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1. Introduction 
 

Damage identification of structures from changes in 

their vibrational characteristics is an inverse problem of 

important practical value. Every Structural Health 

Monitoring (SHM) program must necessarily deal with this 

concept. Noteworthy advances have been achieved on this 

topic in the last three decades, both from the theoretical and 

the applied points of view (Dilenaa et al. 2015). 

Among all the various techniques of SHM, vibration 

based monitoring is a major one since vibration 

measurements can be used to detect concealed damages 

which cannot be observed by visual inspection. The basic 

idea of vibration-based health monitoring is the fact that 

damage frequently alters structural features such as stiffness 

and damping which can be revealed from the measured 

vibration responses of the structure (Khoshnoudian and 

Esfandiari 2011, Amezquita-Sanchez and Adeli 2016, 

Kaveh et al. 2016, Khoshnoudian et al. 2017). 

Vibration-based methods inspect changes in the features 

extracted directly from measured data through signal 

processing methods and damage detection algorithms (Qiao 

et al. 2012). Pattern-recognition techniques are combined 

into the signal-based damage detection as an improvement 

for feature extraction, selection, and analysis. Several 

studies have implemented successful experimental 

applications of current procedure for structural damage 

detection (Jiang and Adeli 2007, Qiao et al. 2009). 
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Many dynamic characteristics of the structure could be  

used for damage detection, e.g. natural frequencies, mode-

shapes and their derivative and frequency response 

functions. Comparing natural frequencies and mode-shapes 

it turns out that the mode-shapes perform better 

representing the damage occurrence despite of the fact that 

measurement of modal amplitude are usually affected by 

errors larger than those affecting natural frequencies. Mode-

shape data contains direct information of the structural 

change character, although their capability for damage 

identifying requires the application of identification 

strategies (Dilenaa et al. 2015). Roy and Ray-Chaudhuri 

(2013) interconnected the effect of damage with the change 

in mode-shape, slope of mode-shape, and curvature of 

mode-shape. They used a numerical example to show the 

robustness of this change in mode-shape and its derivatives 

for damage identification. It was concluded that for SHM, 

mode-shapes are much more suitable than natural 

frequencies especially in cases in which different damages 

could similarly influence the natural frequencies, although 

using mode-shapes for damage detection has some 

difficulties and uncertainties (Roy and Ray-Chaudhuri 

2013). 

Modal identification can be time-consuming and the 

curve fitting process adds some inevitable errors. Also lots 

of information may be dismissed by using just mode-

shapes. Thus, the direct use of measured data for damage 

detection (e.g., in the form of Frequency Response 

Functions, FRFs), may represent significant advantages.  

Furthermore, in some cases some of the mode-shapes do not 

sense any notable change when the damage is located close 

to a particular node. The use of FRFs can effectively 

overcome lots of these problems (Maia et al. 2003). 
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Although, there are many other concerns working with FRF 

due to their large size of data especially in structures with 

high number of degrees of freedom. 

Lee and Shin introduced a FRF based damage detection 

technique using spatially incomplete FRFs (Lee and Shin 

2002). Esfandiari et al. developed a new method using 

FRFs and quasi-linear sensitive equations for model 

updating the structures (Esfandiari et al. 2009). Shadan et 

al. developed a method based on a sensitivity-based model 

updating approach which utilizes a pseudo-linear sensitivity 

equation. The experimental setup consists of a free-free 

aluminum beam which was employed to verify the accuracy 

of the developed approach (Shadan et al. 2016). Moreover, 

several researchers studied the structural damage 

identification by means of FRF derivatives such as FRF 

curvature method (Sampaio et al. 1999), FRF differences 

(Trendafilova and Heylen 2003) and PCA-compressed 

residual FRFs (Li et al. 2011). 

In recent decades, beside sensitivity method which try to 

find a reliable straight relation between FRF changes and 

structural damage, there has been an increasing interest in 

using Artificial Intelligence (AI) make a reasonable 

connection between FRF data and damage properties. Based 

on recent investigations, different types of AI methods 

consisting of Artificial Neural Network (ANN), Genetic 

Algorithm (GA) and Support Vector Machine (SVM) are 

applied in damage detection problems (Wang 2015, He et 

al. 2013, Aydin and Kisi 2015). Among various artificial 

intelligent method, the Multi-Layer Perceptron (MLP) ANN 

is the most commonly used algorithm in these problems 

(Hakim and Abdul Razak 2013, Mehrjoo et al. 2008, Osama 

Abdeljaber et al. 2017, Abolbashari et al. 2014). 

