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1. Introduction 
 

The science and technology of nanostructure is a broad 

and interdisciplinary field of research and development that 

has exploded in the world over the last few years because of 

their excellent properties (Zhang 1998, Liu and Zhang 

2004, Yan et al. 2007, Zhao et al. 2009, Qin et al. 2009, 

Belkorissat et al. 2015, Zemri et al. 2015, Al-Basyouni et 

al. 2015, Larbi Chaht et al. 2015, Ahouel et al. 2016, 

Bounouara et al. 2016, Bellifa et al. 2017a, Besseghier et 

al. 2017, Karami et al. 2017, Khetir et al. 2017, Hanifi 

Hachemi Amar et al. 2017, Mouffoki et al. 2017, Bouafia et 

al. 2017, Yazid et al. 2018) for their use in nanomechanical 

and nanoelectromechanical systems. It is possible to 

revolutionize the ways in which materials and products are 

created, as well as the scope and nature of the features that 

can be accessed. It already has an important commercial 

impact, which will surely increase in the future. Indeed, it is 

important to understand the static and dynamic mechanical 

behavior of these materials and advanced structures for the 

design and manufacture of nano-electromechanical (NEMS) 

systems. Due to their large surface/volume ratio, nanoscale 

structures exhibit significant size-dependent behavior (Chen 

et al. 2006, Wong et al. 1997, Miller and Shenoy 2000). 

Consequently, the surface effect must be considered for the  
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analysis of materials and structures at the nanometric scale. 

In classical continuum mechanics, the effect of surface 

energy is ignored as it is small compared to the bulk energy. 

Nanoscale structures behave differently from their 

macroscale counterparts due to size effects. Some 

experimental researches and atomic calculations have 

proved that the mechanical properties to nanoscale depends 

on the size (Miller and Shenoy 2000, Xu et al. 2010). Since 

classical continuum theories are not capable of capturing 

size effects.  

In nanostructures, the reliability of these theories in the 

analysis of the dynamic characteristics of nanostructures is 

doubtful. Consequently, various nonconventional 

continuum theories have been proposed to incorporate size 

effects into the governing equations of nanostructures. 

The quantity of surface energy called free surface 

energy was first introduced by Gibbs (1906) into the 

thermodynamics of solid surfaces. When a material element 

has a characteristic length comparable to the intrinsic scale, 

free surface/interface energy can play an important role in 

its properties and behavior. There is another fundamental 

parameter, called surface stress, which was also defined by 

Gibbs (1906) for the first time. By analogy with the 

constitutive relation for the elastic body material, Miller and 

Shenoy (2000) suggested a constitutive equation of linear 

surface by introducing a set of elastic surface constants. 

Gurtin and Murdoch (1975, 1978) proposed a generic 

theoretical framework based on the concept of continuum 

mechanics that represent the surface energy/interface. In 

their Model, the surface is considered as a layer of zero 
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thickness glued to the volume of the underlying material 

without sliding. The surface properties are different from 

those in the volume and are characterized by residual 

surface stress and surface Lamé constants. This theory has 

been widely used to study the mechanical response of 

structures at the nanometric scale and considers that the 

elastic responses of nanostructures significantly depend on 

surface elastic constants that could be determined by 

experiments or simulations. 

Many theoretical approaches have been used to predict 

the properties of the surface. Surface stresses were 

evaluated using ab initio methods in semiconductors by 

Maede and Vanderbilt (1989) and in metals by Needs 

(Needs 1987). With the hypothesis of isotropy, Miller and 

Shenoy (2000) calculated the surface module of different 

surface orientations using the integrated atomic method. A 

systematic study of surface elastic constants using atom 

simulations was presented by Miller and Shenoy (2000). 

