝑘 = 3 

Fig. 9 The calculated output voltage using the analytical model shows an adequate fit to the numerical simulation under two 

different excitation amplitudes with the same load resistance 𝑅𝐿 = 100 MΩ and the same air gap distance 𝑔 = 200 µm. 

The discrepancy is due to the approximation from sinusoidal functions to parabolic functions and the linearization presented 

in Sect. 2 
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The model is validated using F M and numerical modeling’s 

presented in the literature and shows a good agreement. 

Importantly, the proposed model provides an understanding 

and an insight into the operating mechanism of electret-based 

microgenerators, which is very helpful when designing and 

optimizing their performances. 
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Appendices 
 

A. Integration of Eq. (12) 

To employ the integrating factor to solve Eq. (12), we 

define a function 𝑀1(𝑡) such that 

𝑀1(𝑡) = ∫
𝑑𝑡

4𝑘𝑅𝐿𝐶0 *
𝜔𝑡
𝜋
(1 −

𝜔𝑡
𝜋
) −

𝑚
2𝑘
+

=
1

2𝑘𝑅𝐿𝐶0
∫

𝑑𝑡

−
2𝜔2

𝜋2
𝑡2 +

2𝜔
𝜋
𝑡 −

𝑚
𝑘

=

𝜋 ln ||
−
2𝜔2

𝜋2
𝑡 +

𝜔
𝜋 −

𝜔
𝜋  
√1 −

2𝑚
𝑘

−
2𝜔2

𝜋2
𝑡 +

𝜔
𝜋
+
𝜔
𝜋
 √1 −

2𝑚
𝑘

||

4𝑘𝜔𝑅𝐿𝐶0√1−
2𝑚
𝑘

=
𝜋

4𝑘𝜔𝑅𝐿𝐶0√1−
2𝑚
𝑘

ln

[
 
 
 
 2𝜔𝑡
𝜋
− (1 −√1 −

2𝑚
𝑘 )

(1 + √1 −
2𝑚
𝑘 )

−
2𝜔𝑡
𝜋 ]
 
 
 
 

= 𝛾2𝑚 ln (
𝑡 − 𝑡2𝑚

𝑡2𝑘+1−2𝑚 − 𝑡
*

 (51) 

 

where 𝛾𝑗 is given in Eq. (14). 

The integrating factor can be calculated using the result 

of 𝑀1(𝑡) and presented as 

𝑒𝑀1(𝑡) = (
𝑡 − 𝑡2𝑚

𝑡2𝑘+1−2𝑚 − 𝑡
*
𝛾2𝑚

 (52) 

The solution of Eq. (12) can, therefore, be given by 

𝑄1(𝑡) = 𝛽1𝑒
−𝑀1(𝑡) −

𝑉0
𝑅𝐿
𝑒−𝑀1(𝑡)∫ 𝑒𝑀1(𝑡)𝑑𝑡

𝑡−𝑡2𝑚

𝑡2𝑚

= 𝛽1 (
𝑡2𝑘+1−2𝑚 − 𝑡

𝑡 − 𝑡2𝑚
*
𝛾2𝑚

−
𝑉0
𝑅𝐿
(
𝑡2𝑘+1−2𝑚 − 𝑡

𝑡 − 𝑡2𝑚
*
𝛾2𝑚

×∫ (
𝑡 − 𝑡2𝑚

𝑡2𝑘+1−2𝑚 − 𝑡
*
𝛾2𝑚

𝑑𝑡
𝑡−𝑡2𝑚

𝑡2𝑚⏟                  
𝑁1(𝑡)

 

 (53) 

 

It is worthy to note that the interval of the integral given 

in 𝑁1(𝑡)  is chosen in this case for the time interval 

[𝑡2𝑚, 𝑡2𝑚+1]. Similar approach can be carried out for the 

interval [𝑡2𝑘−2𝑚, 𝑡2𝑘−2𝑚+1] by replacing the time instance 

𝑡2𝑚 by 𝑡2𝑘−2𝑚 in the interval of the interval 𝑁1(𝑡). 
𝑁1(𝑡) has to be rewritten in such a form which can be 

calculated using the result (3.194-1) in (Gradshteyn et al. 