A major challenge in utilizing FRF data for SHM with 

the pattern recognition approach is the influence of noise, 

the large size of FRF matrixes and damping issues. The 

direct use of raw FRF data with their large size will 

consequently cause over-fitting during neural network 

training. This contributes to an impractical ANN in terms of 

its training and convergence stability (Zang and Imregun 

2001). Therefore, a linear data compression method named 

Principal Component Analysis (PCA) is used to reduce 

dimensionality of the FRF data for feasible application of 

the ANNs. The PCA technique has been applied by several 

researchers. Dackermann et al. (2010) have surveyed a 

damage detection approach to determine damage in a two-

story frame structure using FRF data as inputs of the ANNs. 

They applied the PCA approach to compress FRF data 

(Dackermann et al. 2010). Dackermann et al. (2011) 

applied ANN and FRF data for health state evaluation of 

timber bridge structures. Also an experimental four-girder 

timber-bridge and 12 different damage scenarios containing 

three different damage severities at four different locations 

was investigated (Dackermann et al. 2011). 

To overcome the effects of highly noise polluted data 

and over-fitting issue in ANN, Dackermann et al. (2013) 

proposed an ANN training approach based on network 

ensemble to respect individual characteristics of different 

measurement locations. They developed their method for 

damage identification of member connections and 

localization of added mass in a two-story frame structure. 

They also concluded that the network ensemble approach is 

efficient in filtering poor results from underperforming 

networks. They considered up to 10% random noise for 

their numerical FRF data, while the damping was 

considered in their study (Dackermann et al. 2013). 

Neural network ensemble is a learning paradigm in 

which many neural networks are jointly used to solve a 

problem (Zhou et al. 2002). Hansen and Salamon 

demonstrated that the generalization ability of machine-

learning such as neural network system can be significantly 

improved through ensembling a number of networks 

(Hansen and Salamon 1990). Recently ensembling has more 

applications in both neural networks and machine learning 

communities. In this method several neural networks have 

been trained individually and then combined their 

predictions. The most principal approaches for ensemble 

networks are plurality or majority voting (Hansen L.K. and 

Salamon 1990), simple averaging (Opitz and Shavlik 1996) 

and weighted averaging (Perrone and Cooper 1993) to 

combine the predictions of each individual system.   

Marwala and Hunt employed two-stage hierarchical 

neural network ensemble to identify damage severity in 

structures. In their proposed method, first, two individual 

networks were trained. The outcomes of the two individual 

networks were then jointly fed into a third ensemble 

network to predict the health condition of a cantilever beam 

(Marwala and Hunt 1999).  

Moreover, Marwala conducted an experimental 

demonstration of a new neural network ensemble approach 

on a cylindrical shells. They fed their generated data 

separately into three neural networks, then combined them 

in an ensemble network. It was found that in contrast to 

many existing methods, the ensemble method identifies the 

damage cases better than any other individual network in 

practical works (Marwala 2000).  

Along with and superior to the ANNs, sparse 

representation (SR) is one of the currently developed 

methods that attracted high attentions in pattern recognition 

and machine learning community (Liu et al. 2011). In 

sparse method, a dictionary is defined as a set of the active 

features. A few active features are expressed a data point 

adequately. Wright et al. (2009) showed that the SR is a 

powerful tool for many pattern recognition tasks, including 

face recognition and object classification (Wright et al. 

2009). The advantages of SR is that the dictionary can be 

over-completed which will allow more flexibility in data 

representation. Huang et al. developed a sparse 

representation recovery method which is invariant to image 

plane transformation to deal with the misalignment and 

pose variation in face reorganization (Huang et al. 2008).  

In scope of SHM, Wang et al. presented a comparison 

between the SR method with Fourier discriminant method. 

