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1. Introduction 
 

The classical coupled thermoelasticity theory predicts an 

infinite speed for heat propagating in elastic medium, which 

is not consistent with physical observations. To overcome 

such shortcoming, Lord and Shulman (L-S) (1967) and 

Green and Lindsay (G-L) (1972) introduced the generalized 

thermoelastic theories respectively. In L-S theory, a new 

wave-type heat conduction law was postulated to replace 

the classical Fourier’s law by introducing the heat flux rate 

and one thermal relaxation time. In G-L theory, both the 

energy equation and the Duhamel-Neumann relation were 

modified by introducing two relaxation times, and the heat 

conduction equation was also modified by introducing the 

temperature-rate term. In both theories, the governing 

equations are of hyperbolic type, which can describe the so-

called second sound effect, i.e., heat propagates in medium 

with a finite speed. 

Nowadays, many attentions have been devoted to 

studying the applications of piezoelectric materials. The 

counterparts of our problem have been considered in the 

context of the generalized thermoelastic theories by semi-

analytical or numerical methods (He et al. 2002, Karamany 

and Ezzat 2005, He et al. 2007). Farzad and Mohsen (2017) 

studied the nonlocal thermo-electro-mechanical vibration 

problem of smart curved FG piezoelectric Timoshenko 

nanobeam. Xiong and Tian (2017) researched the transient 

thermo-piezo-elastic responses of a functionally graded  
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piezoelectric plate under thermal shock. Generally 

speaking, material properties, such as the modulus of 

elasticity, the coefficient of thermal expansion and the 

thermal conductivity etc., would vary with temperature, 

which in turn influence the thermoelastic coupling 

behaviors. To explore the effect of temperature-dependent 

properties on thermoelastic behaviors and extend the 

applicability of the solutions to certain range of 

temperature, many contributions have done by (Othman and 

Song 2008, Othman and Kumar 2009, Othman and Lotfy 

2009, Xiong and Tian 2011) based on the generalized 

thermoelasticity respectively. 

Ever since the first application of fractional calculus to 

solving an integral equation by Abel, fractional calculus has 

been successfully used to modify many existing models in 

various fields, especially in the field of heat conduction, 

diffusion, viscoelasticity, mechanics of solids. In the 

application of fractional calculus, Povstenko (2005, 2009, 

2011) made a review of thermo-elasticity that uses 

fractional heat conduction equation and investigated new 

models by employing fractional derivative. Recently, 

Youssef (2010) and Youssef and Lehaibi (2010a) 

formulated the theory of fractional order generalized 

thermoelasticity by introducing the Riemann-Liouville 

fractional integral operator into the generalized heat 

conduction equation. Subsequently, this theory was applied 

to investigating a two-dimensional thermal shock problem 

by Youssef (2012) as well as a half-space problem by 

Youssef and Lehaibi (2010b). Very recently, a completely 

new model on fractional order generalized thermoelasticity 

was introduced by Sherief et al. (2010). By employing this 

theory, Shweta and Santwana (2011) solved an elastic half 

space problem with Laplace transform and state-space 

method.  

So far, there are few works involving the dynamic 

response for thermo-piezoelectric problems with variable 
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material properties in the context of fractional order theory 

of thermoelasticity. In present work, the dynamic response 

of a thermo-piezoelectric problem with variable properties 

and subjected to a moving heat source is investigated in the 

context of the fractional order theory of thermoelasticity. 

 

 

2. Basic equations 
 

In the absence of body force and free charge, the 

piezoelectric- thermoelastic governing equations for linear 

thermo-piezoelectric media are as follows 

Motion equation 

,ij j iu   (1) 

Energy equation 

 0 , 0i iST Q q     (2) 

Gauss equation and electric field relation 

, ,0,i i i iD E     (3) 

Strain-displacement relations 

 , ,

1

2
ij i j j iu u    (4) 

Constitutive equations 

0

ij ijkl kl ijk k ij

i ijk jk ij j i

E

ij ij i i

c h E

D h E p

C
S p E

T

   

  


   

  

  

  

 

(5a) 

(5b) 

(5c) 

The fractional order heat conduction equation advocated 

by Sherief et al. (2010) 

,i i ij jq q
t




  


  


 (6) 

In the above equations, a comma followed by a suffix 

denotes material derivative and a superposed dot denotes 

the derivative with respect to time. iu are the components 

of displacement vector,  ij the components of strain tensor,

iD the components of electric displacement,
iE the 

components of electric field vector,  mass density, S

entropy,
iq the components of heat flux vector, Q strength of 

the applied heat source per unit mass, ijklc elastic constants,

ijkh piezoelectric constants,
ij thermal modulus, ij dielectric 

constants,
ip pyroelectric constant,

EC specific heat at 

constant deformation,  electric potential function, ij the 

coefficients of thermal conductivity,  0T T     

temperature increment, 0T initial reference temperature, T

absolute temperature, t time,  thermal relaxation time, 

 fractional order parameter such that 0 1  . 

