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1. Introduction 
 

Cables, including stay cables and suspenders, usually 
serve as critical and vulnerable structural components in 
long span cable-supported bridges, such as a cable-stayed 
bridge, suspension bridge, arch bridge, etc. 48% among 
over 30 cable-stayed bridges built between 1970s and 1990s 
in the mainland of China have been reinforced, repaired, or 
even removed, due to cable deterioration. And the cables of 
over 10 cable-stayed bridges built after 1990s need to be 
replaced. In recent years, more than 10 catastrophic 
accidents were caused by the fracture of cables or 
suspenders. Cable force is an important parameter to assess 
the health status of a cable-supported bridge, providing 
basic evidence for condition assessments. Thus, cable force 
monitoring has become an indispensable part of a structural 
health monitoring system for cable-supported bridges.  

At present, there are two practical methods for cable 
force monitoring in the Structural Health Monitoring 
(SHM) system. The first one is recording time-varying real 
time cable force directly by measurement devices, such as 
anchor load cells (Jemielniak 1999), magneto-elastic (EM) 
sensors (Wang et al. 1999), optical fibre Bragg grating 
(OFBG) based smart cables (Li et al. 2011, Li et al. 2009)  
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and so on, which have been installed on cables in some 
newly built bridges. The other is to identify the cable 
frequencies using transverse acceleration. Then, obtain the 
cable forces, utilizing the relationship between cable 
frequencies and cable force. With the development of 
construction technology, cable-supported bridge spans are 
getting increasingly longer, and the number of 
corresponding cables has increased to over two hundred. 
For example, the number of cables for the Suzhou-Nantong 
Yangtze River Bridge (the second longest cable-stayed 
bridge) is up to 272. Obviously, the most accurate, but 
expensive, choice would be to install sensors on all cables 
neglecting spatial correlation and redundancy, resulting in 
investment waste and data analysis difficulty. Reasonably, 
in a practical application, cables should be chosen in a 
representative section for the installation of sensors, and the 
rules for optimal sensor placement should be clarified. 
Cable sensor placement is required to include all possible 
cable specifications to make monitoring data more 
representative and practical. Otherwise, the limited 
information would not meet the requirements of a 
comprehensive safety evaluation for the cables and bridge, 
as a whole. On the other hand, the cables, especially those 
in symmetrical or adjacent positions, seem to have similar 
cable force variations at the same time. Taking the above 
two aspects into consideration, it is possible to optimize the 
sensor layout based on a spatial correlation between the 
cable forces; aiming at effectively obtaining more cable 
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tension information and evaluating the cable group health 

status by limited sensors. 

Sensor placement optimization was firstly studied in the 

field of dynamic control and system identification of 

spacecraft (Udwadia 2010, Lim 2012), and then, applied to 

modal identification and damage detection in structural 

engineering, structural health monitoring, etc. Numerous 

optimal sensor placement methods were proposed based on 

modal testing and parameter identification in the last 

decades. These can be divided into the following four 

categories in terms of performance criteria: (1) minimum 

identification error based approaches, among which the 

effective independence (EI), developed by Kammer (1990), 

Yao et al. (1992), is widely used, tending to maximise the 

determinant of the Fisher information matrix (FIM); (2) 

energy-driven methods, including the kinetic energy method 

(KEM) (Li et al. 2007), eigenvalue vector product (EVP) 

(Doebling 1995) and non-optimal driving point (NODP) 

