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1. Introduction 
 

Nowadays, resource depletion has urged human beings 

to achieve the maximum output from the limited amount of 

available resources. Therefore, in engineering design, using 

the lowest cost design variables which fulfill the 

requirements of the design codes, has attracted enormous 

interest among the engineers. The low-cost design as a 

mathematical minimization problem is usually a 

constrained, discrete, highly complex, and multi-modal 

problem. The dependency of the classical gradient based 

methods to the initial good starting point and the acquisition 

of gradient information make solving such problems either 

costly or even impossible. The mentioned weaknesses of 

the traditional methods and the growth of the computational 

resources have led to a new generation of methods called 

metaheuristics, which are not restricted in the 

aforementioned manner (Kaveh 2017, Talbi 2009). 

In recent years, a significant number of metaheuristics 

are introduced and applied to engineering problems. Some 

of the most well-known metaheuristic algorithms are 

Genetic Algorithm (GA), inspired by biological evolution 

(Goldberg and Samtani 1986, Koumousis and Georgiou 

1994, Yang and Soh 1997), Harmony Search (HS) that 

mimics the improvisation process of jazz musicians (Geem 

et al. 2001, Maheri and Narimani 2014, Saka et al. 2011), 

Pigeon Colony Algorithm (PCA) based on the features of a 

pigeon colony flying and homing process (Yi et al.  
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2016), Grasshopper optimization algorithm (GOA) 

according to the characteristics of the swarming of 

grasshoppers (Saremi et al. 2017) and Lion Pride Optimizer 

(LPO) which mimics the lion pride behavior (Kaveh and 

Mahjoubi 2017, Wang et al. 2012). In addition to these 

algorithms there are some other algorithms which are based 

on the  physics laws, for instance the Ray Optimization 

(RO) is based on Snell’s light refraction law (Kaveh and 

Khayatazad 2012) or the Colliding Bodies Optimization 

(CBO) upon the one-dimensional collisions between bodies 

(Kaveh and Mahdavi 2014). 

Thermal exchange optimization (TEO) is one of the new 

physics based algorithms, based on the Newton’s cooling 

law. This law states that the rate of heat loss of a body is 

proportional to the difference between the body and its 

surroundings temperatures. In TEO, each search agent is 

considered as a cooling object and by associating another 

agent as the surrounding fluid, thermal exchange happens 

between them. The new temperature of the object is 

considered as its next position in the search space. The 

results, achieved by solving various mathematical and 

engineering problems, have shown the good performance of 

the method in terms of global and local search, robustness 

and fast convergence (Kaveh and Dadras 2017b). 

Subsequently, an off-line tuned version of TEO algorithm 

was introduced by the authors and applied to optimization-

based damage identification problem, where GWO 

algorithm (Mirjalili et al. 2014) was utilized to tune the 

TEO at the meta-level (Kaveh and Dadras 2017a). 

However, a good balance between global and local search 

abilities of metaheuristics has always been of great interest 

for obtaining accurate results using less computational cost 

(Gholizadeh 2013, Wang et al. 2014). The main purpose of 
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this study is to propose some modifications to the TEO 

mechanisms for improving the convergence of the 

algorithm and obtaining more accurate results. The 

improved version is named as ITEO. According to the 

thermal exchange between an object and its surrounding 

fluid, the temperature of the object is closer to that of the 

fluid. In search agents, monotonic convergence is not 

favorable, especially when the fluid is in a worse position. 

Having many design variables, the large size of the 

search space and the presence of many constraints make the 

discrete optimization of skeletal steel structures a suitable 

means to investigate the efficiency of the newly developed 

algorithms (Hasançebi and Azad 2015). On the other hand, 

in practice the design variables are usually chosen from a 

predefined available list of sections, making the discrete 

size optimization more workable. In this regard, the 

proposed ITEO and its original version were applied to the 

solution of four benchmark test cases: a spatial 25-bar truss, 

a spatial 72-bar truss, a three-bay fifteen-story frame, and a 

three-bay twenty four-story frame with 8, 16, 11, and 20 

design variables, respectively. Comparing the results of the 

ITEO with those of the TEO and the available results of 

some well-known metaheuristics show the high efficiency 

of the presented ITEO. 

The rest of this paper is organized as follows. In Section 

2, a brief overview of the TEO is presented and the new 

improved version of this algorithm (ITEO) is provided. 

Section 3 uses four benchmark skeletal structures with 

discrete variables to compare the performance of the ITEO 

to those of the standard TEO and some other popular 

optimization methods. Finally, conclusions are derived in 

Section 4. 

 

 

2. Optimization algorithms 
 

In this section the standard TEO is outlined, and the 

improvements made to TEO are presented. 

 
2.1 Standard thermal exchange optimization 

algorithm 

 

TEO is a physically-inspired algorithm which uses the 

Newton’s law of cooling. In this algorithm, the temperature 

solution for the body with lumped thermal capacity is 

employed to update the position of the agents in the search 

space. 

 

2.1.1 Theory 
Assume that the overall heat transfer coefficient of a 

body is equal to h and the object has high temperature 𝑇0 at 

time t = 0 and is suddenly placed in a different environment 

where it is cooled by surrounding fluid at a constant 

temperature 𝑇b. The volume of the solid is V (in m
3
) and its 

surface area, which the heat flow (Q) takes place on it is A 

(in m
2
). The rate of heat loss from the surface is 

𝑑𝑄

𝑑𝑡
= ℎ(𝑇0 − 𝑇𝑏)𝐴 (1) 

 

in which T, h, and t stand for temperature in °𝐾, heat 

transfer coefficient in Wm
-2

k
-1

, and time in Sec, respectively. 