 

Fig.1 The schematic of the thermo-piezoelectric problem 

 

 

We consider the dynamic response of a thermo-

piezoelectric rod with variable properties and finite length

L . The rod is fixed at both ends and subjected to a moving 

heat source (Fig. 1). The problem can be treated as one-

dimensional and the one-dimensional coordinate system is 

assumed to be aligned along the x-axis. All considered 

variables are thus only functions of x and t, and the only 

remaining displacement component is  ,xu u x t . 

Moreover, the only non-vanishing components of heat 

flux, stress and electric displacement are also in x-direction, 

and all the material derivatives are zero except that with 

respect to x. Thus, the above equations are reduced to 

,xx x u   (7) 

 

 0 , 0x xST Q q     (8) 

 

, ,0,x x x xD E     (9) 

 

,xx xu   (10) 

 

11 11 11

11 11 1

0 11 1

xx xx x

x xx x

E xx x

c h E

D h E p

S C T p E

   

  

    

  

  

  

 
(11a) 

(11b) 

(11c) 

 

11 ,x x xq q
t




  


  


 (12) 

Substituting Eqs. (11(a)) into (7), (11(b)) into (9), 

(11(c)) and (12) into (8) respectively, we get 

2 2 2

11 11 112 2 2

u u
c h

xx x t

 
 

   
  

  
 (13) 

 

2 2

11 11 12 2
0

u
h p

xx x

 


  
  

 
 (14) 

 

2

11 2

2 2

11 0 1 0

1

0E

x t

u
Q C T p T

t x t x t






 

 
  

  
  

  

   
    

     

 (15) 

 

x  

The moving heat source 

L 

0
-

L
   
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where    11 112 , 3 2 tc          ,
t is the coefficient 

of the linear thermal expansion,  and  are the Lame’s 

constants. 

To consider the temperature-dependence of material 

properties, we assume that 

     0 0 11 0, ,f f f            (16) 

where
0 and 

0  are constants,  f   is a given non-

dimensional function of temperature. In case of 

temperature-independent properties,   1f   .  

Rishin, Lyashenko, Akinin and Nadezhdin (1973) 

investigated the relationship between modulus of elasticity 

of several sprayed coatings and temperature, and they 

reported the modulus of elasticity decreases monotonically 

with the increasing of temperature. To linearize the 

governing partial differential equations of the problem, 

taking into account the condition 0T/ << 1
 
, we assume 

that  f  takes the following form without loss of 

generality 

  01f T    (17) 

where  is an empirical material constant. 

For convenience, the following non-dimensional 

quantities are introduced 

* * * * 2

0 0 0 0 0 0 0 0

* 2 * * *

0 0

0 11 11

* 2 *11 11

0 02 2

11 1111 0 0 0

, , , ,

, , , ,

, , ,

xx x

xx x

E

x c x u c u L Lc t c t

D
c D

T c h

c CQ
Q c

h LT c

   


    

 
  

  

   

   

   

 

(18) 

In terms of these non-dimensional quantities, Eqs. (13)-

(15) take the forms respectively (dropping the asterisks for 

convenience) 

2 2 2

1 22 2 2

u u
A A

xx x t

 
 

   
  

  
 (19) 

 
2 2

3 12 2
0

u
A B

xx x

   
  

 
 (20) 

 
2 2 2

2 32
1 0

u
Q B B

t x t x tx t





  
  

      
       

       

 (21) 

where 

2

0 0 11 11 0

1 2 3 0 0

11 11 11

11 1 0 111 0

1 2 3

11 0 0 0 11 0

, , ,

1
, , ,

1

c Lh T
A A A c L

c c

p c Lhp T
B B B

h T

 







    

  

   


 
(22) 

The initial conditions are assumed as 

   

   

   

,0 ,0 0,

,0 ,0 0,

,0 ,0 0.

u x u x

x x

x x

 

 

 

 

 

 (23) 

The boundary conditions are given as 

   

   

   

0, , 0,

0, , 0,

0, ,
0

u t u L t

t L t

t L t

x x

 

 

 

 

 
 

 

 
(24) 

The piezoelectric rod is subjected to a moving heat 

source along the positive direction of x-axis with a constant 

velocity  . The non-dimensional heat source has the form 

 0Q Q x t    (25) 

where
0Q is constant and  is the delta function. 

is the non-dimensional velocity of the heat source. 