Recently, many researchers have used unconventional 

continuum theories including surface stress effects. Ould 

Youcef et al. (2015) studied the bending and buckling of 

nanowire with different high order shear deformation 

theories (HSDTs), By using the classical beam theory 

integrated with linear surface elasticity theory (He and 

Lilley 2008, He and Lilley 2008, Wang and Feng 2007, 

Wang and Feng 2009a, b, Rajapakse and Phani 2011, Song 

et al. 2011) studies the bending and buckling behavior of 

nanowires. Yan and Jiang (2011) used the Euler beam 

theory to study the buckling response of piezoelectric 

nanobeams with superficial stress. Ansari and Sahmani 

(2011) adopted different theories of beams for the analysis 

of the buckling of nanobeams with surface effect. Wang and 

Yang (2011) studied the buckling of nanobeams by 

considering geometric nonlinearity. 

It should be noted that there is various HSDTs 

developed in literature (Bellifa et al. 2017b, Chikh et al. 

2017, El-Haina et al. 2017, Abdelaziz et al. 2017, 

Benadouda et al. 2017, Draiche et al. 2016, Akavci 2016, 

Baseri et al. 2016, Barati and Shahverdi 2016, Becheri et al. 

2016, Bouderba et al. 2016, Boukhari et al. 2016, Eltaher et 

al. 2016, Hamidi et al. 2015, Kar and Panda 2015, Hebali  

et al. 2014, Bouderba et al. 2013) and the need to propose 

other simple HSDTs is a topic for many recent works. 

In this work, an analytical solution is developed for the 

dynamic analysis of nanoscale beams by introducing the 

surface effect. A refined higher shear deformation theory 

developed by Tounsi and his co-workers (Beldjelili et al. 

2016, Bellifa et al. 2016, Bousahla et al. 2016) is used; the 

most important assumption used in the proposed beam 

theory is that the boom consists of bending and shearing 

components. The numerical results are illustrated to prove 

the difference between the responses of the nanoscale 

beams predicted by the conventional and unconventional 

solution which depends on the elastic constants of surface. 

 
 
2. Formulation 
 

Consider a nanobeam beam with a rectangular cross-

section, length L  Lx 0 , width b  by 0  and height h 

 hz 0  is modelled in Cartesian coordinate system (x, y, 

z) as shown in Fig. 1. The area and perimeter of the cross-

section are A  and s  respectively. To incorporate the 

surface effects, it is assumed that the response of the beam 

is governed by the continuum theory proposed by Gurtin 

and Murdoch (1975, 1978). 

 

2.1 Kinematics 
 

The present two variable refined beam theory used by 

Benachour et al. (2011) and Hadji et al. (2011) is based on 

assumption that the in-plane and transverse displacements 

consist of bending and shear components in which the 

bending components do not contribute toward shear forces 

and, likewise, the shear components do not contribute 

toward bending moments. The theory presented is 

variationally consistent, does not require shear correction 

factor, and gives rise to transverse shear stress variation 

such that the transverse shear stresses vary parabolically 

across the thickness satisfying shear stress free surface 

conditions, are given as (Bessaim et al. 2013, Ait Amar 

Meziane et al. 2014, Belabed et al. 2014; Attia et al. 2015, 

Ait Yahia et al. 2015, Bennoun et al. 2016) 
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where t is time, u , w  are displacements in the x, z 

directions, bw and sw  are the bending part and the shear 

part of deflection, respectively. 

The displacement fields of the third-order beam theory 

(TBT) based on Reddy (1984) can be determined from Eq. 

(1) by employing the shape functions )(zf  

 
2

3

3

4

h

z
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Fig. 1 Simply supported-simply supported straight 

uniform beam with rectangular cross section and its 

coordinate system 
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The strains associated with the displacements in Eq. (1) 

are 

2
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2.2 Surface elasticity model for nanowires and 
constitutive relations  

 

The surface constitutive relations given by Gurtin and 

Murdoch (1975, 1978) can be simplified in present study as 

s
x
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x
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where s  is the residual surface stress under 

unconstrained conditions; s  and s  being the surface 

elasticity Lamé modulus. 