The heat loss in time 𝑑𝑡 is ℎ(𝑇0 − 𝑇𝑏)𝐴 𝑑𝑡, and this is 

equal the change in the stored heat as the temperature falls 

dT, i.e. 

𝑉𝜌𝑐𝑑𝑇 = −ℎ𝐴(𝑇 − 𝑇𝑏)𝑑𝑡 (2) 

where 𝜌 and c are the density (kg m
3
) and specific heat (J 

kg
-1

 K
-1

), respectively. 

Integration results in 

𝑇 − 𝑇𝑏

𝑇0 − 𝑇𝑏
= exp (−

ℎ𝐴

𝑉 𝜌𝑐
t) (3) 

Assuming  
ℎ𝐴

𝑉 𝜌𝑐
 as β , the result of the integration can be 

rearranged as follows 

𝑇 = 𝑇𝑏 + (𝑇0 − 𝑇𝑏)exp (−𝛽𝑡) (4) 

 

2.1.2 TEO Algorithm 
The TEO is made up of ten steps as follows: 

 

Step 1: Initialization 

The initial temperature of all the objects is determined 

randomly in an m-dimensional search space by 

𝑇𝑖
0 = 𝑇𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) (5) 

where 𝑇𝑖
0 is the initial solution vector of the ith object, Tmin 

and Tmax are the minimum and maximum allowable values 

of design variables, rand is a random vector with 

components in the interval [0, 1]. The length of the vectors 

is equal to the number of design variables. 

 

Step 2: Evaluation 

The cost function specifies the cost value of each object. 

The weight of the structure is considered as the cost 

function in this paper. 

 

Step 3: Saving 

A Thermal Memory (TM) is utilized to save a number of 

the best-so-far solutions. Therefore in this step, the saved 

solution vectors are added to the population, and the same 

numbers of current worst agents are removed. Finally, 

agents are sorted according to their related objective 

function values in an ascending order. Considering a 

memory which saves some historically best T vectors and 

their related objective function values, can improve the 

performance of the algorithm in terms of local search and 

convergence without increasing the computational cost. 

 

Step 4: Creating groups 

Since an object and its surrounding fluid are necessary 

to perform thermal exchanging, two equal groups 

containing object and environment are created. The pairs of 

objects are defined according to Fig. 1, where for instance 

𝑇1 is environment for 𝑇n

2
+1

 and vice versa. This type of 

pairing is originally proposed in CBO algorithm (Kaveh and 

Mahdavi 2014). 
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Step 5: Definition of the 𝛽 Parameter 

The value of 𝛽 for each agent is evaluated according to 

𝛽 =
𝐶𝑜𝑠𝑡(𝑜𝑏𝑗𝑒𝑐𝑡)

𝐶𝑜𝑠𝑡(𝑤𝑜𝑟𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡)
 (6) 

where 𝐶𝑜𝑠𝑡(𝑜𝑏𝑗𝑒𝑐𝑡) is the weight of the current design 

and 𝐶𝑜𝑠𝑡(𝑤𝑜𝑟𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡) is the highest weight among all 

of the updated design scenarios. It can be seen that the value 

of 𝛽 and the cost of the object are directly proportional. 

 

Step 6: Definition of  𝑡 

The value of 𝑡 for each agent is calculated from 

𝑡 =
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (7) 

 

Step 7: Escaping from local optima (i) 

Non-convex search spaces are usually made of several 

local optimums. Meta-heuristic algorithms should have the 

ability to escape from the traps when agents get close to the 

local optimum. Thus steps 7 and 9 are devised to escape 

from these traps. In this step the environmental temperature 

is changed by Eq. (8), where  𝑐1 and 𝑐2 are controlling 

variables. 

𝑇𝑖
𝑒𝑛𝑣. = (1 − (𝑐1 + 𝑐2 × (1 − 𝑡)) × 𝑟𝑎𝑛𝑑) × 𝑇𝑖

′ 𝑒𝑛𝑣. (8) 

where 𝑇𝑖
′ 𝑒𝑛𝑣.   is the non-changed environmental 

temperature. (1-t) is considered to decrease the randomness 

by nearing to the final iterations. This helps the 

convergence and exploitation. c2 controls (1-t). For 

instance, this can be considered equal to zero, when the 

decreasing is not required. c1 controls the size of the 

random steps. Furthermore when the decreasing is not 

employed (c2=0), 𝑐1 involves the randomness. 

 

Step 8: Updating the search agents 

The new temperature of each object is calculated by Eq. 

(9) which is inspired by Eq. (4). 

𝑇𝑖
𝑛𝑒𝑤 = 𝑇𝑖

𝑒𝑛𝑣. + (𝑇𝑖
𝑂𝑙𝑑 − 𝑇𝑖

𝑒𝑛𝑣.). exp(−𝛽𝑡) (9) 

If the cooling object is in worse position compared to 

the environmental object, then the ratio 𝛽 will have higher 

value, and exp(−𝛽𝑡)  will tend to have lower value. 

Therefore, according to Eq. (9), the cooling object will have 

higher tendency to the environmental temperature and vice 

versa. 