These approaches have been contributed to damage 

localization of a bridge laboratory-scale model, where it 

have been simulated the vehicle-structure interaction. The 

results demonstrated that SR method compared to Fourier 

discriminant method allows for higher classification 

accuracy (Wang et al. 2013). Zolfaghari et al. presented a 

couple sparse coding (CSC) based on the simple SR, which 

proposed a two-step approach that models the mapping 
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from 2D human silhouettes to 3D human body pose 

configurations using training samples. It is concluded that 

the couple sparse coding algorithm significantly improves 

representations and has less estimation errors compared to 

simple sparse coding algorithm (Zolfaghari et al. 2014).  

In previous investigations, the frequency range of the 

FRF needed to be selected with regards to the resonance 

and anti-resonance zones of the FRF (Ni et al. 2006, 

Nozarian and Esfandiari 2009, Shadan et al. 2015). This 

selection of the FRF data caused a significant data loss 

which could result in an oversight of damage. In this study, 

instead of specifying frequency range of FRF manually, the 

whole range of the FRF data from the signals can be used 

for sparse coding. Specifically, a dictionary learning process 

is employed to reveal the useful information in the resulting 

sparse representations while redundant information can be 

filtered. Thus, sparse coding with dictionary learning is 

used to feature extraction. To improve the efficiency of the 

SR method for damage identification under uncertainty 

conditions which appear as noise and damping in signal, the 

authors originally explored the general concept of using 

CSC ensemble for damage identification of structures with 

emphasis on noise and damping effects. 

In this paper, a global vibration-based method for SHM 

is presented that uses measured FRFs data compressed by 

PCA and then utilizes CSC ensemble technique to 

investigate the health state of a frame structure. The 

efficiency of the novel developed method by means of CSC 

ensemble of mode shape and FRF in comparison to CSC 

method and also Artificial Neural Networks trained with 

FRF data is demonstrated. 

Many researchers have investigated damage detection 

using changes in damping ratios even though calculation of 

such a parameter is facing with lots of uncertainties 

(Curadelli et al. 2008, Kang et al. 2012, Kuwabara et al. 

2013). One of the most important issues is the fact that 

damping ratio do not only alter with stiffness reduction of 

the members but also are highly dependent on non-

structural members and many other circumstantial 

parameters that have no relation with structural damages.  

In the other hand, in most of the researches which ignore 

structural damping effects, another type of misleading could 

be occurred. Damping tends to diminish the amplitude of 

oscillations in an oscillatory system which is because of the 

fact that the energy dissipates the properties of a material or 

system under cyclic stress (Egba 2012). As the damping 

matrix is dependent on the stiffness matrix, the effects of 

damping change will be observed in vibration responses of 

the structure. When stiffness of the structural members 

reduces because of the environmental effects such as ageing 

decay, corrosion or loosening of connections, the damping 

ratio of the structure may alter. It may cause numerical 

errors with FRF data-set in comparison to real-time 

condition of the structure. 

In this study damping errors are considered as 

environmental uncertainties just like measurement noise. 

Training data are considered to be noise free and with 0% 

damping ratio. Test data are polluted with up to 20% noise 

and up to 5% damping ratio. Robustness of the proposed 

method to both measurement noise and damping alteration 

is investigated by numerical examples. 

In the presented study, a two-story frame structure is 

employed in order to verify the proposed damage 

identification method. Numerical models of the structure 

are subjected to several damage scenarios including single 

and multiple damage scenarios with up to four damaged 

elements. To simulate field-testing conditions, the numerical 

data is polluted with white Gaussian noise up to 20% noise-

to-signal ratio while in the same studies the noise pollution 

is limited to 10% (Bandara et al. 2014, Dackermann et al. 

2013). In order to apply the CSC ensemble technique, two 

individual CSC are employed. Also the first five mode-

shapes of the structure and the FRF data compressed by 

PCA, are considered as inputs of a machine-learning 

training based on network ensemble to eliminate the effects 

of noise and damping in damage detection of the sample 

structure. The superior CSC ensemble functions as a 

screening mechanism that filters unreliable results, obtained 

from the two individual CSCs and delivers optimized 

damage prediction results. 

 

2.1 Features extraction 
 

The Frequency Response Function (FRF) of the 

structure, H(ω), is defined as the following: 

( )
( )

( )

X
H

F







 
(1) 

Where, X (ω) is the system response and F(ω) stands for 

the system excitation function in the frequency-domain . 