Note that in a beam bending problem, the stress 

component z  is not zero. But it is small enough 

compared to axial stress x  to neglect in classical beam 

theory. However, in Gurtin-Murdoch model the surface is 

not in balance with the above assumption. To remedy this, 

following Lu et al. (2006) z is assumed to vary linearly 

through the beam thickness and satisfy the equilibrium 

conditions on the surface. With this assumption, z  can be 

written as 
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According to this assumption, z  can be determined as 
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Substitution of Eqs. (2) into Eq. (4) yields 
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Since both the bulk and surfaces of the beam are 

assumed to be homogeneous and isotropic, the constitutive 

relations of the bulk material relating non-zero stresses b
x  

and b
xz  can be expressed as 
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where E is the elastic modulus,   is Poisson’s ratio and G 

is the shear modulus In this work, we consider a 

superposition between the quantities corresponding to the 

surface and the bulk and this summation is considered to 

facilitate only the mathematical formulation 

s
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2.3. Euler-Lagrange equations  
 

Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as (Reddy 2002, Tounsi et al. 2013, Zidi et 

al. 2014, Bousahla et al. 2014, Mahi et al. 2015, Bourada et 

al. 2015, Taibi et al. 2015, Houari et al. 2016, Saidi et al. 

2016, Zidi et al. 2017 ; Menasria et al.,2017; Sekkal et al. 

2017, Abualnour et al. 2018) 
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where t is the time; t1 and t2 are the initial and end time, 

respectively; U  is the virtual variation of the strain 

energy; V   is the virtual variation of the potential energy; 

and K   is the virtual variation of the kinetic energy. The 

variation of the strain energy of the beam can be stated as 
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where bM , sM  and Q  are the stress resultants defined 

as 
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The variation of kinetic energy is expressed as 
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where dot-superscript convention indicates the 

differentiation with respect to the time variable t;   is the 

mass density of the bulk; s is the surface density of the 

surface layer  and  54320 ,,,, mmmmm  are mass inertias 

defined as 
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Substituting Eqs. (11) and (13) into Eq. (10) and 

carrying out the integration by parts, the equations of 

motion of the proposed beam theory are determined as 

follows 
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By substituting Eqs. (7) and (8) into Eq. (9), and the 

subsequent results into Eq. (12), the constitutive equations 

for the stress resultants are obtained as 
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By substituting Eq. (16) into Eq. (15), the governing 

equations can be expressed in terms of displacements ( bw ,

sw ) as 
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where H  is the constant parameter which is determined 

by the residual surface tension s  (generally assumed as a 

positive number) and the shape of cross section. For 

rectangular beam cross sections, the surface elasticity 

tension is expressed by (Gao and Zhang 2015, Ansari et al. 

2013) 
sbH 2  (19) 

 
 
3. Closed-form solution for simply supported 
nanowires 

 

Consider a simply supported beam with length L. The 

following expansions of displacements ( bw , sw ) are chosen 

to satisfy the simply supported boundary conditions of 

beam 
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where  ,/,1 Lni   is the natural frequency, 

and  bnW , and snW  are arbitrary parameters to be 

determined. Substituting Eq. (20) into Eq. (18), the 

following eigenvalue equation is obtained 
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The natural frequencies of the nanobeam can be 

obtained by setting the determinant of the coefficient matrix 

in Eq. (21) to zero. For each choice of n, there is a 

corresponsive unique value of ω. The fundamental 

frequency is the smallest value of  n . 

 
 
4. Numerical results and discussion 

 

In this first example, the analytic solution for the free 

vibration behavior of the nanoscale beams with rectangular 

cross-section including surface stress effects is developed to 

investigate the effect of surface material properties,  

amplitude ratio and mode number on the natural frequency.  

 

Beams made of aluminum (Al) and silicon (Si) are 

considered in the numerical study. The bulk and surface 

elastic constants have been acquired by Miller et al. (2000) 

and Shenoy (2005). The results are as shown in Table 1. 
The dimensions for thin beams are L =120 nm, h = 6 nm 

and b = 3 nm, and those for thick beams are L= 50 nm, h = 6 

nm and b = 3 nm. The solutions are shown in Tables 2 and 

3. The corresponding solutions from classical thin and thick 

beam theories are also presented in parenthesis. The 

obtained results are compared with those computed 

independently by Chang et al. (2010) based on the Euler–

Bernoulli beam theory (EBT), and first beam theory (FBT).  