 

 

 

 

Step 9: Escaping from local optima (ii) 

Pro is defined to specify whether a component of each 

cooling object must be changed or not. For each agent, Pro 

is compared with rand (i) (i=1, 2, ..., n) which is a random 

number uniformly distributed within (0, 1). If rand )i( < 

Pro, one dimension of the ith agent is selected randomly 

and its value is regenerated as follows 

𝑇𝑖,𝑗 = 𝑇𝑗,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑𝑜𝑚 . (𝑇𝑗,𝑚𝑎𝑥 − 𝑇𝑗,𝑚𝑖𝑛) (10) 

where 𝑇𝑖,𝑗 is the jth variable of the ith agent. 𝑇𝑗,𝑚𝑖𝑛  and 

𝑇𝑗,𝑚𝑎𝑥  respectively, are the lower and upper bounds of the 

jth variable. In order to protect the structures of the agents, 

only one dimension of design vector is changed. This 

mechanism provides the second global search opportunity 

for the agents to move all over the search space thus 

providing better diversity. 

 

Step 10: Checking the termination conditions  

The optimization process is terminated after a fixed 

number of iterations. If the criterion is not satisfied it goes 

to step 2 for a new round of iteration, otherwise, the process 

stops and the best-found solution is reported. 

 

2.2 Improved thermal exchange optimization 
 

In order to avoid the repeated descriptions, only the 

performed improvements are stated here. The improved 

version is named as Improved TEO and abbreviated as 

ITEO. At the end, the pseudocode of the ITEO and 

constraint handling approach are provided. 

 

2.2.1 Improvement on 𝑡 parameter 
The value of 𝑡 is changed to 

𝑡 = (
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)𝑍, 0 < 𝑍 < 1 (11) 

where the parameter Z is considered as the power of the 

previous version of t. According to this definition and as it 

is shown in Fig. 2, t slows the speed of tending to 1 and the 

converging speed to search wider space. The numbers on 

the curves are the values of Z. 

 

2.2.2 Improvement on 𝛽 parameter 
The value of 𝛽 is changed to 

𝛽 = (
𝑅𝑎𝑛𝑘(𝑜𝑏𝑗𝑒𝑐𝑡)

𝑅𝑎𝑛𝑘(𝑤𝑜𝑟𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡)
)𝑍, 0 < 𝑍 < 1 (12) 

 

 

Fig. 1 Pairs of environment and cooling objects 
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The previous definition of 𝛽 results in a division by 

zero, when 𝐶𝑜𝑠𝑡(𝑤𝑜𝑟𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡) = 0, (the worst object is 

not defined before) hence, the new definition is replaced. 

𝑅𝑎𝑛𝑘 is the rank of the objects, when they are sorted in an 

ascending order of the objective function value. Z exponent 

has the same role as stated in the previous section. 

 

2.2.3 Improvement on thermal updating equation 
Taylor series expansion in the exponential function (𝑒𝑥) 

is according to Eq. (13) 

𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ = ∑

𝑥𝑛

𝑛!

∞

𝑛=0

 (13) 

By utilizing this expansion in Eq. (9) the following 

equation can be obtained 

𝑇𝑖
𝑛𝑒𝑤 = 𝑇𝑖

𝑒𝑛𝑣. + (𝑇𝑖
𝑂𝑙𝑑 − 𝑇𝑖

𝑒𝑛𝑣.). (1 − 𝛽. 𝑡 +
(−𝛽. 𝑡)2

2
+

(−𝛽. 𝑡)3

6
+ ⋯ ) (14) 

Since both 𝛽 and 𝑡 are small fractions and also divided 

by numbers greater than one, for reducing the 

computational burden, nonlinear small terms are simplified 

to 𝑟𝑎𝑛𝑑. 𝛽. 𝑡 

𝑇𝑖
𝑛𝑒𝑤 = 𝑇𝑖

𝑒𝑛𝑣. + (𝑇𝑖
𝑂𝑙𝑑 − 𝑇𝑖

𝑒𝑛𝑣.). (1 − 𝛽. 𝑡 + 𝑟𝑎𝑛𝑑. 𝛽. 𝑡) (15) 

Herein 𝑟𝑎𝑛𝑑 is a random number between zero and 1, 

so the this equation can be rearranged as Eq. (15) 

𝑇𝑖
𝑛𝑒𝑤 = 𝑇𝑖

𝑒𝑛𝑣. + (𝑇𝑖
𝑂𝑙𝑑 − 𝑇𝑖

𝑒𝑛𝑣.). (1 − (1 − 𝑟𝑎𝑛𝑑). 𝛽. 𝑡) (16) 

and 

𝑇𝑖
𝑛𝑒𝑤 = 𝑇𝑖

𝑒𝑛𝑣. + (𝑇𝑖
𝑂𝑙𝑑 − 𝑇𝑖

𝑒𝑛𝑣.). (1 − 𝑟𝑎𝑛𝑑. 𝛽. 𝑡) (17) 

In Teaching-Learning-Based Optimization (TLBO) 

algorithm the state of each search agent (student) within the 

search space, moves toward better agent or away from 

worse agent (Rao et al. 2011). By using this mechanism, the 

following additional modifications are imposed on the 

updating equation 

 

 

 

𝑇𝑖
𝑛𝑒𝑤 = {

𝑇𝑖
𝑒𝑛𝑣. + (𝑇𝑖

𝑂𝑙𝑑 − 𝑇𝑖
𝑒𝑛𝑣.). (1 − 𝑟𝑎𝑛𝑑 . 𝛽. 𝑡)          𝐶𝑜𝑠𝑡(𝑜𝑙𝑑) < 𝐶𝑜𝑠𝑡(𝑒𝑛𝑣. )