For a n-degree of freedom (nDOF) system, the 

frequency response function is a n×n square matrix that 

each of its elements is not an exact number but a function of 

frequency. Each of the FRFs rows represents the 

corresponding excitation DOF and each of its columns 

represents the corresponding measurement DOF. Since the 

frequency response function of the row i and the column j 

represents the measured response of the structure in the j
th

 

DOF while the structure is excited in the i
th

 DOF.  

The full-size FRF contained 20000 spectral lines and 

covered a frequency range of 0–200 Hz in this 

investigation. This large size of input data would cause 

severe difficulties in training convergence along with 

computational inefficiency. So, the PCA is proposed to 

reduce the size of the FRF data set that are appropriate input 

for pattern recognition (Pearson 1901). PCA is a numerical 

technique that linearly converts an original set of k 

variables into a smaller set of n independent variables (n < 

k), called PCs. 

Each PC is a linear combination of the original 

variables. The PCs form an orthogonal basis for the space 

of the data since they are orthogonal to each other. The full 

set of PCs is equal to the original set of variables. By 

removing PCs of low power (corresponding to the lower 

eigenvalues), a dimensional reduction is performed without 

considerably affecting the original data. 

To extract the mode-shapes from raw FRF data of a 

structure Peak Picking (PP) method is employed (Gentile 

and Saisi 2007). The PP method leads to trustworthy 

outcomes as long as the basic assumptions of low damping 

and well-separated mode-shapes are satisfied. 
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As a matter of fact, for a low damping FRFs reach a local 

maximum at the natural frequencies ωn, the spectral matrix can 

be approximated as 

( ) T

n n n nH    
 

(2) 

Where αn is calculated based on the damping ratio, the 

natural frequency, the modal participation factor and the 

excitation spectra. In the present application of the PP 

method, the natural frequencies were identified from 

resonant peaks in the FRFs. 
 

2.2 Couple Sparse Coding (CSC) 
 

In recent years, it was found that methods based on the 

(SR) have attracted many attentions in pattern recognition and 

machine learning community. It is clear that the (SR) is robust 

for representing noisy signals (Wright et al. 2009). 

 

 

2.2.1 Sparse Representation (SR) 
The concept of sparsity means that a set of data point of 

signals could be adequately presented by using only a few 

active features (atoms) without losing information due to the 

fact that a signal could have a low-dimensional space, even 

though it may have a high dimensionality. 

A set of atoms is called the dictionary. In SR, signals have 

been demonstrated in an over-complete dictionary by using a 

few expansion coefficients, named sparse coding. Fitting data 

helps the dictionary to be updated. In order to have better 

understandings of SR theory, the following explanations are 

given: 

 The structure-obtained FRFs are presented as 
mx R  by a linear combination of 

m PD R  which is an 

over-complete dictionary 

 

Fig. 1 The flow-chart of the proposed method 
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1 1 2 2 ... P Px d d d     
 

(3) 

Along with the minimization of 
0

 , where P 

represents the number of atoms, 

α = [α1, α2, ..., αP]
T
 ∈ R

P
  denotes the sparse code of x, 

and 
0

 is the l0 norm, defined as the number of non-zero 

components of α.  

There is no polynomial time solution for the above SR. 

However, recent studies have indicated that α can be 

obtained by the minimization of 
1l  norm instead of 

0l  

norm (Wright et al. 2009). Moreover, 
1l  norm is 

calculated by the summation of the absolute values of all 

entries of the coefficient vector α. This alternative algorithm 

leads to a convex optimization problem which can be 

solved in polynomial time using well-known methods.  

K-SVD, as one of these methods, is a dictionary 

learning algorithm for creating a dictionary for sparse 

representations (Aharon et al. 2006). Orthogonal Matching 

Pursuit (OMP) algorithm is the other applicable method 

which is based on choosing the basis vector from an over-

complete dictionary. The dictionary finds the basis vector to 

fit the given signal (Cai and Wang 2011).  

