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1. Introduction 
 

Graphene (Geim and Novoselov 2007), the 2D 

counterpart of 3D graphite, has taken wide interest in solid-

state physics, materials science and nanoelectronics since it 

was discovered in 2004 as the first free-standing 2D crystal. 

Graphene is becoming as a promising electronic material in 

post-silicon electronics. However, large scale synthesis of 

high quality graphene denotes a bottleneck for future 

generation graphene devices. Existing routes for graphene 

synthesis incorporate mechanical exfoliation of highly 

ordered pyrolytic graphite (HOPG) (Novoselov et al. 2004), 

removing Si from the surface of single crystal SiC (Ohta et 

al. 2006), depositing graphene at the surface of single 

crystal (Oshima and Nagashima 1997) or polycrystalline 

metals (Obraztsov et al. 2007), and various wet-chemistry-

based approaches (Gomez-Navarro et al. 2007, Li et al. 

2008). However, up to now no methods have provided high 

quality graphene with a large enough area as necessitates 

for application as a practical electronic material. In recent 

years, the study of mechanical response of graphene sheets 

has become an interesting topic and hence a few techniques 

and experimental methods have been employed for 

analyzing the characteristics of graphene sheets (Soldano et  
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al. 2010). 

Nonlocal elasticity theory (Eringen 1972, Eringen and 

Edelen 1972, Eringen 1996, Eringen 1983, 2002) was 

developed to consider the small scale impact in elasticity by 

supposing the stress at a reference point to be depending on 

strain field at every point in the body. In this way, the 

internal length scale could be simply introduced in 

constitutive equations as a material parameter. Only 

recently has the nonlocal elasticity model been incorporated 

to nanostructure applications. As the size scales are 

diminished, the effects of long-range interatomic and 

intermolecular cohesive forces on the static and vibration 

characteristics tend to be considerable and cannot be 

ignored. The classical theory of elasticity being the long 

wave limit of the atomistic theory neglects these influences. 

Thus, the conventional classical continuum mechanics 

would fail to capture the scale influences when dealing with 

nanostructures (Lu et al. 2006, Tounsi et al. 2013a). The 

small-size investigation via local theory over predicts the 

results. Thus, the incorporation of small influences is 

required to correct prediction of nanostructures. Chen et al. 

(2004) demonstrated that the nonlocal elasticity theory 

based models are physically reasonable from the atomistic 

viewpoint of lattice dynamics and molecular dynamics 

(MD) simulations. Peddieson et al. (2003) employed 

nonlocal elasticity to present the nonlocal Euler–Bernoulli 

beam model and concluded that nonlocal continuum 

mechanics could potentially play an important role in 
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nanotechnology applications. Several researchers applied 

the nonlocal elasticity theory to study the mechanical 

behaviors of nano plates/beams (Tounsi et al. 2013b, 

Benzair et al. 2008, Berrabah et al. 2013, Benguediab et al. 

2014, Zemri et al. 2015, Larbi Chaht et al. 2015, 

Belkorissat et al. 2015, Kolahchi et al. 2015, Bounouara et 

al. 2016, Ghorbanpour Arani et al. 2016, Akbaş 2016a,b, 

Ahouel et al. 2016, Mouffoki et al. 2017, Bellifa et al. 

2017a, Hanifi Hachemi Amar et al. 2017, Benadouda et al. 

2017). Other works can be found on the effect of geometry 

and material properties of epoxy and carbon nanotubes on 

load transfer in carbon nanotube/epoxy composites under 

tension (Viet et al. 2017). Ebrahimi and Barati (2017) 

presented buckling analysis of nonlocal third-order shear 

deformable functionally graded piezoelectric nanobeams 

embedded in elastic medium. Karami and Shahsavari 

(2017) discussed the temperature-dependent flexural wave 

propagation in nanoplate-type porous heterogenous material 

subjected to in-plane magnetic field.  Karami et al. (2017) 

examined the influences of triaxial magnetic field on the 

wave propagation behavior of anisotropic nanoplates. Nami 

et al. (2015) analyzed the thermal buckling response of 

functionally graded rectangular nanoplates based on 

nonlocal third-order shear deformation theory. Barati and 

Shahverdi (2016) proposed a four-variable plate theory for 

thermal vibration of embedded FG nanoplates under non-

uniform temperature distributions with different boundary 

conditions. Besseghier et al. (2017) investigated the free 

vibration analysis of embedded nanosize FG plates using a 

new nonlocal trigonometric shear deformation theory. 