 

 

3. Solutions in Laplace domain 
 

By applying the Laplace transform 

       
0

e d , Re 0stL f t f s f t t s


       (26) 

to Eqs. (19)-(21) together with Eq. (23), we can obtain 

2 2 2

1 2 0u s u A A      D D D  (27) 

 

2 2

3 1 0u A B   D D D  (28) 

 

   

   

2

2

3

1 1

1 1 e
s

x

s s B s s u

B s s s

 

  

  

    


    
 

    

D D

D
 (29) 

where 
0d dx, Q   D . 

Eliminating  and  from Eqs. (27)-(29), we obtain 

the equation satisfied by u  

4 2 32

1 1 1

e
s

xmm m
u u u

m m m




  D D  (30) 

where 

 

   
 

 

     

 

 

  

2

1 1 3 1 3 3 1

1 3

1 1 2 31 1 2 3

2

1 1 2 3 3 1 2 2 2 3 1 3

2

1 1 2 3

1 1 1 2 3 1

2 1 1 2 3

, ,
1

1
1

2
.

1

B A A B B A B s
m m

A B A AA B A A s s

B A B B A B A B A A B B
m

A B A A

B s A B A A B
m

A A B A A s





  

 

 



  

 

  
 

 

    
 




 

 
，

 
(31) 

The general solution including particular solution for u

can be expressed as 

31 2 4

1 2 3 4e e e e e
s

x
xx x x

u C C C C K
   



      (32) 

where 
1C ,

2C ,
3C  and 

4C  are parameters to be 
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determined from the boundary conditions and K is 

   
4 2

1 2 3K m m s m s m    
 

 (33) 

1 2 3, ,    and 
4  are the roots of the characteristic 

equation 

4 2 32

1 1

0
mm

m m
     (34) 

which are given by 

2

2 2 1 3

1 2

1

2

2 2 1 3

3 4

1

4
,

2

4

2

m m m m

m

m m m m

m

 

 

  
  

  
  

 

Eliminating  from Eqs. (27) and (28), we get 

   
2 2

2

2 1 1 1 2 32 2
0

u
A B s u A B A A

x x


  

 
    

 
 (35) 

Substituting Eq. (32) into Eq. (35), we can obtain the 

solution for   

31 2 4

1 1 2 2 3 3 4 4

1 2

e e e e e
s

x
xx x x

a C a C a C a C aK

D x D

   


    

 

 (36) 

Substituting Eqs. (32) and (36) into Eq. (28), we obtain 

the solution for   

31 2 4

1 1 2 2 3 3 4 4

3

1 3

1

e e e e e
s

x
xx x x

b C b C b C b C bK

A
D x D

B

   


    

 
 (37) 

where 
1D ,

2D  and 
3D  are undetermined parameters. 

Substituting Eqs. (32), (36) and (37) into Eq. (11(a)), we 

obtain 

1 2

3 4

1 1
1 1 1 2 1 2 2 2 2 2

0 0 0 0

1 1
3 3 3 2 3 4 4 4 2 4

0 0 0 0

1 1
2 1

0 0 0

1 e 1 e

1 e 1 e

1 e

x x

xx

x x

s
x

A A
C a A b C a A b

c c

A A
C a A b C a A b

c c

s A A
K a A b D

c c

 

 



  
 

 
 

  



      
              

      

      
              

      

  
       

  

3
2 2 3

0 1

g
A A D

f

 
  

 

 
(38) 

where 

   

   

   

2 22
1 1 1 21 1 2

1 2

1 1 2 3 1 1 2 3

2 2

1 3 1 2 3

3 4

1 1 2 3 1

1 3 1 3 3 2

1 2 3 4

1 1

, ,

1
,

1 1
,

B s B AB B A
a a a

B A A A B A A A

B s B A s aA
a a b

B A A A B

A a A a
b b b b

B B

 

 

 

 

 

       
 

      


 
     

，  (39) 

Substituting Eqs. (32), (36) and (37) into Eq. (29), we 

obtain 

1 3 3

1 3

1

0
B B A

D D
B

 
   (40) 

In order to determine the parameters  1,2,3,4iC i   

and  1,2jD j  , we consider the boundary conditions in 

Eq. (24) and get 

1 2 3 4 0C C C C K      (41a) 