2014). Let 𝑧 = 𝑡 − 𝑡2𝑚, the representation of the integral 

𝑁1(𝑡) in this case is 

𝑁1(𝑡) = ∫ (
𝑧

𝑡2𝑘+1−2𝑚 − 𝑡2𝑚 − 𝑧
*
𝛾2𝑚

𝑑𝑧
𝑧

0

= (𝑡2𝑘+1−2𝑚 − 𝑡2𝑚)
−𝛾2𝑚

×∫ .
𝑧

1 −
𝑧

𝑡2𝑘+1−2𝑚 − 𝑡2𝑚

/

𝛾2𝑚

𝑑𝑧
𝑧

0

=
𝑧𝛾2𝑚+1

(𝛾2𝑚 + 1)(𝑡2𝑘+1−2𝑚 − 𝑡2𝑚)
𝛾2𝑚

× 𝐹2 1 (𝛾2𝑚, 𝛾2𝑚 + 1; 𝛾2𝑚 + 2;
𝑧

𝑡2𝑘+1−2𝑚 − 𝑡2𝑚
*

 (54) 

𝑁1(𝑡)  can be simplified by applying the Euler's 

transformation of hypergeometric functions (Temme 2011) 

to present as 

𝑁1(𝑡) =
𝑧𝛾2𝑚+1 (1 −

𝑧
𝑡2𝑘+1−2𝑚 − 𝑡2𝑚

)
1−𝛾2𝑚

(𝛾2𝑚 + 1)(𝑡2𝑘+1−2𝑚 − 𝑡2𝑚)
𝛾2𝑚

× 𝐹2 1 (1, 2; 𝛾2𝑚 + 2; 
𝑧

𝑡2𝑘+1−2𝑚 − 𝑡2𝑚
*

=
(𝑡 − 𝑡2𝑚)

𝛾2𝑚+1(𝑡2𝑘+1−2𝑚 − 𝑡)
1−𝛾2𝑚

(𝛾2𝑚 + 1)(𝑡2𝑘+1−2𝑚 − 𝑡2𝑚)

× 𝐹2 1 (1, 2; 𝛾2𝑚 + 2; 
𝑡 − 𝑡2𝑚

𝑡2𝑘+1−2𝑚 − 𝑡2𝑚
*

 (55) 

Given the expression of 𝑁1(𝑡), the solution 𝑄1(𝑡) can 

be expressed as 

𝑄1(𝑡) = 𝛽1 (
𝑡2𝑘+1−2𝑚 − 𝑡

𝑡 − 𝑡2𝑚
*
𝛾2𝑚

−
𝑉0(𝑡 − 𝑡2𝑚)(𝑡2𝑘+1−2𝑚 − 𝑡)

𝑅𝐿(𝛾2𝑚 + 1)(𝑡2𝑘+1−2𝑚 − 𝑡2𝑚)

× 𝐹2 1 (1, 2; 𝛾2𝑚 + 2; 
𝑡 − 𝑡2𝑚

𝑡2𝑘+1−2𝑚 − 𝑡2𝑚
*

 (13) 

 

B. Integration of Eq. (23) 

A similar approach as the one presented in Appx. 0 is 

employed to solve Eq. (23). A function 𝑀21(𝑡) is defined 

such that 

𝑀21(𝑡) =
1

2𝑘𝑅𝐿𝐶0
∫

𝑑𝑡

2𝜔2

𝜋2
𝑡2 −

2𝜔
𝜋
𝑡 +

𝑚 + 1
𝑘

= 𝛾2𝑚+2 ln (
𝑡 − 𝑡2𝑘−2𝑚−1
𝑡 − 𝑡2𝑚+2

*

 (56) 

The integrating factor is calculated using the result of 

the function 𝑀21(𝑡) and expressed as 

𝑒𝑀21(𝑡) = (
𝑡 − 𝑡2𝑘−2𝑚−1
𝑡 − 𝑡2𝑚+2

*
𝛾2𝑚+2

 (57) 

The induced charge 𝑄21(𝑡) of Eq. (23) can, therefore, 

be written as 

𝑄21(𝑡) = 𝛽21 (
𝑡 − 𝑡2𝑚+2
𝑡 − 𝑡2𝑘−2𝑚−1

*
𝛾2𝑚+2

−
𝑉0
𝑅𝐿
(
𝑡 − 𝑡2𝑚+2
𝑡 − 𝑡2𝑘−2𝑚−1

*
𝛾2𝑚+2

×∫ (
𝑡 − 𝑡2𝑘−2𝑚−1
𝑡 − 𝑡2𝑚+2

*
𝛾2𝑚+2

𝑑𝑡
𝑡−𝑡2𝑘−2𝑚−1

𝑡2𝑘−2𝑚−1⏟                      
𝑁21(𝑡)

 (58) 

𝑁21(𝑡) is then rewritten as 

𝑁21(𝑡) = (𝑡2𝑘−2𝑚−1 − 𝑡2𝑚+2)
−𝛾2𝑚+2

×∫ .
𝑧2

1 +
𝑧2

𝑡2𝑘−2𝑚−1 − 𝑡2𝑚+2

/

𝛾2𝑚+2

𝑑𝑧2

𝑧2

0

 (59) 

where 𝑧2 = 𝑡 − 𝑡2𝑘−2𝑚−1. 