It can be seen that the results of present theories are in 

excellent agreement with those predicted by EBT and FBT. 

It is found that surface energy effects have a significant 

influence on the first natural frequency of thin and thick 

beams. However, the higher natural frequencies are not 

significantly affected as the bulk bending stiffness becomes 

the dominant factor controlling the higher modes.  

It is worth pointing out that the natural frequencies with 

surface effects could increase or decrease compared with 

the classical results, depending on the signs of the surface 

elastic constants and wave number. As a result, for higher 

natural frequencies, the results from surface elastic model 

become smaller compared to the classical ones. This trend 

can be observed from Tables 2 and 3. 
In fact for some higher modes, the classical solution 

overestimates the natural frequencies. It should be noted 

that thin beam theory is not generally accurate for higher 

modes and the thick beam theory should be used 

irrespective of the L/h ratio.  

In the second example, the following material 

characteristics are used in computations as follows (Gurtin 

and Murdoch 1978) 
210 N/ 10  73.17 mE  ,  27.0 , 3/7000 mKg  

N/m 5.2s , N/m 8s ,  N/m 7.1s ,

26 /107 mKgs   

It is supposed that nm 1 bh  and L  varies from 

10/ hL  to 50 . Also, the non-dimensional natural 

frequency is defined as EL  . The non-dimensional 

natural frequencies corresponding to the first four modes of 

nanobeams are given in Table 4. 

It is seen that the accuracy of the results enhances with 

increasing the number of nodes and converged results are 

obtained when the number of nodes becomes larger than a 

specific value. It can be seen that the results of present 

theories are in excellent agreement with those predicted by 

Ansari et al. (2013) for all values of thickness ratio hL / .  

The frequency ratios of nanobeams with different 
thicknesses and aspect ratios are plotted in Fig. 2. 

 

Table 1 Material properties of Aluminum and Silicon 

Material  GPa

E
   

 mN

s

/

  
 mN

s

/

  
 mN

s

/

  

 3/ mkg


 

 2/ mkg

s  

Al 90 0.23 -3.493 -3.493 0.5689 2.7×103 5.46×10-7 

Si 107 0.33 -2.7779 -4.4939 0.6056 2.33×103 3.17×10-7 
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The frequency ratio is defined as the ratio of natural 

frequency predicted by the non-classical theory to the 

frequency given by the classical one. It can be seen that, as 

the aspect ratio increases, the natural frequencies obtained 

by the non-classical model become higher than those 

predicted by the classical theory. Also, it is observed that as 

the thickness of nanobeam increases, the non-classical 

natural frequencies tend to get closer to the classical natural 

frequencies. This indicates that the surface stress effect is 

more pronounced and must be taken into account when the 

thickness of the nanobeam is small. This kind of size effect 

diminishes for thick nanobeams. 
Fig. 3 shows the effect of surface elastic constants on 

the fundamental frequencies of nanobeams with the 

assumptions of 0 ss   and h = b = 1 nm. It can be  

 

 

 

 

 

 

seen that the positive surface elasticity increases the 

bending stiffness of nanobeam and thus, the natural 

frequency increases, while the negative one reduces the 

stiffness and natural frequency of nanobeam. 
Fig. 4 reveals the effect of surface density on the 

fundamental frequency of nanobeams with the assumptions 

of 0 sss   and h = b = 1 nm. The results for the 

classical nanobeam are also plotted for comparison. It can 

be seen that, the fundamental frequencies of nanobeams 

decrease with an increase in the value of s , especially for 

lower aspect ratios. Furthermore, it can be seen that for all 

values of surface density, the non-classical fundamental 

frequencies are smaller than those predicted by the classical 

beam model. 