 

2.2.2 Couple sparse coding formulation 
This section describes the principals of incorporating 

FRF data into sparse coding formulation. This approach is 

based on the following assumptions: 

FRF data obtained from the structure is represented as 
mx R , while the structural damage properties (such as 

location and severity of damage) are represented as 
Py R . 

where X = [x1, x2, ..., xN ] and Y = [y1, y2,..., yN ] are the 

training input set of N FRF data and their corresponding 

damage scenarios, respectively. The problem is to display 

an unknown noise polluted FRF as a sparse linear 

combination of input features (X) by considering the local 

structure of the FRF data features and then retrieving the 

damage scenarios based on the corresponding sparse code. 

The above-mentioned damage detection method uses 

two different dictionaries: the first one is  m N

xD R   

which includes the training input FRF data and the other 

one is 
k N

yD R  which includes the corresponding 

damage scenarios. The proposed optimization problem for 

damage detection of structure under the damage scenario y 

for a noise polluted measured FRF x can be expressed as 

yy D 
 

(4) 

Where α is the sparse code of x that is computed as 

follows 

22

1 22 1 2
ˆminimize( ) : x yx D y D        

 
(5) 

Where 1  and  2  are the regularization parameters, 

and ŷ  is the corresponding damage feature of the FRF 

data having the minimum differences from x. It is important 

to mention that the proposed damage detection algorithm 

avoids under-fitting using multiple training samples as well 

as over-fitting using only the smallest number of training 

data points possible (Wright et al. 2009). The term 
2

2
ˆ

yy D   is based on the fact that neighboring FRF 

inputs are more likely to contain similar damage properties. 

Thus, the sparse vector α should not only reconstruct the 

FRF test input x from the columns of the dictionary Dx 

(FRF data dictionary) with minimum error, but also create 

the corresponding output from dictionary Dy (damage 

scenarios dictionary) having the minimum distance from yˆ. 

 

2.2.3 Dictionary 
Each signal has been characterized as a linear 

combination of the dictionary atoms. Dictionary learning 

updates the dictionary iteratively to reach the objective of 

expanding the given signal sparsely. One of the most 

important advantages of using dictionaries in SR with 

regard to traditional transforms, i.e., Fourier and wavelets, 

is its ability in learning by fitting itself to the given signals. 

Moreover, the other important feature of the dictionary that 

has recently attracted a lot of attention is its over-

completeness. More atoms exist than the signal dimensions 

in the over-complete dictionaries. The completeness of the 

dictionary brings about more flexibility and more 

robustness against noise. Some well-known algorithms are 

k-svd and MOD methods or transformations, such as DCT, 

Bandelet or Contourlet (Rubinstein et al. 2010); however, 

many algorithms use the training data as columns (atoms) to 

have significant performance (Wright et al. 2009). The 

advantage of using the training data as dictionary atoms is 

due to the easy application of the model (i.e., small number 

of the model parameters that leads to less complexity and 

higher speed). 

Two significant matters should be considered in the 

presented approach for damage detection: (1) Dictionary 

size should not be smaller than a certain size because of 

missing feature space information that can prevent 

achieving a reasonable reconstruction. The dictionary 

should be large enough to cover the possible variations. (2) 

Selected dictionary columns, samples, must span the 

activity space and also the number of the similar columns 

must be low. Donoho showed that the training samples 

should build an incoherent dictionary (Donoho 2006).  

Considering these issues, the Random Selection 

Approach has been applied for selecting dictionary atoms in 

the present study. The Random Selection Approach selects 

the dictionary atoms randomly from the entire space. 

 

2.2.4 Optimization 
To describe the learning process of the sparse code, the 

proposed objective function h(α) for estimating the sparse code 

of the unknown input x is presented as follows 

22

1 22 1 2
h( ) x yx D d D         

 
(6) 

Where d is the corresponding mapped damage feature of 

the FRF data with the minimum variance from x. The  
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function h(α) is convex with respect to the sparse code α, 

when the dictionaries Dx and Dy are fixed. Because of being 

convex, the h(α) is not continuously differentiable. As a 

result, the simple gradient-based approaches are difficult to 

apply (Lee et al. 2007). Therefore; in the current study, the 

feature-sign search algorithm (Lee et al. 2007) has been 

employed to solve the optimization problem. This algorithm 

proceeds in a series of feature-sign steps. In each step, the 

analytical solution is calculated αˆ new to the resulting 

unconstrained QP with respect to the current given 

presumption for the active set and the signs. Therefore, the 

solution is updated by the active set and the signs using an 

efficient discrete line search between the current solution 

and αˆ new (Wright et al. 2009). 