 

 

1 0 0 2 0 0 3 0 0 4 0 0

0 0

1 2 3 4e e e e

e 0

Lc Lc Lc Lc

s Lc

C C C C

K

       

 

  

 
 (41b) 

 

1 1 2 2 3 3 4 4 2 0a C a C a C a C aK D       (41c) 

 

 

1 0 0 2 0 0 3 0 0 4 0 0

0 0

1 1 2 2 3 3 4 4

1 0 0 2

e e e e

e 0

Lc Lc Lc Lc

s Lc

a C a C a C a C

aK D Lc D

       

 




  

   
 (41d) 

 

 1 1 1 2 2 2 3 3 3 4 4 4

3 1 1 0

b C b C b C b C bK s

A D B

       

 
 (41e) 

 

   

1 0 0 2 0 0 3 0 0 4 0 0

0 0

1 1 1 2 2 2 3 3 3 4 4 4

3 1 1

e e e e

e 0

Lc Lc Lc Lc

s Lc

b C b C b C b C

bK s A D B

       

 

   




  

  
 (41f) 

The undetermined parameters 
iC  and 

jD are obtained 

by solving the system of algebraic Eqs. from (41(a)) to 

(41(f)) in Matlab. After getting 
1D , 

3D  can be obtained 

from Eq. (40). Due to the complexity of the expressions of 

the obtained parameters, they are not presented here. 

 

 

4. Numerical inversion of the Laplace transform 
 

In order to determine the distributions of the non-

dimensional temperature, displacement, stress and electric 

potential in the thermo-piezoelectric rod, , u ,
xx and

need to be inverted from Laplace domain into time domain. 

Due to the complexity of the solutions obtained in Laplace 

domain, it is not feasible to invert them analytically. 

Alternatively, a numerical technique that is the Riemann-

sum approximation method could be employed to obtain 

numerical results. In this method, any function  ,f x s  in 

Laplace domain can be inverted into the time domain 

Durbin (1973) by the following formula 

     
0

0 0

1

1
, , Re , 1

2

t N
n

n

e in
f x t f x f x

t t

 
 



  
     

  
  (42) 

where Re is the real part and i is the imaginary number 

unit. For faster convergence, numerous numerical 
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experiments have shown that the value of 0 satisfies the 

relation
0 4.7t  (Honig and Hirdes 1984). 

 

 

5. Numerical results and discussions 

 

In view of the Riemann-sum approximation given in Eq. 

(42), numerical Laplace inversion is implemented to obtain 

the variations of the considered variables. In the calculation, 

the material properties of the thermo-piezoelectric rod are 

given as (He,Tian and Shen 2002) 

10 2 10 2 -3

0 0

-1 -1 -2 10 -1

11 11

4 -1 -2 -1 -1 5 -1

1 0

7.76 10 N m , 3.86 10 N m , 7600Kg m ,

420J Kg K , 0.2C m , 0.392 10 F m ,

4 10 C K m , 1.4 W K m , 1.78 10 K .

E

t

C h

p

  



 

 



 

       

       

        

 

The other constants are taken as 

0 010, 293, 0.05, 10Q T L     

In calculation, three cases are considered at time 0.1t  . 

The first case is to investigate how the non-dimensional 

temperature, displacement, stress and electric potential vary 

with different fractional order parameter when the velocity 

of heat source and the material properties remain constant.  

The second case is to investigate how the considered 

variables vary with the material properties when the 

fractional order parameter and the velocity of heat source 

remain constant. The last case is to investigate how the 

considered variables vary with the velocity of heat source 

when the fractional order parameter and the material 

properties remain constant. 

In the first case, the values of fractional order parameter 

are set as 0.25  , 0.5, 0.75 and 1.0 respectively while

1, 1.2   . In the second case, the material properties 

are set as 0.5  , 1.0, and 1.5 respectively while the 

constants 1, 0.5   . In the third case, the velocities of 

heat source are set as 1, 2  and 3 respectively while

1.2, 0.5   . The obtained results are illustrated in Figs. 

2-13.  

Figs. 2-4 show the distributions of the non-dimensional 

temperature. As shown in Fig. 2, the peak value of 

temperature increases as the fractional order parameter

increases under the same  and . As observed from Fig. 3, 

the peak value of the temperature increases with the 

increase of  under the same and . From the definition 

of  in Eqs. (22) and (17), it can be deduced that the 

material properties decreases as  increases, which means 

that the peak value of the temperature decreases with the 

increase of the material properties. As seen from Fig. 4, the 

peak value of temperature decreases as the moving heat 

source velocity increases under the same and  . The 

effect of fractional order parameter, temperature-dependent 

material properties and heat source velocity on temperature 

is significant. For each curve of the non-dimensional 

temperature, the value of temperature varies steadily at the 

first stage, then increases and reaches the peak, after that, 

decreases. 