(Dewolf and Zhao 1999), the most famous KEM placed 

sensors in a position with relatively larger modal strain 

energy, consistent with the position reflecting larger 

structural response; (3) model reduction method, proposed 

by Guyan (1965), achieves the purpose of refining the 

model by retaining the main degrees of freedom and 

removing secondary degrees of freedom. When used in 

optimal point selection, the main degrees of freedom would 

be selected as measuring points through successive 

iteration; (4) modal assurance criterion (MAC), introduced 

by (Allemang and Brown 1982), is also one of the most 

important criterion in optimal sensor placement, and the 

mass-weighted MAC are recommended as a validation 

criterion (Penny et al. 1994). The principle to minimize the 

off diagonal terms of the MAC matrix (Carne and 

Dohrmann 1995), as well as minimize the average of the 

off-diagonal elements and highest value of the MAC matrix 

(Liu et al. 2008) was proposed for optimal sensor position 

selection. Other than the aforementioned approaches, 

certain other optimal methods were proposed based on 

spline function interpolation (Baruh and Choe 1987) and 

observability (Waldraff et al. 1998). Among these optimal 

sensor placement methods, the most commonly used 

criterion would be dynamical property based. To improve 

the performance of sensor placement, optimization 

algorithms, such as genetic algorithm (GA), (Lu et al. 2015, 

Jung et al. 2016), multi-objective genetic algorithm, 

(Nestorovic et al. 2015), as well as simulated annealing 

(SA) algorithm (Tong et al. 2014) are employed to 

determine the sensor positions. Some optimization 

algorithms have also been proposed to improve the 

traditional coding methods in sensor optimization, such as 

distributed monkey algorithm (DMA) (Yi et al. 2015), virus 

monkey algorithm (VMA) (Yi et al. 2015), the nondirective 

movement glowworm swarm optimization (NMGSO) 

algorithm (Zhou et al. 2015). In recent years, methods 

based on spare component analysis (SCA) (Yang and 

Nagarajaiah 2013), sparse representation (SR) and 

compressed sensing (CS) (Yang and Nagarajaiah 2014), 

complexity pursuit (CP) (Yang and Nagarajaiah 2013) has 

also been proposed for output-only modal identification, 

multiple damage identification when the limited sensors can 

not meet the requirement of traditional approaches. 

However, literatures on the use of the spatial correlation of 

mechanical properties for optimal cable force sensor 

placement are currently limited. Even the law of spatial 

correlation between cables could not clearly be described 

for lack of massive monitored cable force datasets.  

In this study, the inherent spatial correlativeness 

between cables, summarized by long-term monitoring cable 

force datasets, were first, introduced, and then, reasonable 

cable force sensor arrangements were optimized by the 

bond energy algorithm. The paper is organized as follows: 

In section 2, different correlation analysis methods 

including the Pearson coefficient, maximal information 

coefficient (MIC) and mutual information (MI), were all 

employed and discussed for detecting the potential 

correlation between cables, selecting the most suitable 

indicator for spatial correlation. The bond energy algorithm, 

sensor classification principle, and optimal point selection 

are mainly introduced in section 3. Moreover, the proposed 

methodology with mutual information is applied to cables 

on the Nanjing No.3 Yangtze River Bridge, and several 

optimal schemes under the corresponding correlation 

threshold verify the effectiveness of the proposed approach. 

Finally, conclusions and suggestions are given in section 4. 

 

 

2. Spatial correlation detection and description 
between cables 

 
Nanjing No.3 Yangtze River Bridge is one of the 

longest cable-stayed bridges in China, comprised of two 

towers and four cable planes. The span of the bridge is 

arranged as 63 m+257 m+648 m+257 m+63 m, as shown as 

Fig. 1. The structural health monitoring system was 

established in 2006, involving several monitoring items 

related to bridge structural safety, such as environmental 

and load conditions (temperature, humidity, wind and 

vehicle loads), global responses (displacement, acceleration 

of bridge deck and tower), and local responses (strain, cable 

forces, support reaction). Particularly, all 168 high-strength 

parallel steel cables of the bridge had anchor load cells 

installed to monitor the real-time tension with a sampling 

frequency of 2 Hz. Thus, the cable force datasets, monitored 

for approximately 5 years, provide a solid basis for 

detecting the hidden spatial correlation in the cable group. 

84 cables on the upriver were selected and discussed in this 

paper, marked as 1~84 from the side span of the north tower 

to the side span of south tower. The 84 investigated cable 

force datasets also show that more than one-third of the 

anchor load cells malfunctioned or were dead after 5 years 

of operation. As far as we know, anchor load cells 

replacement always leads to complicated calibration and 

adjustment, which consumes a large amount of money and 

time. Thus, vibration based cable force identification has 

become the most appreciated choice for administrative 

authority of this bridge because of the mature and reliable 

manufacture, and easy installation and replacement for 

accelerators. Then, a cost-effective cable accelerometer 

replacement scheme becomes a main concern of the bridge  
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authority, especially utilizing the monitored cable force 

datasets and verifying the effectiveness and significance of 

their monitoring management and maintenance.  

 

2.1 Pre-processing of monitored cable forces 
 

The monitored cable force is mainly induced by three 

parts: dead load, environmental loads, and vehicle loads, 

expressed as Eq. (1). 

i e vT T T T    (1) 

where T, Ti, Te, and Tv indicate the monitored cable force, 

dead load induced cable force, environment load induced 

cable force, especially temperature load induced cable 

force, as well as vehicle load induced cable force, 

respectively. 