Applying the result (3.194-1) in (Gradshteyn et al. 2014) 

gives 
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𝑁21 (𝑡) =
𝑧2
𝛾2𝑚+2+1

(1 + 𝛾2𝑚+2)(𝑡2𝑘−2𝑚−1 − 𝑡2𝑚+2)
𝛾2𝑚+2

× 𝐹2 1 (𝛾2𝑚+2, 𝛾2𝑚+2 + 1; 𝛾2𝑚+2 + 2; 
−𝑧2

𝑡2𝑘−2𝑚−1 − 𝑡2𝑚+2
*

 (60) 

Applying Euler's transform gives 

𝑁21(𝑡) =
(𝑡 − 𝑡2𝑚+2)(𝑡 − 𝑡2𝑘−2𝑚−1)

(1 + 𝛾2𝑚+2)(𝑡2𝑘−2𝑚−1 − 𝑡2𝑚+2)

× (
𝑡 − 𝑡2𝑘−2𝑚−1
𝑡 − 𝑡2𝑚+2

*
𝛾2𝑚+2

× 𝐹2 1 (1, 2; 2 + 𝛾2𝑚+2;
𝑡2𝑘−2𝑚−1 − 𝑡

𝑡2𝑘−2𝑚−1 − 𝑡2𝑚+2
*

 (61) 

Therefore, the solution 𝑄21(𝑡) can be obtained as 

𝑄21(𝑡) = 𝛽21 (
𝑡 − 𝑡2𝑚+2
𝑡 − 𝑡2𝑘−2𝑚−1

*
𝛾2𝑚+2

−
𝑉0(𝑡 − 𝑡2𝑚+2)(𝑡 − 𝑡2𝑘−2𝑚−1)

𝑅𝐿(1 + 𝛾2𝑚+2)(𝑡2𝑘−2𝑚−1 − 𝑡2𝑚+2)

× 𝐹2 1 (1, 2; 2 + 𝛾2𝑚+2;
𝑡2𝑘−2𝑚−1 − 𝑡

𝑡2𝑘−2𝑚−1 − 𝑡2𝑚+2
*

 (24) 

 

C. Integration of Eq. (33) 
The integrating factor of equation Eq. (33) can be 

calculated as 

𝑀22(𝑡) = ∫
𝑑𝑡

𝑘𝑅𝐿𝐶0 (1 −
2𝜔𝑡
𝜋
)
2 =

𝜋

2𝑘𝜔𝑅𝐿𝐶0 (1 −
2𝜔𝑡
𝜋
)
 

(62) 

Hence, the solution of Eq (33) is given by 

𝑄22(𝑡) = 𝛽22𝑒

−𝜋

2𝑘𝜔𝑅𝐿𝐶0(1−
2𝜔𝑡
𝜋
)
−
𝑉0
𝑅𝐿
𝑒

−𝜋

2𝑘𝜔𝑅𝐿𝐶0(1−
2𝜔𝑡
𝜋
)

×∫𝑒

𝜋

2𝑘𝜔𝑅𝐿𝐶0(1−
2𝜔𝑡
𝜋
)
𝑑𝑡

⏟            
𝑁22(𝑡)

 (63) 

To obtain the solution, 𝑁22(𝑡) must be determined. To 

achieve that, let 

𝑧22 =
𝜋

2𝑘𝜔𝑅𝐿𝐶0 (1 −
2𝜔𝑡
𝜋
)

⇒ 𝑡 =
𝜋

2𝜔
(1 −

𝜋

2𝑘𝜔𝑅𝐿𝐶0𝑧22
*

 𝑑𝑡 =
𝜋2

4𝑘𝜔2𝑅𝐿𝐶0𝑧22
2  𝑑𝑧22

 (64) 

𝑁22(𝑡) can be rewritten as 

𝑁22(𝑡) =
𝜋2

4𝑘𝜔2𝑅 𝐶0
∫
𝑒𝑧22

𝑧22
2 𝑑𝑧22 (65) 

According to the result 2.325-2 in (Gradshteyn et al. 

2014), 𝑁22(𝑡) can be expressed as 

𝑁22(𝑡) =
𝜋2

4𝑘𝜔2𝑅𝐿𝐶0
[  (𝑧22) −

𝑒𝑧22

𝑧22
]  (66) 

Hence, the solution 𝑄22(𝑡) of Eq. (33) can be given by 

𝑄22(𝑡) = 𝛽22𝑒

−𝜋

2𝑘𝜔𝑅 𝐶0(1−
2𝜔𝑡
𝜋 *
+
𝜋𝑉0
2𝜔𝑅 

 (1 −
2𝜔𝑡

𝜋
)

−
𝑉0
𝑅 

𝜋2𝑒

−𝜋

2𝑘𝜔𝑅 𝐶0(1−
2𝜔𝑡
𝜋 *

4𝑘𝜔2𝑅 𝐶0

× Ei [
𝜋

2𝑘𝜔𝑅 𝐶0 (1 −
2𝜔𝑡
𝜋 *

]

 (34) 
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