 

Fig. 2 Distributions of temperature with different when

1  and 1.2   

 

 

 

Fig. 3 Distributions of temperature with different  when

1  and 0.5   

 

 

 

Fig. 4 Distributions of temperature with different when 

1.2  and 0.5   

 

 

Figs. 5-7 show the distributions of the non-dimensional 

stress. As seen from Fig. 5, the peak value of stress 

increases with the increase of under the same  and . As 

shown in Fig.6, the peak value of stress increases with the 

increase of  under the same and . As observed from 

Fig.7, the peak value of stress decreases with the increase of 

the moving heat source velocity under the same and  .  

For each curve of the non-dimensional stress, the value 

of stress first varies steadily and reaches the peak and then 

goes down. 
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Fig. 5 Distributions of stress with different when 1 

and 1.2   

 

 

Fig. 6 Distributions of stress with different  when 1 

and 0.5   

 

 

Fig. 7 Distributions of stress with different when 1.2 

and 0.5   

 

 

Figs. 8-10 show the distributions of the non-dimensional 

displacement. As observed from Fig. 8, the absolute peak 

value of displacement increases as the fractional order 

parameter increases under the same  and . As seen 

from Fig.9, the absolute peak value of displacement 

increases with the increase of  under the same and .  

As shown in Fig. 10, the absolute peak value of 

displacement decreases with the increase of the moving heat 

source velocity under the same and  . For each curve 

of the non-dimensional displacement, the absolute value of 

displacement firstly goes up and then goes down. 

 

 
(a) The direction of applied electric field is opposite to 

the direction of polarization 

 
(b) The direction of the applied electric field is the same 

as the direction of polarization 

Fig. 8 Distributions of displacement with different at

1  and 1.2   

 

 
(a) The direction of applied electric field is opposite to 

the direction of polarization 

 
(b) The direction of the applied electric field is the same 

as the direction of polarization 

Fig. 9 Distributions of displacement with different 

when 1  and 0.5   
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(a) The direction of applied electric field is opposite to 

the direction of polarization 

 
(b) The direction of the applied electric field is the same 

as the direction of polarization 

Fig. 10 Distributions of displacement with different
when 1.2  and 0.5   

 

 

 
(a) Comparison of temperature 

 
(b) Comparison of displacement 

Fig. 11 Comparisons made between present work and the 

work in reference (Babaei and Chen 2009) 

 

Because the rod is subjected to the thermopiezoelectric 

effect, when the direction of applied electric field is 

opposite to the direction of polarization, the displacement in 

the rod is negative. On the contrary, the displacement in the 

rod is positive. 

To compare the results in present work with others, 

three representative variables, i.e., the non-dimensional 

temperature and displacement, are chosen to be compared 

with those given in reference (Babaei and Chen 2009) in 

case  and . The comparisons are presented in Figs. 11(a) 

and 11(b). 

The comparisons show the results for the chosen 

variables in both works agree well with each other except 

some slight deviations maybe caused by the different 

methods used in both works respectively. 

 

 

6. Conclusions 
 

The dynamic response of a thermo-piezoelectric rod 

with variable properties and subjected to a moving heat 

source is investigated in the context of the fractional order 

theory of thermoelasticity. This work may be helpful for 

better understanding of the interactions among temperature 

field, mechanical field and electric field in smart structures 

made of piezoelectric ceramics and provide some guidelines 

in the optimal design of actuators or sensors made of 

piezoelectric ceramics serving in a thermoelastic 

environment. From the obtained results, the following 

conclusions can be arrived at 

 • The effects of the fractional order parameter, the 

temperature-dependent material properties and the moving 

heat source velocity on the considered variables are very 

significant. 

• The peak values of the non-dimensional 

temperature, displacement, stress and increase with the 

increase of the fractional order parameter under the same

 and . 

• The peak values of the non-dimensional 

temperature, displacement, stress and increase with the 

increase of  under the same  and  , which in turn 

means that the peak values of the considered variables 

decrease with the increase the temperature-dependent 

properties. 

• The peak values of the non-dimensional 

temperature, displacement, stress and decrease with the 

increase of the moving heat source velocity under the 

same and  . 
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