Due to the complicated random distribution of vehicles 

on the bridge, it is difficult to logically describe the 

association between the monitored cable forces directly. 

Therefore, cable forces caused by dead load and ambient 

factors, mainly by temperature load, was employed for this 

study as the vibration based cable force identification 

method could obtained similar cable force patterns. 

In this study, the B-spline interpolation method (Mehrad 

et al. 2013) based on the data local feature is adopted to 

extract the cable force trend from monitored datasets, where 

the peaks after median filtering are regarded as 

characteristic points of B-spline interpolation. The  

 

 

 

 

interpolating curve was considered as the cable force trend, 

mainly caused by dead load and temperature load, which 

shows a different variation characteristic from vehicle load 

induced cable forces. The representative monitored cable 

force, as well as extracted cable force trend is shown in Fig. 

2. 

Considering the relative stability of data collection and 

transmission of the SHM system since the opening of the 

bridge, the 84 investigated cable forces on the upriver side 

from June 2006 to February 2007 were selected in this 

paper, and the mean value of the cable force trend at each 

half-hour time segment was adopted for subsequent analysis. 

Therefore, a dataset 
  6120 84

1 2 84x x x  X
, with 

6120 data points after removing missing data and erroneous 

data caused by acquisition system, was obtained, where xi 

indicates the monitored ith cable force trend.  

Usually, for the two arbitrary cable force trend datasets 

xi and xj  at different positions, the spatial correlation 

degree Corr(xi, xj) could be conducted by Pearson 

coefficients 

 
 

   

,
,

, ,

i j

i j

i j i j

Cov x x
Corr x x

Var x x Var x x
  (2) 

where Cov(·) and Var(·) indicate the covariance and 

variance computation formulations. 

 

 

Fig. 1 General description of Nanjing No.3 Yangtze River Bridge (Unit: cm) 

 

Fig. 2 Extraction of cable force trend from monitored data (00:00-24:00 June 1, 2006) 

North Tower South Tower

128800
6300 25700 64800 25700 6300

Cable 1 ~ Cable 21 Cable 22 ~ Cable 42 Cable 43 ~ Cable 63 Cable 64 ~ Cable 84
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The complexity of the actual bridge and uncertainty of 

actual loading conditions lead to the fact that correlation 

between monitored cable forces might not be described by a 

simple linear relationship, Corr(xi, xj). The MIC and MI 

were employed to investigate the appreciated dependence 

measure for monitored cable force trend datasets. The 

correlation value is a non-dimensional parameter ranged 

from -1 to 1. The absolute correlation value varies from 0 to 

1, demonstrating that the dependence between two 

parameters varies from weakest to closest. 

 

2.2 Spatial correlation analysis using MIC 
 

The MIC introduction by Reshef et al. in 2011 (Reshef, 

et al. 2011), as a measure of dependency between variables, 

can describe a wide range of association, both functional 

and non-functional, and is called “A correlation for 21st 

century” (Speed 2011). For a set of ordered pairs D, an x-

by-y grid G is produced by parting the x-values of D into x 

bins and y- values into y bins (possible with empty bins). 

DG denotes the probability distribution induced by grid G, 

where the probability refers to the proportion to the number 

of data points falling into each box. I(·) denotes the mutual 

information for every grid and 

( , , ) max ( | )G GI D x y I D 
 represents the maximal value 

for each pair integer (x, y) in a x-by-y grid. MIC is defined 

 

 

 

 as 

*

( )
2

( , , )
( ) max

log min{ , }xy B n

I D x y
MIC D

x y
  (3) 

where threshold B is a function of sample size and is 

recommended as 
0.6B n .  

For the 84 investigated cables, the MIC and Pearson 

correlation matrix can be calculated and illustrated as 

84 84ijMIC


   M
and 84 84ijCorr


   R

. The scatter plot 

of two correlation matrices is shown in Fig. 3, where the red 

line indicates that the MIC equals the Pearson coefficient. It 

can be seen from Fig. 3 that most MIC with the default 

threshold setting B=n
0.6 

were below the red line, indicating 

that most MIC were smaller than the Pearson coefficients 

for investigated cable forces. Moreover, the MIC shows no 

significant advantage over Pearson coefficients in detecting 

deep nonlinear correlation with default settings. 