 

Table 2 Natural frequencies of aluminum beams 

Beam type 1st (GHz ) 2nd(GHz ) 3rd (GHz ) 4th (GHz ) 

L =120 nm , h = 6 nm and b = 3 nm 

CPT [Chang 

Liu] 

1.45 (1.09) 4.47 (4.36) 9.39 (9.82) 16.27 (17.45) 

FSDT 1.45(1.09) 4.41 (4.29) 9.11(9.48) 15.41(16.44) 

Present 1.45 (1.09) 4.41 (4.29) 9.10 (9.48) 15.37 (16.44) 

L = 50 nm , h = 6 nm and b = 3 nm 

CPT 6.21(6.28) 23.18(25.13) 51.47(56.55) 91.11(100.53) 

FSDT [Chang 

Liu] 

6.10 (6.14) 21.49 (23.13) 43.96 (47.84) 71.08 (77.43) 

Present 6.08 (6.14) 21.38 (23.12) 43.63 (47.86) 70.26 (77.49) 

Table 3 Natural frequencies of silicon beams 

Beam type 1st (GHz )  2nd(GHz )  3rd (GHz )  4th (GHz ) 

L =120 nm , h = 6 nm and b = 3 nm 

CPT [Chang Liu] 1.66 (1.28)  5.19 (5.12)  10.96 (11.53)  19.02 (20.49) 

FSDT 1.66 (1.28) 5.12 (5.04) 10.62 (11.11) 17.98(19.23) 

Present 1.66 (1.28) 5.12 (5.04) 10.61 (11.11) 17.96 (19.23) 

L = 50 nm , h = 6 nm and b = 3 nm 

CPT  7.22 (6.28) 27.12 (25.13) 60.27 (56.55) 106.72 (100.53) 

FSDT [Chang Liu] 7.08 (7.20)  25.07 (27.02)  51.33 (55.70)  82.92 (89.76) 

Present 7.08 (7.20) 25.02 (27.02) 51.15 (55.70) 82.46 (89.86) 

Table 4 Non-dimensional natural frequencies of nanobeams corresponding to the four first mode-numbers 

L/h 
1  2  3  4  

Ansari Present Ansari Present Ansari Present Ansari Present 

10 0.2936 0.2901 0.7870 0.7451 1.5504 1.3723 2.5914 2.1202 

20 0.2624 0.2618 0.5870 0.5803 1.0155 0.9876 1.5688 1.4903 

50 0.2530 0.2529 0.5168 0.5161 0.8013 0.7987 1.1148 1.1084 
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Fig. 2 Frequency ratios of a nanobeam as a function of 

aspect ratio (L/h) for different values of thickness (b = 1 

nm) 
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Fig. 3 Effect of the surface elastic constants on the 

fundamental frequency of nanobeams at various aspect 

ratios ( 0 ss  ) 
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Fig. 4 Effect of the surface density on the fundamental 

frequency of nanobeams with different boundary 

conditions at various aspect ratios ( 0 sss  ) 

The influence of surface residual stress on the 

fundamental frequencies of nanobeams is presented in Fig. 

5 with assuming 0 sss   and b = h = 1 nm. It can 

be concluded from the figure that the positive and negative 

surface residual stresses increases and decreases the 

bending stiffness of nanobeams, respectively. Therefore, the 

non-classical fundamental frequencies for positive s  are 

larger than those given by the classical beam model, while 

the completely reversed behavior is observed for the 

negative values of s . 

 
 
5. Conclusions 

 

In this work, a non-classical solution for the free 

vibrations of nanobeams including surface stress effects 

was presented. Based on the Gurtin–Murdoch elasticity 

theory, the influence of surface stress was incorporated into 

the classical high-order surface stresses. It is found that 

surface energy effects have a significant influence on the 

first natural frequency of thin and thick beams. It can be 

seen that the positive surface elasticity increases the 

bending stiffness of nanobeam and thus, the natural 

frequency increases, while the negative one reduces the 

stiffness and natural frequency of nanobeam. It was 

indicated that the effect of surface stress on the vibrational 

response of nanobeams is dependent on the aspect ratio and 

thickness of beams. It was also indicated that vibrational 

response of nanobeams strongly depends on the magnitudes 

of surface elasticity constants. 
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