Khetir et al. (2017) presented a new nonlocal trigonometric 

shear deformation theory for thermal buckling analysis of 

embedded nanosize FG plates.  

For the proper employment of graphene sheets, its 

behavior under in-plane or free in-plane force with small 

scale influences should be investigated. Hence, there is an 

important encouragement for obtaining proper 

understanding and theoretical modeling of the buckling of 

nanoplates. Since buckling of nanoscale plates is a 

considerable factor for proper design of nano-devices, 

numerous works are being proposed. Duan and Wang 

(2007) presented an exact closed-form solution for the 

axisymmetric bending of circular graphene sheets via the 

nonlocal continuum mechanics and the classical plate 

theory. Pradhan and Murmu (2009) utilized nonlocal 

elasticity model to study small-scale impacts on the stability 

of single-layered graphene sheets under biaxial 

compression. Furthermore, Pradhan and Murmu (2010) 

used the nonlocal elasticity model and differential 

quadrature procedure for the buckling behavior of 

rectangular single-layered graphene sheets under biaxial 

compression. Malekzadeh et al. (2011) studied the nonlocal 

parameter effect on the thermal stability of orthotropic 

nanoscale plates embedded in an elastic medium. They 

demonstrated that increasing the elastic medium 

coefficients, the influence of scale parameter on the thermal 

force ratio diminishes. Farajpour et al. (2012) investigated 

the stability of nanoplates under non-uniform compression 

with the nonlocal continuum mechanics model. Asemi et al. 

(2014) examined the influence of small scale on the thermal 

buckling of circular graphene sheets by employing the 

nonlocal elasticity theory. Sobhy (2014a) studied the natural 

frequency and buckling of orthotropic single-layered 

graphene sheets, resting on Pasternak’s elastic foundations 

with various boundary conditions. Zhang et al. (2015a) 

proposed a nonlocal continuum model for vibration of 

SLGSs based on the element-free kp-Ritz method. Zhang et 

al. (2015b) presented an investigation on the transient 

analysis of SLGSs by using the element-free kp-Ritz 

method. The classical plate theory is employed to describe 

the dynamic behavior of SLGSs. Nonlocal elasticity theory, 

in which nonlocal parameter is incorporated, is introduced 

to consider the small scale effect. Zhang et al. (2016a) 

investigated the vibration behavior of   bilayer graphene 

sheets in a magnetic fields using classic plate theory 

combined with nonlocal elasticity theory to account for the 

small-scale effect. In addition, Zhang et al. (2016b) 

analyzed a geometrically nonlinear large deformation 

behavior of SLGSs is presented using the element-free kp-

Ritz method. Zhang et al. (2017a) presented the 

mathematical modeling of the nonlinear vibration response 

of GSs using classic plate theory and nonlocal elasticity 

theory which accounts for the size effect. The numerical 

solutions are obtained through the element-free kp-Ritz 

method. Zhang et al. (2017b) discussed the vibration 

behavior of quadrilateral SLGSs in a magnetic field using 

classic plate theory and incorporating nonlocal elasticity 

theory. The element-free kp-Ritz method is utilized to 

perform the numerical simulation.  

In the present article, the buckling properties of 

orthotropic single-layered graphene sheets (SLGSs) resting 

on two-parameter elastic foundations are studied using a 

new plate theory and nonlocal elasticity. The utilization of 

the integral term in the proposed kinematic led to a reducing 

in the number of variables and governing equations. Based 

on the nonlocal constitutive relations of Eringen, governing 

equations of nanoscale plates are obtained by employing 

using principle of virtual work. To prove the accuracy of the 

present formulation, the computed results are compared 

with reported by Sobhy (2014a). A detailed parametric 

investigation is presented to highlight the effects of the 

scale parameter, thickness-to-length ratio, and other 

parameters on the buckling of the nanoscale plates. 