Take Cable 1 for further investigation. The comparison 

of two coefficients, calculated by Cable 1 with the other 83 

cables, is shown in Fig. 4. The Pearson coefficients and 

MIC had basically the same variation trend and most 

Pearson coefficients were greater than MIC. This further 

demonstrates that MIC does not reflect superiority in 

describing the relationship between monitored cable force 

 

Fig. 3 Comparison between MIC and Pearson coefficients 

 

Fig. 4 Correlation coefficient of Cable 1 with other 83 cables 
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trends with the default setting B=n
0.6

. 

To check why the Pearson coefficient shows higher 

dependence over the MIC, contrary to references 

recommended in other research fields, the following two 

aspects are discussed: (1) the influence of threshold B on 

the MIC; (2) the effect of noise on the MIC. 

The selection of threshold B, relating to meshing 

accuracy, is a comprehensive consideration of the 

calculation accuracy and computational efficiency, and has 

a certain relationship with the length of datasets. To explore 

the influence of threshold B on MIC and choose the 

appreciated B, two independent random variables with 6120 

points, consistent with the sample size of the cable force 

trend in this paper, are adopted. The four symbols in Fig. 5 

represent the MIC values when B=n
0.6

, B=n
0.7

, B=n
0.8

, and 

B=n
0.9

, respectively. As can be seen from Fig. 5, the MIC 

for the two independent variables is less than 0.1 when 

B=n
0.6

; but close to 0.6 when B=n
0.9

. Considering the basic 

principal of the MIC, that a reasonable meshing accuracy B 

should ensure the MIC is close to 0 for two independent 

variables (Reshef et al. 2011), the default selection of B is 

reasonable for a cable force trend with 6120 data length. 

A specific linear relationship with different levels white 

noise is employed to investigate the influence of noise on 

the MIC, and the simulation of noise refers to Law and Li 

(2010) and Ding et al. (2017). The comparison between the 

MIC and Pearson coefficients is shown in Fig. 6. Obviously, 

the MIC and Pearson correlation decreased with the noise 

level increase. However, the MIC shows to be much more 

sensitive to noise, which can undermine the MIC advantage 

in measuring the association between variables. The above 

viewpoint has also been confirmed by Gorne et al. (2015) 

and Simon and Tibshirani (2014) through simulation, which 

emphasised that the MIC has a good statistical effect for 

ideal non-noise or noiseless variables.  

However, for monitored cable force trend datasets, the 

scatter plot of two symmetrical cable forces is shown in Fig. 

7. A clear linear relationship can be observed, meanwhile, 

an obvious characteristic in the distribution of "wide-band' 

can also be obtained. The real operation conditions of a 

certain noise level lead to adverse effects on the MIC. 

Moreover, the MIC fails to measure the correlation in 

monitored cable forces for the investigated bridge in this 

study. 

 

 

 

Fig. 5 MIC of random variables for different B 

 

 

Fig. 6 MIC and Pearson correlation coefficient for 

different noise 

 

 

 

Fig. 7 Characteristic of “Wide-band” of cable tension 

 

 

2.3 Spatial correlation analysis using MI 
 

MI, as a fundamental quantity in information theory, 

was first proposed in 1951 by Shannon (1951) in the field 

of discrete systems. Mutual information, MI (A,B), 

measures the uncertainty reduction of variable A given that 

B has been observed (Tourassi et al. 2001). Therefore, MI is 

considered a natural and general tool for quantifying 

statistical association between pairs of variables. The MI 

between two discrete random variables A and B is defined 

in terms of Shannon entropy as 

( , )
( , ) ( ) ( ) ( , ) ( , ) log 0

( ) ( )

i j

i j

i j i j

p a b
MI A B H A H B H A B p a b

p a p b
    

 
(4) 

where H(·) and P(·) indicates the entropy and probability 

density of variables. The kernel density estimation (Moon et 

al. 1995, Steuer et al. 2002) with high precision and an 

acceptable computational complexity is adopted in this 

paper to investigate the dependence of different cables.  