𝑇𝑖
𝑒𝑛𝑣. + (𝑇𝑖

𝑂𝑙𝑑 − 𝑇𝑖
𝑒𝑛𝑣.). (1 + 𝑟𝑎𝑛𝑑. 𝛽. 𝑡)            𝐶𝑜𝑠𝑡(𝑜𝑙𝑑) > 𝐶𝑜𝑠𝑡(𝑒𝑛𝑣. )

 

(18a) 

(18b) 

These equations can be simplified in the following form 

𝑇𝑖
𝑛𝑒𝑤 = 𝑇𝑖

𝑒𝑛𝑣. + (𝑇𝑖
𝑂𝑙𝑑 − 𝑇𝑖

𝑒𝑛𝑣.) 

(1 − sign(C𝑜𝑠𝑡(𝑒𝑛𝑣. ) − 𝐶𝑜𝑠𝑡(𝑜𝑙𝑑) ). 𝑟𝑎𝑛𝑑. 𝛽. 𝑡)  
(19) 

where sign finds the sign function of the value. Schematics 

of these equations are illustrated in Fig. 3. In the standard 

TEO, temperatures get closer together and the algorithm 

focuses on the space between the objects. As it can be seen 

from Fig. 3, in the new version new temperature is getting 

away from the high cost object, exploring the outer space. 

 

2.2.4 Pseudo-code of the ITEO 
The pseudo-code of the ITEO is now presented as 

follows: 

 

Procedure of Thermal Exchange Optimization 

begin 

 Initialize all agents 

 while (termination condition not met) do 

 for each search agent 

  Calculate the fitness  

 end for 

 Update thermal memory and sort population 

 Create equal groups 

 for each agent 

 Calculate t and β by Eq. (11) and Eq. (12) 

 Change environmental temperature by Eq. (8) 

 Update temperature by Eqs. (18a, 18b)  

 end for 

 Regenerate violating variables 

 end while 

end 

 

Fig. 2 The modified t by considering various values for Z parameter and passed iteration percent 
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(a) (b) 

Fig. 3 Schematics of search agent updating, according to: (a) Eq. (18(a)) and (b) Eq. (18(b)) 

 
Fig. 4 Flowchart of the ITEO algorithm 
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In the above pseudocode, the second for loop is related 

to the temperature updating which can be considered as the 

most important part of the ITEO. Flowchart of the proposed 

ITEO is depicted in Fig. 4. It is clear that the structure of 

the algorithm is simple and the implementation is quite easy. 

 

2.3 Constraint handling 
 

One of the important issues in constrained optimization 

problems is the approach of constraint handling. Many 

techniques are proposed to handle the constraints. A 

prevalent and successful technique is penalty approach 

(Yeniay 2005). This approach is utilized by the following 

equation: 

𝑊𝑝 = 𝑊 × (1 + 𝜀1. 𝜐)𝜀2  (20) 

where 𝑊 is the weight of the structure without penalty, 

𝑊𝑝 is the penalized weight that is the cost function and 𝜐 

is the total constraints violation. Constants 𝜀1 and 𝜀2 must 

be selected considering the exploration and the exploitation 

rate of the search space. In this study 𝜀2  has a linear 

increase from 1.5 to 3 and 𝜀1 is set to one. 

Sometimes the search agents leave the bounds, in this 

paper flyback mechanism is employed to bring back them 

on the bounds which are left. 

 

 
3. Numerical examples 

 

For investigating the performance of the proposed 

algorithm two following subsection are provided. In the 

first subsection, TEO and its improved version (ITEO) are 

evaluated on the IEEE-CEC 2016 benchmark problems 

(Rueda Torres and Erlich 2016). In the second subsection, 

four well-known structural examples with discrete variables 

are utilized to test the new algorithm by optimization of the 

weight of the benchmark structures. The results are 

compared by those of some other well-established 

optimizers and some discussions are provided to show the 

efficiency of the improved version.  

 

3.1 Computationally expensive problems 
 

As mentioned above, the performance of the proposed 

algorithm is evaluated on 15 benchmark CEC 2016 single-

objective bound constrained problems. The list of the test 

problems are provided in Table 1, the details about the 

functions can be found in reference (Chen et al. 2014). 

In all problems, the following points are considered: 

 Dimensions are 𝐷 = 10, 30. 

 Search range is [−100,100]𝐷. 

 The number of function evaluations are limited to 

50*D as the termination criteria. 

 The optimization is independently repeated 20 

times for each case. 

 The error value OF=TFi (x) - Fi
*
 is defined as the 

objective function, where Fi
* 

is the theoretical global 

optimum of the ith benchmark function reported in Table 1. 

 

 

Here, c1, c2, Pro, TM and Z are equal to 1, 1, 0.1, 2 and 0.5, 

respectively. According to the method of evaluation 

suggested in (Rueda Torres and Erlich 2016), the statistical 

results are given in Tables 2 and 3. The better results 

between TEO and ITEO are written in bold style. As seen in 

most cases the ITEO achieved better results in comparison 

with TEO, especially in 30 dimension problems. 