 

 

3. Numerical verification 
 

In order to verify the accuracy and robustness of the 

proposed method, a representative finite element model of a 

2D frame structure is considered. The outcomes of the 

trained CSC ensemble are presented by various tables and 

figures. A numerical model of a two-span two-story frame 

structure with 38 elements and 105 DOFs is designed for 

damage identification in this section (Fig. 2). It is notable 

that damage is defined as the stiffness reduction of 

members which is corresponding to the member's moment 

inertia.  

The FRF data is extracted from the structure by means of 

the excitation and measurement degrees of freedom which 

their corresponding points and directions are tabulated in Table 

1. These DOFs are selected horizontally (H) on the columns 

and vertically (V) on the beams. 

It is presumed that the exciter (such as shaker or 

hammer) is able to excite the structure in the frequency 

range of 0 to 200 Hz and the response data can be measured 

completely. Dividing the responses of the structure by the 

employed excitation in the frequency domain determines 

the FRF. 

 

 

Table 1 Corresponding points and directions of excited and 

measured degrees of freedom 

 

 

The frame is supposed to be made of steel and the 

modulus of elasticity, Poisson’s ratio, and density were 

considered as 200 GPa, 0.3 and 7850 kg.m
-3 

respectively.  

In order to simulate measurement errors in an 

experimental set up for FRFs extraction, up to 20% normal 

random noise is added to the extracted FRF data from the 

finite element model of the damaged structure. A sample 

noisy damped FRF with 20% noise and 5% damping ratio is 

illustrated in Fig. 3 and compared with undamped noise free 

FRF. 

A modal damping ratio of 0% to 5% is applied to imitate 

the existing damping in the steel frame. It is noted that training 

data which are used to build the dictionary are established 

using the undamped model because it is assumed that the 

damping of the structure is unknown and can be treated as an 

error. But the test damaged samples are estimated using the 

damped FRFs of the structure and the effects of damping on 

damage detection is investigated. 

In a low-damped structure the stiffness reduction affects 

mainly the natural frequencies, while the amplitude of the free 

vibration response is principally alters by damping. Thus 

damping errors cause difficulties and uncertainties in 

calculating mode-shapes of the structure (Zapico-Valle et al. 

2014). 

This effect can be observed in Fig. 4 which illustrates a 

damped FRF with 1% damping and the first five vibration 

modes along with their corresponding frequencies. 

 

 

 

Fig. 2 Finite element model of the sample frame structure 

Excited DOFs Measured DOFs 

2 H 4 H 

12 V 26 V 

17 H 21 H 

30V 29 V 

36 H 37 H 

6



 

Application of couple sparse coding ensemble on structural damage detection 

 
 

 
 

Since five measurement and five excitation degrees of 

freedom have been selected, 25 sets of FRF data are obtained. 

These data can be derived from the numerical calculation of 

FRF matrix, in which each row corresponds to an excitation 

and each column is referred to as measurement DOF. 

One of the advantages of the proposed method is the fact 

that it doesn’t need frequency ranges to be selected and all the 

measured FRF data can be used for damage identification. Due 

to the large size of input data a dimension reduction technique 

is needed to overcome the calculation limitations.  

Ensemble sparse coding using both FRF data and the first 5 

mode-shapes is utilized due to large errors and 

misidentifications of the sparse method using just FRF data 

especially in the presence of up to five percent damping ratio. 

The first five mode-shapes of the sample structure and their 

corresponding natural frequencies are shown in Fig. 5. 

As discussed previously, for each of damage scenario there 

are 25 sets of FRF each containing response data from 0 to 200 

Hz. Consequently there are 20000 input data points for each 

scenario. Such large numbers of input points can cause severe  

 

 

 

 

problems in training convergence in addition to computational 

inefficiency. Therefore, PCA is desirable in such applications 

to reduce the size. In this study, to compress the FRF data, 

matrices containing the data of FRFs of the structure condition 

in each damage scenario were formed and projected onto their 

PCs. Sample PCs for some of the damage scenarios and their 

sensitivities to noise pollution and damage severity are 

illustrated in Fig. 6. 