 

 

2. Theoretical formulation 
 
2.1 Nonlocal elasticity theory: a review 
 

In the case of the nonlocal linear elastic solids, the 

equations of motion take the following form (Eringen 1983, 

2002) 

iijij uft  ,   (1) 

in which   and if  are, respectively, the mass density and 

the body (and/or applied) forces; iu  denotes the displacement 

vector; and ijt  is the stress tensor of the nonlocal elasticity 

expressed by 
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  
V

ijij XdvXXXXt )'()'(')(   (2) 

where X  is a reference point in the body;  XX '  is the 

nonlocal kernel function; and ij  is the local stress tensor of 

local elasticity theory at any point 'X  in the body and 

respects the constitutive relations 

)'()'( XCX klijklij    (3) 

 

 kllkkl uuX ,,
2

1
)'(   (4) 

In the case of a general elastic material, where ijklC  are 

the elastic modulus components with the symmetry 

characteristics klijijlkjiklijkl CCCC  , and kl  is the 

strain tensor. It should be noted here that the boundary 

conditions involving tractions are based on the non-classical 

stress tensor ijt  and not on the classical stress tensor ij .  

The Characteristics of the nonlocal kernel  XX '  

have been studied in detail by Eringen (1983). When  X  

takes on a Green’s function of a linear differential operator 

& , i.e. 

   XXXX  ''&   (5) 

The nonlocal constitutive relation (2) is reduced to the 

differential equation 

ijijt &  (6) 

and the integro-partial differential Eq. (1) is 

correspondingly reduced to the partial differential equation 

  0 &  iiij uf   (7) 

By matching the dispersion curves with lattice models, 

Eringen (1983, 2002) developed a non-classical model with 

the linear differential operator &  expressed by 

221&    (8) 

where ae0 , a  is an internal property length (lattice 

parameter, granular size or molecular diameters) and 0e  is a 

constant appropriate to each material. According to Eqs. (3), 

(4), (6) and (8), the constitutive relations may be written as 

  klijklijij Ct    1 22  (9) 

For simplicity and to avoid the use of the integro-partial 

differential relations, the model of nonlocal elasticity, 

presented by the Eqs. (6)-(9), has been widely employed for 

considering various problems of linear elasticity and 

mechanical behavior of micro-nanostructures. 

 

2.1.1 Discussion of the nonlocal scaling parameter 

The evaluation of the nonlocal parameter a/e 0  in 

the nonlocal model has not been fully understood. The 

value of nonlocal parameter determined by various 

investigators is shown in the following Table 1. 

Table 1 Values of nonlocal parameter available in lite rature 

Investigators ae0  Approach 

Eringen (1983) a39.0 * Matching of the dispersion curves 

via nonlocal theory for 

plane wave and Born–Karman 

model of lattice dynamics at 

the end of the Brillouin zone 

Eringen (1972) a31.0 * Comparison of the Rayleigh 

surface wave via nonlocal 

continuum mechanics and lattice 

dynamics 

Hu et al. (2008) a6.0 $ Comparison of transverse and 

torsional wave dispersion in 

CNTs via nonlocal elastic shell 

with molecular dynamics 

Wang and 

 Hu (2005) 
a288.0 $ The flexural wave propagation in 

SWCNT via nonlocal 

Timoshenko beam model and 

molecular dynamic simulations 

Zhang et al. 

 (2005) 
a82.0 $ Buckling analysis of SWCNT via 

Donnell shell theory and 

molecular mechanics simulations 

Zhang et al.  

(2006) 
a79.8 $ Elastic interactions between 

Stone-Wales and di-vacancy 

defects on carbon graphene sheet 

Wang (2005) nm 1.2  For a SWCNT if the measured 

wave propagation frequency 

value is assessed to be greater 

than 10THz 

Sudak (2003) a7.112 $ Critical buckling strain 

corresponding to various buckling 

modes for a double walled carbon 

nanotube 

Wang et al.  

(2008) 
nm 7.0  Comparing the length-dependent 

stiffness of SWCNT obtained 

from nonlocal elasticity with 

molecular simulation results 

Duan et al.  