The complexity of the algorithms is measured by 𝑇1̅/𝑇0, 

where 𝑇1̅ is the average optimization time for the above 

functions and 𝑇0 is the computing time of a predefined 

process given in (Chen et al. 2014). The ratios are provided 

in Fig. 5. As seen in most cases, the complexity of ITEO is 

a little more than TEO, also, the complexity of functions 

with 30 dimensions are higher than 10 dimensions.  

The total score of each algorithm with 10D and 30D 

problems are measured by the following equation 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝑚𝑒𝑎𝑛(𝑓𝑎𝑖)

15

1

|𝐷 + ∑ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑓𝑎𝑖)

15

1

|𝐷 (21) 

where 𝑓𝑎 for each function is calculated by 

𝑓𝑎 = 0.5(𝑓𝑀𝑎𝑥𝐹𝐸𝑠 + 𝑓0.5𝑀𝑎𝑥𝐹𝐸𝑠) (22) 

As provided in Table 4, the improved version obtained 

better scores in comparison with the basic version. 

 

3.2 Discrete optimization of skeletal structures 
 

The proposed algorithm is tested using various values of 

parameters, such as number of objects, c1, and c2 by varying 

number of objects = 5, 10, and 15; c1 = - 0.5, -0.25, 0.25, 

and 0; and c2= -0.5,0, 0.5, 1. Based on our simulations, the 

proposed ITEO needs at least 10 number of objects and 

results in the most efficient performance of the algorithm. 

Considering c1, c2, Pro, TM and Z equal to -0.25, 1, 0.3, 4 

and 0.5, respectively, results in a good performance for 

almost all the discrete test problems. The maximum number 

of algorithm iterations is considered as 2000 for the 

stopping criteria in all the structural test cases. The 

consistency of the algorithm is verified by running all the 

problems for 30 independent runs with different random 

initial solutions, and the results for the representative 

sample run and statistical results of all independent runs are 

reported. The results of the proposed algorithm are 

compared with those of some other published results. 

 

3.2.1 Spatial 25-bar truss  
The first example is a 25-bar transmission tower as 

illustrated in Fig. 6. This structure is studied widely in 

structural optimization to examine numerous meta-heuristic 

algorithms. The material density is 0.1 lb/in
3
 (2768 kg/m

3
), 

and the modulus of elasticity is 107  psi (68950 MPa). 

Twenty five members are divided into eight groups, as 

follows: (1) A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–

A13, (6) A14–A17, (7) A18–A21, and (8) A22–A25. The 

allowable displacements and stresses are limited 

respectively to ±0.35 in (±8.89 mm) for each node and ±40 

ksi (275.80 MPa). 
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Table 1 Summary of the CEC’ 16 expensive optimization test problems 

Categories No. Functions Related basic functions Fi* 

Unimodal function 1 Rotated Bent Cigar Function Bent Cigar Function 100 

2 Rotated Discus Function Discus Function 200 

Simple Multimodal 

functions 

3 Shifted and Rotated Weierstrass Function Weierstrass Function 300 

4 Shifted and Rotated Schwefel’s Function Schwefel’s Function 400 

5 Shifted and Rotated Katsuura Function Katsuura Function 500 

6 Shifted and Rotated HappyCat Function HappyCat Function 600 

7 Shifted and Rotated HGBat Function HGBat Function 700 

8 
Shifted and Rotated Expanded Griewank’s 

plus Rosenbrock’s Function 

Griewank’s Function 

Rosenbrock’s Function 
800 

9 Shifted and Rotated Expanded Scaffer’s F6 Function Expanded Scaffer’s F6 Function 900 

Hybrid 

functions 
10 

Hybrid Function 1 (N=3) Schwefel's Function 

Rastrigin’s Function 

High Conditioned Elliptic 

Function 

1000 

11 

Hybrid Function 2 (N=4) Griewank’s Function 

Weierstrass Function 

Rosenbrock’s Function 

Scaffer’s F6 Function 

1100 

12 

Hybrid Function 3 (N=5) Katsuura Function 

HappyCat Function 

Griewank’s Function 

Rosenbrock’s Function 

Schwefel’s Function 

Ackley’s Function 

1200 

Composition 

functions 

13 

Composition Function 1 (N=5) Rosenbrock’s Function 

High Conditioned Elliptic 

Function 

Bent Cigar Function 

Discus Function 

High Conditioned Elliptic 

Function 

1300 

14 

Composition Function 2 (N=3) Schwefel's Function 

Rastrigin’s Function 

High Conditioned Elliptic 

Function 

1400 

15 

Composition Function 3 (N=5) HGBat Function 

Rastrigin’s Function 

Schwefel's Function 

Weierstrass Function 

High Conditioned Elliptic 

Function 

1500 

Table 2 The statistical results for 10D problems 

  Best   Worst   Median   Mean   Std   

Function ITEO TEO ITEO TEO ITEO TEO ITEO TEO ITEO TEO 

f1 3.00E+10 2.90E+10 6.78E+10 8.24E+10 5.16E+10 5.61E+10 5.12E+10 5.33E+10 1.26E+10 1.67E+10 

f2 5.64E+06 4.70E+07 6.72E+08 2.85E+09 2.07E+08 2.84E+08 2.33E+08 4.68E+08 1.75E+08 6.23E+08 

f3 9.6137 10.156 13.766 13.781 12.115 12.134 12.094 12.099 1.1314 0.85284 

f4 2110.7 2376.4 3236 3335.5 2772.4 2833.6 2765.2 2829.9 283.37 311.34 

f5 2.1165 1.8489 4.5814 3.9289 2.7313 2.9048 2.8484 2.89 0.65242 0.57429 

f6 11.184 8.6745 21.16 27.311 17.69 18.275 17.039 19.154 3.3023 5.4477 
f7 291.15 207.53 596.93 671.23 502.01 377.68 464.72 386.79 93.806 110.47 