A study on the sensitivity of the PCs was undertaken to 

determine the optimal number of PCs that contain sufficient 

data for damage identification. Fig. 7 represents the efficiency 

of PCA method with different PCs in damage detection and 

also highlights the superiority of the ensemble sparse technique 

over the approaches of simply using FRF data for couple 

sparse coding (CSC) and artificial neural networks (ANN). 

The performance is given for the training, validation and 

testing sets in Mean Square Error (MSE), which is defined as 

the difference between the predicted damage and actual 

damage for different damage scenario. 

 

 

Fig. 3 Comparison of a FRF with 20% noise and 5% damping ratio and an undamped noise free FRF 

 

Fig. 4 A Sample FRF with ξ=0% and ξ=1% and showing the first 5 vibration modes 
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Fig. 5 The first five vibration modes along with their corresponding frequencies 

 
(a) 

 
(b) 

 
(c) 

Fig. 6 Sample PCs for (a)different damage severities in element no.3, (b)different damage severities in element no.27 

and (c)a sample scenario polluted by different amount of noise 
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(a) 

 
(b) 

 
(c) 

Fig. 7 Comparison of Mean square error (MSE) of damage detection using the suggested ensemble method with CSC 

and ANN method using just FRFs data (a) FRF dimension reduced to 20 PCs, (b) FRF dimension reduced to 75 PCs 

and(c) FRF dimension reduced to 125 PCs 
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𝑀𝑆𝐸 =
1

𝑛𝑒
∑|𝑝𝑖

𝑎 − 𝑝𝑖
𝑝
|
2

𝑛𝑒

𝑖=1

 (7) 

Where ne is the number of test damage scenarios and 

𝑝𝑖
𝑝
 is developed method perdition of actual damage. MSE 

value close to zero indicates that estimation error is close to 

zero. 
Fig. 7 demonstrates that using 20 PCs leads to better 

results in damage detection especially in presence of noise 

(Fig. 7). Increase in the number of PCs will reduce the 

accuracy of the method and highlights the errors caused by 

noise pollution. Also ensemble sparse coding method using 

both FRF data and the first 5 mode-shapes leads to smaller 

errors and misidentifications compared to the sparse 

representation and a multilayer perceptron artificial neural 

network method. This ANN consists of three hidden layers 

each include 20 neurons. CSC and ANN are both just 

trained with FRF data. The misidentification increases 

significantly in the presence of high level noise pollution. 

Besides, the sensitivity of the proposed ensemble 

method using both FRFs data and the first 5 mode-shapes of 

the sample structure method using 20 PCs (the most 

efficient number of PCs according to the previous study) to 

different amount of noise pollution and damping ratio errors 

which are caused by unwanted and unconsidered damping 

in the structure is shown in the Fig. 8. 

It can be observed that in the worst case scenario with 

20% noise pollution and 5% unconsidered damping ratio, 

the mean square error of the proposed method limits to 

13.45%. It can be concluded that the proposed method is 

more or less insensitive to noise and damping uncertainties 

and can eliminate their effects on damage detection 

considerably. 

 

 
 
 

3.1 Single damage scenarios 
 

After evaluating the main factors affecting the detection 

accuracy, three single damage scenarios were investigated to 

verify the efficiency of this method. Single damage was 

simulated at certain elements to verify whether it could be 

detected by this method accurately. The two-span two-story 

sample structure is employed for this purpose (Fig. 2) and 10% 

white Gaussian noise and also three different levels of damping 

ratios (0%, 3% and 5%) were considered. Thus, three single 

damage cases were illustrated in Fig. 9 to show all the effects 

of noise and damping ratio uncertainties. 

In the first damage scenario, 25% reduction in stiffness was 

introduced to element 3 in the middle of the left column. 

Damage detection result of this scenario is showed in Fig. 9a.  

A high reliable damage locating was achieved. It can be 

demonstrated that uncertainties caused by damping errors leads 

to less than 4% error in severity detection but the damage 

location was predicted without any error. 

The second scenario that is illustrated in Fig. 9b introduced 

50% stiffness reduction in the vicinity of the middle of a beam 

and just like the first scenario both damage location and 

severity are achieved with high reliabilities even in presence of 

5% damping ratio error. The damage severity is predicted to be 

51.96%, 46.75% and 44.56% for damping ratios of 0%, 3% 

and 5% respectively. 