(2007) 
0 – 19 a $ Using molecular dynamics 

results, for vibration of carbon 

nanotubes with nonlocal 

Timoshenko beam theory 
* 
Here a  is the lattice parameter 

§ Here a  is the carbon-carbon bond length in SWCNT or graphene 

(=1.42A°) 
 

 

The table also indicates the approach used by the 

investigator(s) to assess the nonlocal coefficient. Duan and 

Wang (2007) have utilized the value of ae0  ranging from 

0 to 2 nm for bending investigation of circular 

micro/nanoplates. Similar values are employed by many 

investigators for the investigation of nanostructures (Reddy 

2007).  

 

2.2 Kinematics and constitutive equations 
 

The kinematic of the proposed theory is written as 

follows 

dxyxzfk
x

w
zyxuzyxu 



 ),()(

 

 
),(),,( 1

0
0   (10a) 
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dyyxzfk
y

w
zyxvzyxv 



 ),()(

 

 
),(),,( 2

0
0   (10b) 

 

),(),,( 0 yxwzyxw   (10c) 

(Bourada et al. 2016, Hebali et al. 2016, Bellifa et al. 

2017b, El Haina et al. 2017, Menasria et al. 2017, Chikh et 

al. 2017) 

where 0u , 0v , ),(0 yxw , and ),( yx are the 4 unknown 

displacement functions of mid-surface of the graphene 

sheet. Note that the integrals do not have limits. In the 

proposed model is considered terms with integrals instead 

of terms with derivatives. The constants 1k  and 2k  

depends on the geometry. 

In this research, the present higher-order shear 

deformation plate theory is used by setting 


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It should be indicated that contrary to the FSDT, the 

proposed theory does not require shear correction 

coefficient. The kinematic relations can be written as 

follows 
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and 

dz

zdf
zg

)(
)(   (13b) 

The integrals considered in the above relations shall be 

resolved by a Navier type technique and can be written as 

follows: 

where the coefficients 'A  and 'B  are considered according 
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Bdy


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
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to the type of solution utilized, in this case using Navier 

method. Therefore, 'A  and 'B  are written as follows 

2

1
'


A ,  

2

1
'


B , 2

1 k , 2
2 k  (15) 

where   and   are defined in expression (26). 

 

2.3 Governing equations 
 

Principle of virtual work can be used to determine the 

governing equations of the grapheme sheet. By employing 

the principle of virtual displacements (Bouderba et al. 2013, 

Tounsi et al. 2013c, Zidi et al. 2014, Ait Amar Meziane et 

al. 2014, Attia et al. 2015, Taibi et al. 2015, Al-Basyouni et 

al. 2015, Ait Yahia et al. 2015, Mahi et al. 2015, Bouderba 

et al. 2016, Boukhari et al. 2016, Beldjelili et al. 2016, 

Saidi et al. 2016, Bellifa et al. 2016, Bousahla et al. 2016, 

Houari et al. 2016, Zidi et al. 2017), the following 

governing equations can be determined 
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where wk  is Winkler's foundation stiffness and sk  is the 

shearing layer stiffness of the foundation.  

with 
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The stress resultants N , M  and S  are defined by 
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2.4 Nonlocal stress resultants 
 

The analysis is based on the fact that the elastic moduli 

of a graphene sheet in two perpendicular orientations are 

different, so the plate is taken to be anisotropic. In this 

present investigation, we emphasize much on orthotropicity 

of plates because nanoscale plates such as graphene sheets 

are reported to contain orthotropic properties (Reddy et al. 

2006). The calculated elastic constants of the graphene 

sheet are found to conform to orthotropic material response 

(Reddy et al. 2006). 

The nonlocal constitutive equations of an anisotropic 

grapheme sheet can be expressed as 
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where the stiffness coefficients, ijC , can be defined by 
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Here, 1E , 2E  are Young’s modulus, 12G , 23G , 13G  

are shear modulus, and 12 , 21  are Poisson’s ratios. For 

the isotropic plate, these above material properties reduce to, 

EEE  21 , GGGG  132312 ,   2112 . The 

subscripts 1, 2, 3 correspond to x, y, z directions of 

Cartesian coordinate system, respectively. 