f8 5.32E+07 9.37E+06 8.20E+09 2.87E+09 3.95E+08 1.54E+08 1.47E+09 5.63E+08 2.36E+09 7.84E+08 

f9 4.1501 4.7719 4.999 5 4.7042 4.9969 4.6882 4.9742 0.20991 0.057268 

f10 8.36E+06 4.64E+06 9.06E+08 1.30E+10 9.65E+07 1.80E+09 1.84E+08 3.31E+09 2.37E+08 3.80E+09 

f11 29.214 92.393 1365 1.92E+05 148.65 3762.8 259.39 22555 328.95 46123 

f12 18053 48917 1.72E+07 3.46E+07 3.82E+05 1.99E+06 1.58E+06 3.90E+06 3.77E+06 7.59E+06 
f13 947.93 561.38 4413.8 4809.6 3456.5 1899.2 3111.7 2315.1 1087.3 1352.5 

f14 239.78 236.3 580.4 1083.9 371.2 352.8 379.58 447.65 97.791 229.48 

f15 542.02 575.2 713.6 678.81 637.55 639.21 637.16 636.92 37.676 27.7 
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Fig. 5 The computational complexity of TEO and ITEO for different functions 

 

Fig. 6 Schematic of the spatial 25-bar truss 

270



 

Improved thermal exchange optimization algorithm for optimal design of skeletal structures 

 

 

 

 

 

 

 

In engineering, usually the design sections are selected 

from a predefined list, similarly in this structure the cross-

sectional areas are considered from 0.1 to 3.4 in
2
 (0.6452 to 

21.94
 
cm

2
) with 0.1 in

2
 (0.6452 cm

2
) increment. Detailed 

descriptions can be found in (Kaveh 2017). 

In this example, c1 and c2 are equal to 0.25 and -0.5, 

respectively. As it can be seen from Table 5, the optimal 

design and average results found by ITEO has the minimum 

weight compared to other algorithms. The optimal sections 

found by ITEO differs from those of other algorithms while 

the other algorithms have found the same sections. The 

applied modifications have effectively improved the 

algorithm and the mean weight obtained by ITEO is lower 

than the best design of standard TEO. The convergence 

histories are represented in Fig. 7 showing that the curves 

related to ITEO are generally under the curves of TEO, this 

confirms again the statement about the efficiency of ITEO.  

 

 

 

 

 

 

 

 

 

3.2.2 Spatial 72-bar truss 
The spatial 72-bar truss is studied widely in structural 

optimization. Fig. 8 represents topology and geometry of 

the structure. The modulus of elasticity and material density 

are 104 ksi (68,950 MPa) and 0.1 lb/in
3
 (2,767.990 kg/m

3
), 

respectively. Seventy-two members are divided into eight 

groups, as follows: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) 

A17–A18, (5) A19–A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, 

(9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54, (13) 

A55–A58, (14) A59–A66 (15), A67–A70, and (16) A71– A72.  

Member groups can be designed from a list of 64 

available ready sections. The final design must satisfy the 

stress limits of ±25 ksi (±172.375 MPa) and node 

displacement limits of ±0.25 in. (±0.635 cm). The truss 

subjected to multiple load cases. Detailed information can 

be found in (Kaveh 2017). 

 

 

 

Table 3 The statistical results for 30D problems 

 Best   Worst   Median   Mean   Std   

Function ITEO TEO ITEO TEO ITEO TEO ITEO TEO ITEO TEO 

f1 5.89E+10 1.10E+11 1.07E+11 1.38E+11 8.02E+10 1.26E+11 7.93E+10 1.25E+11 1.31E+10 9.09E+09 

f2 3.66E+06 3.79E+06 2.66E+09 2.22E+07 1.72E+07 7.08E+06 1.68E+08 9.46E+06 5.89E+08 5.52E+06 

f3 38.657 38.864 47.216 46.63 45.01 45.387 44.801 44.532 1.735 1.9964 
f4 8815.4 9004.2 10445 10714 9844.2 10030 9845.2 10072 411.08 405.96 

f5 2.3526 3.7162 4.9555 5.263 4.153 4.2683 4.125 4.3837 0.60001 0.45309 

f6 11.598 15.308 17.013 20.677 14.954 19.073 14.636 18.965 1.6525 1.2807 

f7 433.25 556.15 652.09 825.63 547.1 767.31 545.26 753.09 65.935 64.409 

f8 3.92E+07 5.07E+08 1.67E+09 5.11E+09 3.71E+08 2.14E+09 4.75E+08 2.58E+09 4.09E+08 1.46E+09 

f9 14.684 13.995 14.997 14.728 14.945 14.385 14.923 14.399 0.087448 0.15623 
f10 3.15E+07 2.71E+07 1.97E+11 1.30E+09 1.26E+08 4.06E+08 1.31E+10 4.80E+08 4.54E+10 3.73E+08 

f11 442.75 1724 6.19E+05 27107 940.87 5708.3 32046 7937.2 1.38E+05 6529.5 

f12 3507 11950 5.47E+13 6.67E+09 2.75E+05 1.31E+07 2.75E+12 7.27E+08 1.22E+13 1.92E+09 

f13 3194.7 5456.6 31716 35473 11132 25453 12682 25223 8284.3 7329.2 

f14 309.85 486.61 974.16 1679.6 510.94 1068.9 539.84 1113.6 159.84 326.77 

f15 1364.8 1425 1531 1650.1 1474.8 1505.5 1460.8 1507.8 45.072 55.181 

Table 4 The total score obtained by the algorithms 

Dimension ITEO TEO 

10 2.5970e+11 4.5512e+12 

30 3.2432e+14 1.0619e+16 

Table 5 Optimal design comparison for the 25-bar spatial truss 

Element group Optimal cross-sectional areas (𝑖𝑛2) 