The Pearson coefficient and MI coefficients of cable 

pairs in upstream is shown in Fig. 8(a). Different from the 

MIC shown in Fig. 3, MI has good performance in detecting  
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potential association for MI coefficients that are generally 

greater than the Pearson coefficient, especially for some 

variables with relative high nonlinearity. For example, a 

strong correlation could not be generated between Cable 22 

and Cable 63 using the scatter plot and Pearson coefficient 

(0.697), as shown in Fig. 8(b), but a relatively high MI 

coefficient 0.877 illustrates the internal association between 

the two cables. In addition, a stronger contrast appears in 

Cable 3 and Cable 83, as shown in Fig. 8(c). There, the 

Pearson coefficient was 0.3007, but MI was 0.7345. 

Compared with the popular MIC and Pearson coefficient, 

MI is considered much more suitable for exploring latent 

relevance between monitored cable force datasets, not only 

for linear, but also non-linear relationships. Therefore, MI 

based on kernel density estimation is adopted in this paper, 

which provides an important prerequisite for subsequent 

sensor placement optimisation. 

In this study, Mij represents the MI between the cable i 

and cable j, the correlation matrix I of investigated cables 

can be expressed as 84 84ijMI


   I
. Then, an equivalent 

correlation matrix 84 84ijD


   D
 can be transformed from 

the correlation matrix I by binary processing. If MIij k , 

1ijD ; otherwise, 0ijD . k indicates the selected 

correlation threshold. 

 

 

3. Optimal sensor placement based on Bond 
Energy Algorithm 

 
3.1 Bond energy algorithm and principal of optimal 

sensor placement 
 

The purpose of the bond energy algorithm (BEA) is to 

identify and explore natural variable groups and clusters 

that occur in complex data arrays (Mccormick and Others, 

1969). BEA seeks to uncover the associations and 

interrelations existing in an array by permuting the rows  

 

 

and columns. As a clustering approach, the BEA starts with 

an equivalent correlation matrix (  
nnijD


D ) and 

transforms D to a cluster association matrix (CA) by 

maximising the measure of effectiveness (ME). The ME for 

an array NMRA   can be expressed as 

   , 1 , 1 1, 1,

1 1

1

2

M N

ij i j i j i j i j

i j

ME A a a a a a   

 

      (5) 

As can be seen from Eq. (5), ME is chiefly affected by 

the concentration of larger values in the array. As most 

elements in the left, right, top, and bottom of equivalent 

correlation matrix D are empty, thus, the constraint 

condition is defined as 

0, 1, ,0 , 1 0j M j i i Na a a a      (6) 

It is remarkable that row and column transform of 

equivalent correlation matrix D is equivalent in bond energy 

algorithm, due to the symmetry of correlation matrix of 

cable group. Thus, only one dimension of D is needed to 

perform such transform, flaw chart of which is illustrated in 

Fig. 9.  

The cluster association matrix (CA) can be obtained by 

BEA, composed of several sub-matrices arranged along the 

diagonal, implying group positions with strong correlation.  

The CA matrix has block division characteristics, for 

only the elements in these sub-matrices are equal to 1 and 

other elements in the matrix are equal to 0. Such block 

division characteristics shed light on exploring potential 

relationships between cables and determining optimal 

sensor placement. Cable positions can be divided into the 

following five categories according to the arrangement of 

the sub-matrix: if there is only one element in a sub-matrix, 

the corresponding positions belong to Type 1; if there is 

only one element in the intersection of two or more sub-

matrices, the corresponding sensor positions belong to Type 

2; if there is more than one element in a sub-matrix, and all  

 
                 (a) Scatter plot with Pearson and MI       (b) Force of Cable 22 and Cable 63 

       (c) Force of Cable 3 and Cable 83 

Fig. 8 Contrast of correlation coefficient between MI and Pearson 

774



 

Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm 

 

 

the elements in matrix do not intersect with other sub-

matrices, the corresponding sensor positions belong to Type  

3; if there is more than one element in the intersection of 

two or more sub-matrices, the corresponding sensor 

positions belong to Type 4; Other sensor position in the 

matrix belong to Type 5.  

Take the CA matrix shown in Fig. 10 as an example. 

Position 1 and 5 belong to Type 1, Type 2, respectively; 

positions 2 and 3 belong to Type 3; positions 8 and 9 belong 

to Type 4; positions 4, 6, 7, and 10 belong to Type 5. The 

optimal sensor placement can be conducted using cable 

position categories following the principle of selecting 

representative sensors. Detailed information for the bond 

energy algorithm and sensor selecting principal can be 

found in the co author’s reference (Lu et al. 2016). 