By substituting Eq. (12) into Eq. (19) and the 

subsequent results into Eq. (18), the stress resultants are 

obtained as 
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and stiffness components are given as 
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2.5 Governing equations in terms of displacements 
 

The nonlocal governing equations of the present model 

can be given in terms of displacements ( 0w ,  ) by 

substituting stress resultants in Eq. (21) into Eq. (16) as 
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It is observed from Eq. (23) that the in-plane 

displacements ( 0u , 0v ) are uncoupled from the transverse 

displacements ( 0w and  ). Thus, the equations of motion 

for the transverse response of the plate are reduced to Eqs. 

(23(c))- (23(d)). 

We consider the following relations for the present 

compression study 

Here, the term   denotes the compression ratio 

00
xy NN . 

 

 

3. Analytical solutions 
 

A simply supported rectangular orthotropic nanoplate 

with length a and width b is considered here. Based on 

Navier method, the following expansions of generalized 

displacements are chosen to automatically satisfy the 

simply supported boundary conditions 
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where mnW  and mn  are arbitrary coefficients to be 

determined.  

with 

am /   and bn /   (26) 

By substituting equation (25) into equations (23), one 

obtains 
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where    denotes the columns 

   Tmnmn XW ,  (28) 

The elements ijK  of the symmetric matrix  K , for the 

shear deformation plate theories, are given by 
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4. Numerical results 
 

Numerical results of the buckling loads of orthotropic 

SLGSs resting on Pasternak's elastic foundations are 

presented and discussed in this section using the proposed 

theory. Both isotropic and orthotropic material 

characteristics are illustrated in this work. For the stability 

problem, the SLGS is subjected to equal compressive in-

plane loads in the x and y directions ( 1 ). The orthotropic 

material characteristics are considered as (Sobhy 2014b) 
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Many examples have been solved analytically by 

employing the following fixed data (unless otherwise 

stated) 10/ ha , 1/ ab , 1 nm , 100 sw KK . The 

employed non-dimensional quantities are 
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Tables 2 and 3 explain the critical buckling load crN  

of isotropic and orthotropic SLGSs with or without elastic 

foundations for various values of nonlocal parameter   

and the side-to-thickness ratio ha / . The computed results 

are compared with those reported by Sobhy (2014a). It 

should be noted that when 0 , we determine the natural 

frequency as that of nonlocal elasticity model. The critical 

buckling load of the local continuum model is higher than 

that of the nonlocal one. From Tables 2 and 3, one an see 

that excellent agreement exists between the results of this 

method involving only two unknowns and those of the 

sinusoidal shear deformation plate theory (SSDT) of Sobhy 

(2014a). 

Fig. 1 depicts the small-scale effects on the non-

dimensional buckling load for bi-axially compressed small-

scale SLGSs. The results are compared with those 

generated using the SSDT proposed by Sobhy (2014a) and 

this for different values of the thickness ratio ha / . It can 

be seen that the two theories give the same results. 

However, it is noticed that the present theory involves only 

two governing equations, contrary to the SSDT of Sobhy 

(2014a) where three equations are needed. It can also be 

seen that as the nonlocal scale parameter increases the 

buckling load decreases. 
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Fig. 1 A comparison of the non-dimensional buckling 

load for an orthotropic square SLGS ( 100wK  and 

100sK  ) 
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Fig. 2 present the variation of the non-dimensional 

buckling load against the length of the orthotropic SLGS for 

different nonlocal parameter. It can be seen that the 

buckling load parameter increase for all values of nonlocal 

scale parameter by increasing of the length of the SLGS. 

The effect of the elastic foundation parameters on the 

non-dimensional buckling load of orthotropic SLGS vs. the 

length of the SLGS is exhibited in Fig. 3. 

It can be seen that as the length and the elastic foundation p

arameters increase, buckling load increases. Further, it can b

e observed that with the increasing of the length of SLGS, t

he differences among the curves are almost fixed. 