 WEO CBO CS MBA TEO ITEO 

 (Kaveh and 

Bakhshpoori 

2016) 

(Kaveh and 

Ilchi Ghazaan 

2015) 

(Kaveh and 

Bakhshpoori 

2013) 

(Sadollah et al. 

2012) 

Present study 

1 0.1 0.1 0.1 0.1 0.1 0.2 

2 0.3 0.3 0.3 0.3 0.3 0.7 

3 3.4 3.4 3.4 3.4 3.4 3.1 

4 0.1 0.1 0.1 0.1 0.1 0.3 

5 2.1 2.1 2.1 2.1 1.3 0.7 

6 1.0 1.0 1.0 1.0 0.9 0.9 

7 0.5 0.5 0.5 0.5 0.8 1.1 

8 3.4 3.4 3.4 3.4 3.4 3.3 

Best weight (lb) 484.85 484.85 484.85 484.85 486.324 484.605 

Mean Weight (lb) 485.598 486.87 485.01 484.89 491.622 484.821 
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Table 6 Optimal design comparison for the 72-bar spatial truss 

Element group         

 WEO ICA CBO CS MBA  TEO ITEO 

 

(Kaveh 

and 

Bakhshpo

ori 2016) 

(Kaveh 

and 

Talatahari 

2010) 

(Kaveh 

and Ilchi 

Ghazaan 

2015) 

(Kaveh 

and 

Bakhshpo

ori 2013) 

(Sadollah 

et al. 

2012) 

 

Present work 

1 1.99 1.99 1.62 1.800 0.196  1.8 1.800 

2 0.563 0.442 0.563 0.563 0.563  0.563 0.563 

3 0.111 0.111 0.111 0.111 0.442  0.111 0.111 

4 0.111 0.141 0.111 0.111 0.602  0.25 0.250 

5 1.228 1.228 1.457 1.266 0.442  1.228 1.266 

6 0.442 0.602 0.442 0.563 0.442  0.442 0.442 

7 0.111 0.111 0.111 0.111 0.111  0.111 0.196 

8 0.111 0.141 0.111 0.111 0.111  0.141 0.141 

9 0.563 0.563 0.602 0.563 1.266  0.602 0.563 

10 0.563 0.563 0.563 0.442 0.563  0.563 0.442 

11 0.111 0.111 0.111 0.111 0.111  0.111 0.111 

12 0.111 0.111 0.111 0.111 0.111  0.141 0.250 

13 0.196 0196 0.196 0.196 1.800  0.196 0.141 

14 0.563 0.563 0.602 0.602 0.602  0.602 0.766 

15 0.391 0.307 0.391 0.391 0.111  0.391 0.391 

16 0.563 0.602 0.563 0.563 0.111  0.563 0.442 

Best weight (lb) 389.33 392.84 391.07 389.87 390.72  396.65 389.15 

Mean weight (lb) 391.20 N/A 403.71 N/A 395.432  416.74 390.82 

 

Fig. 7 Convergence curves recorded for the 25-bar truss problem 
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Fig. 8 Schematic of the spatial 72-bar truss 

 

Fig. 9 Convergence curves recorded for the spatial 72-bar truss 
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Table 7 Optimal design comparison for the three-bay fifteen-story frame 

Element group  Optimal cross-sectional areas 

 WEO CBO ICA CSS  TEO ITEO 

 

 (Kaveh and 

Bakhshpoori 

2016) 

(Kaveh and Ilchi 

Ghazaan 2015) 

(Kaveh and 

Talatahari 2010) 

(Kaveh and 

Talatahari 2012) 

 

Present work 

1 W14×90 W24×104 W24×117 W21×147  W14×90 W24×131 

2 W36×170 W40×167 W21×147 W18×143  W30×173 W21×147 

3 W30×90 W27×84 W27×84 W12×87  W12×79 W30×90 

4 W24×104 W27×114 W27×114 W30×108  W30×116 W24×104 

5 W24×68 W21×68 W14×74 W18×76  W24×68 W21×93 

6 W12×87 W30×90 W18×86 W24×103  W12×106 W30×90 

7 W8×48 W8×48 W12×96 W21×68  W16×50 W8×48 

8 W14×68 W21×68 W24×68 W14×61  W18×71 W21×68 

9 W10×33 W14×34 W10×39 W18×35  W8×31 W14×38 

10 W16×45 W8×35 W12×40 W10×33  W16×45 W8×35 

11 W21×44 W21×50 W21×44 W21×44  W21×44 W21×44 

Best weight (lb) 88710.97 93795 93486 92723  90514.58 87754.57 

Mean weight (lb) 90649.49 98738 N/A N/A  99737.430 90477.73 

Table 8 Comparison of optimization results obtained by TEO and some other metaheuristics for the 3-bay 24-story 

frame problem 

Element group  Optimal cross-sectional areas  

 WEO CBO ICA CSS  TEO ITEO 

 