In the third scenario which is illustrated in Fig. 9(c), 40% 

stiffness reduction, was introduced to element 22 which is 

located in the vicinity of the middle fixed support. As shown in 

the figure, results present less precision than the first and 

second scenarios. This lack of accuracy is because of the fact 

that the elements near supports reveal very small response even 

when excited by large loads.  

 

 

Fig. 8 Mean square error (MSE) of damage detection using the suggested ensemble method in presence of different 

amounts of noise and damping 
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3.2 Multiple damage scenarios 
  
In this study, damage scenarios with two, three and four 

elements are investigated and the damage extent was also 

randomly defined for each damaged element within the 

range of 10–60% decrease of structural stiffness, assuming 

5% increment. While the training data are noise free and 

without considering any damping, 10% noise is included in 

test FRF data and the robustness of the method against 

different amount of damping ratio from 0% to 5% is studied. 

In the training phase, different training damage scenarios 

are obtained by introducing in the finite element model with 

stiffness deterioration in the members. Damage is defined 

by reduction of the moment of inertia. After making the 

dictionary, the testing samples with damage extents 

different from the training ones are employed to evaluate 

the damaged member and the damage extent. 

Fig. 10 shows the identification for three different 

scenarios in presence of 10% noise and with different 

damping ratios from 0% to 5%. 

 

 
 
 
 

Although there are a few elements which are detected to be 

damaged by less than 10% stiffness reduction, it can be 

concluded that the identification accuracy of damage location 

and extent is highly acceptable in the first and second scenarios 

and the effect of damping errors are negligible. But in the third 

scenario (Fig. 10(c)) there is a large amount of error in damage 

severity detection especially in element number 1 which can be 

interpreted by the fact that one of the damages is occurred in 

the vicinity of fixed support and due to the reasons discussed in 

the previous section, damage detection errors are expected. 

Although the location of all the damages are predicted 

correctly while damage severities are predicted with up to 25% 

error in some elements. It can be concluded that in the 

scenarios with damages near the fixed supports the damages 

extent cannot be accurately identified for most cases. This is 

attributed to low modal sensitivities of the structure to near 

support damages. 

 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9 damage detection of three sample single case studies in presence of damping (ξ=0 - 5%) and 10% noise (a) 

damage case 1, (b) damage case 2 and (c) damage case 3 
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4. Conclusions 
 

The new damage detection method based on vibration 

characteristics of structures as inputs of Couple Sparse Coding 

(CSC) is proposed in this study. Frequency Response Function 

(FRF) compressed by Principal Component Analysis (PCA) 

and the first five Mode-Shapes were used to train and validate 

the system to develop its ability to identify structural damage. 

The reliability of the damage identification method with regard 

to damage location, damage severity, level of noise and various 

damping ratios was investigated via numerical simulations of a 

two-story frame structure. To take advantage of individual 

characteristic of FRF and mode-shapes, CSC ensemble was 

implemented. Two CSCs were trained and their damage 

predictions were combined in an ensemble system.  

To simulate field-testing conditions and test the robustness 

of the proposed method against noise, white Gaussian noise of 

up to 20% noise-to-signal ratio was added to measured data by 

considering up to 5% damping ratio.  

To detect the damage, the full range of FRF data (0 – 200 

Hz) has been considered, while effects of damping and noise 

are significant on resonance and anti-resonance of FRF data.  

 

 

 

Therefore, CSC ensemble is employed to obtain more 

accuracy in the identification of damage in the structure. 

 

The following conclusions are made: 

(1) By adopting CSC ensemble, trained with FRF and 

mode-shapes, damages location and severity is detectable 

acceptably. It is worth nothing that in the vicinity of fixed 

supports, the location of damage can be detected, while the 

accuracy of the damage severity is reduced remarkably.  

(2) The proposed method is acceptably robust against 

measurement noise and unpredicted damping, however the 

effect of damping ratio error on the results precision is larger in 

comparison to the noise pollution. 

(3) The obtained results demonstrated the superiority of the 

CSC ensemble technique over the other approach which 

employs individual CSC just trained with FRF data-sets. 
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