Finally, the non-dimensional buckling load orthotropic 

square SLGS vs. the thickness ratio ha /  are plotted in 

Fig. 4 for different values of mode numbers m and n. From 

this figure, it can be observed that the buckling load 

increases monotonically as the ratio ha /  increases and the 

mode numbers decrease. 
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Fig. 2 Variation of the non-dimensional critical 

buckling load against the length of orthotropic square 

SLGS ( 100wK  and 100sK  ) 
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Fig. 3 Variation of critical buckling load against the 

length of orthotropic square SLGS for various values 

of the elastic foundation stiffness ( 4  ) 
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Fig. 4 Variation of buckling load versus the thickness 

ratio /a h  of orthotropic square SLGS for various 

values of the mode numbers m and n ( 4  , 

100wK  and 100sK  ) 

Table 2 Critical buckling load crN  of isotropic single-layered graphene sheets with or without elastic foundations 

for various values of nonlocal parameter   

  Theory
 ( 0wK , 0sK ) ( 100wK , 100sK ) 

5ha  10  20  30  5ha  10  20  30  

0 
Sobhy (2014a) 4.01159 5.85591 6.66298 6.84003 14.65701 16.50133 17.30840 17.48544 

Present 4.00553 5.85401 6.66249 6.83981 14.65094 16.49943 17.30791 17.48522 

1 
Sobhy (2014a) 0.51232 2.16281 4.66960 5.74924 11.15774 12.80823 15.31502 16.39466 

Present 0.51155 2.16211 4.66925 5.74905 11.15697 12.80753 15.31467 16.39447 

2 
Sobhy (2014a) 0.27363 1.32634 3.59428 4.95850 10.91905 11.97176 14.23970 15.60392 

Present 0.27322 1.32591 3.59402 4.95834 10.91864 11.97133 14.23944 15.60376 

3 
Sobhy (2014a) 0.18667 0.95643 2.92152 4.35898 10.83209 11.60185 13.56694 15.00439 

Present 0.18639 0.95613 2.92130 4.35884 10.83180 11.60154 13.56672 15.00425 

4 
Sobhy (2014a) 0.14165 0.74786 2.46090 3.88879 10.78707 11.39328 13.10631 14.53421 

Present 0.14144 0.74762 2.46071 3.88866 10.78685 11.39304 13.10613 14.53408 
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5. Conclusions  
 

In the present study, buckling response of orthotropic 

SLGS resting on tow parameter elastic foundations is 

investigated using continuum models. The model considers 

the effects of small scale and the parabolic variation of the 

transverse shear strains within the thickness of the SLGS 

and thus, it avoids the use of shear correction factors. The 

main advantage of the proposed novel nonlocal refined 

plate theory over the existing higher-order shear 

deformation theories is that the present ones involve fewer 

variables as well as governing equations. The computational 

cost can therefore be reduced. From the present study 

following conclusions are drawn: 

 The obtained results are very agreement with those 

available in literature. 

 The difference between the results of nonlocal 

elasticity theory and the local one diminishes as 

the ratio ha /  increases. 

 The buckling load is proportional to the elastic 

foundation stiffness and they are inversely 

proportional to the nonlocal scale parameter. 

 Influences of mode numbers, thickness ratio and 

length of SLGS on the buckling load are 

investigated. 

 As the nonlocal parameter (  ) increases, the non-

dimensional buckling load obtained for the 

nonlocal theory become smaller than those for its 

local counterpart. The reduction may be explained 

as follows: the small scale effect makes the SLGS 

more flexible as the nonlocal model may be 

viewed as atoms linked by elastic springs (Boumia 

et al. 2014) while the local continuum model 

assumes the spring constant to take an infinite 

value. 

Finally, an improvement of present work will be 

considered in the future work to take into account the 

thickness stretching effect by using quasi-3D shear 

deformation models (Bessaim et al. 2013, Bousahla et al. 

2014, Belabed et al. 2014, Fekrar et al. 2014, Hebali et al. 

2014, Larbi Chaht et al. 2015, Hamidi et al. 2015, Bourada 

et al. 2015, Bennoun et al. 2016, Draiche et al. 2016, 

Benbakhti et al. 2016, Benahmed et al. 2017, Sekkal et al. 

2017, Bouafia et al. 2017, Benchohra et al. 2018, 

Abualnour et al. 2018). 
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