(Kaveh and 

Bakhshpoori 

2016) 

(Kaveh and 

Ilchi 

Ghazaan 

2015) 

(Kaveh and 

Talatahari 

2010) 

(Kaveh and 

Talatahari 

2012) 

 

Present work 

1 W14×176 W14×109 W14×132 W14×132  W14×176 W14X159 

2 W14×145 W14×159 W14×120 W14×109  W14×145 W14X99 

3 W14×145 W14×120 W14×145 W14×109  W14×109 W14X132 

4 W14×132 W14×90 W14×82 W14×90  W14×90 W14X132 

5 W14×109 W14×74 W14×61 W14×61  W12×14 
W8X13 

6 W14×109 W14×68 W14×43 W14×38  W12×14 
W6X15 

7 W14×90 W14×30 W14×38 W14×38  W8×13 
W4X13 

8 W14×82 W14×38 W14×22 W14×22  W6×8.5 
W8X10 

9 W14×74 W14×159 W14×99 W14×109  W5×16 
W6X16 

10 W14×68 W14×132 W14×109 W14×109  W5×16 
W8X18 

11 W14×61 W14×99 W14×82 W14×99  W5×16 
W10X17 

12 W14×43 W14×82 W14×90 W14×90  W6×15 
W10X15 

13 W14×34 W14×68 W14×74 W14×82  W6×15 
W5X16 

14 W14×34 W14×48 W14×61 W14×68  W8×13 
W6X12 

15 W14×34 W14×34 W14×30 W14×34  W6×9 
W10X12 

16 W14×22 W14×22 W14×22 W14×22  W6×8.5 
W6X8.5 

17 W30×90 W30×90 W27×102 W30×90  W30×90 
W30X90 

18 W21×50 W21×50 W8×18 W6×15  W8×18 
W10X19 

19 W21×48 W24×55 W24×55 W24×55  W24×68 
W24X68 

20 W12×19 W8×28 W6×8.5 W6×8.5  W8×18 
W6X20 

Best weight (lb) 202626 215874 212640 212364  206328.06 202890.04 

Mean weight (lb) 204954.03 225071 N/A 215226  225862.37 204741.97 
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The optimal solutions found by various algorithms are 

provided in Table 6. The ITEO has obtained the minimum  

weight among the compared algorithms. The mean weight 

obtained by ITEO is lighter than the lightest obtained by 

TEO and it is almost 7% better than that of TEO, which 

shows, the adjustments of this paper have improved TEO 

significantly. This also can be observed in the convergence 

curves illustrated in Fig. 9. 

 

3.2.3 Three-bay fifteen-story frame 
This benchmark frame consists of 105 members which 

are divided into 10 groups for columns and a beam element 

group chosen from 267 W-sections. As it can be seen from 

Fig. 10, the frame is subjected to uniform and lateral service 

loading. The design must satisfy the displacement and 

AISC-LRFD combined strength constraints, also, the lateral 

sway of the top story is limited to 9.25 in (23.5 cm).  

The optimum and mean of the obtained by different 

algorithms are collected in Table 7. The optimal design  

 

 

found by ITEO is the best design reported in the table. The 

average weight of the ITEO calculated from 30 independent 

runs is also lighter than that of other algorithms. ITEO also 

performed better than the standard TEO with lower 

iterations. The convergence curves of the best solution and 

average of 30 independent runs, presented in Fig. 11, show 

the good converging behavior of ITEO compared to that of 

the TEO. 

 

3.2.4 Three-bay twenty four-story frame 
The last problem is a 168-member, three-bay twenty 

four-story frame originally designed by Davison and Adams 

(Davison and Adams 1974). Fig. 12 displays the topology, 

configuration, service loading conditions and numbering of 

member groups for the frame. The column members are 

categorized into 16 groups chosen from 267 W-shapes and 

4 beam groups limited to W14 sections. 

 

Fig. 10 Schematic of the three-bay fifteen-story frame 
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Fig. 11 Convergence curves for three-bay fifteen-story frame problem 

 

Fig. 12 Schematic of the three-bay twenty four-story frame 
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According to the optimum results reported in Table 8, 

ITEO has found the second minimum weight among other 

powerful methods, but this should be noted that the weight 

obtained by WEO is about 0.1% lower than the improved 

version of ITEO and the mean weight of ITEO is better than 

other algorithms. As illustrated in Fig. 13, the average 

convergence rate of ITEO is much faster than TEO. 

 

 

4. Conclusions 
 

TEO is a recently developed optimization algorithm 

which is inspired by cooling law of Newton. In this paper, 

an improved version of the TEO (abbreviated as ITEO) is 

presented. ITEO uses the linear statement instead of 

exponential statement utilized in the standard version and 

this leads to additional saving in the computational cost. 

The applicability of the ITEO has been studied considering 

CEC 16’s computationally expensive problems and the 

design optimization of benchmark structures with discrete 

cross-sectional areas. According to the results achieved by 

30 independent runs, the ITEO has displayed a competitive 

performance compared to the other well-known algorithms. 

As it can be seen from the first example, ITEO has found a 

new better design while other algorithms have converged to 

identical designs. This shows the different search approach 

of the ITEO. According to the results, the modifications 

have improved the performance of the algorithm and the 

new version has outperformed the standard TEO in most of 

the studied examples. 
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