 

3.2 Optimal sensor placement with threshold k=0.9 
 

 

 

 

 

When applying the spatial correlation analysis and bond 

energy algorithm to the 84 investigated cables on the 

upriver side of the Nanjing No.3 Yangtze River Bridge, the 

equivalent correlation matrix can be obtained by binary 

processing, employing the threshold k=0.9. 50 sub-matrices 

clustered by BEA are distinguished by boxes of different 

colours in Fig. 11, explicitly illustrating the correlation in 

the cable group, whose marshalling sequence determines 

the sensor position classification.  

The 72 potential optimal sensor placements, generated 

from the 84 cable positions, is shown in Table 1. According 

to the principle of selecting representative sensors (Lu et al. 

2016), all the cable positions in Type 1 and Type 2 

categories, the number of which are m1 and m2, respectively, 

are first chosen as optimal monitoring points. If the number 

of cable positions in Type 3 and Type 4 categories are m3 

and m4 (6 and 3 in this study), one position should be  

 

 

 

Input: Equivalent Correlation Matrix (D)

Place and fix one of the columns/rows of D arbitrarily into CA matrix

Pick each of the remaining n-i columns/rows

Put it in the remaining i+1 positions in the CA matrix ro make ME maximal

If i<n

Output: Cluster Association Matrix (CA)

i=1

i=i+1

No

Yes

 

Fig. 9 Flow chart of bond energy algorithm 

 

Fig. 10 Clustering Association matrix scheme (CA) 
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selected as optimal monitoring point from each intersection. 

So the total number of optimal sensor placements from 

these four categories is 1 2 3 4'm m m m m   
 (42 in 

this study). The positions at the Type 5 categories are 

usually correlated with positions at the Type 2 or Type 4 

categories, and such positions are neglected for potential 

optimal sensor positions. Thus, the number of possible 

combinations for optimal sensor positions depends on the 

potential sensor placements within Type 3 and Type 4 

categories. In this study, the number of total combinations 

could be calculated as 
1 1 1 1 1 1 1 1 1

2 2 2 2 4 3 2 2 2

ype4ype3

1536

TT

C C C C C C C C C       

 . 

Moreover, the average correlation degree is employed to 

determine the most reasonable combination among all these 

combinations, which is defined as the sum of correlation 

coefficients (MI in this study) of all potential optimal sensor 

positions 

' '

2
1 1

1

'

m m

ij

i j

I MI
m  

   (7) 

The average correlation degree of each combination is 

shown in Fig. 12. The minimum average correlation degree 

is 0.563 and the corresponding combination, consisting of  

 

 

positions {64,63,50,84,58,55,41,36,10} is selected for 

optimal monitoring positions. The optimal sensor placement 

checking process shows that cable positions 33 and 32 are 

in the same submatrix. Thus, cable position 33 is 

superfluous and eliminated in the final optimisation results. 

The final optimal monitoring positions are demonstrated 

in Fig. 13. It can be seen from Fig. 13 that: (1) the final 

optimal scheme only contains 41 cable force monitoring 

positions, almost half of the investigated cables, which 

greatly reduced the number of sensors and proved the 

effectiveness of the method; (2) symmetrical positions like 

{21,63} and {22,64}, as well as adjacent positions like 

{53,54,55,56} and {82,83,84} are found in intersections in 

the Type 3 category for the potential optimal monitoring 

point, proving that the clustering results based on the spatial 

correlation analysis is consistent with the previous 

empirical experience; (3) the optimal points near the tower 

are more dense, indicating that the cable tension of short 

cables have a large difference from each other, more sensors 

should be installed to get a comprehensive understanding of 

the cable force there. For long cables far away from the 

tower, fewer sensors need to be installed, indicating an 

obvious correlation between long cables; (4) the optimal 

sensor placement was not strictly symmetrical, implying the 

non-stress length differences of cables and non-uniform 

distribution of temperature loads. 

 

Fig. 11 Clustering correlation matrix of cable group when k=0.9 

 

 

Table 1 Classification of cable positions 

Category Cable Position Total 

Type 1 13,14,15,16,17,18,19,20,25,28,29,34,51,52,59,60,62,67,69,70,80,81 22 

Type 2 3,12,23,32,33,39,43,48,65,66,72 11 

Type 3 {5,10},{21,63},{22,64},{49,50},{53,54,55,56},{82,83,84} 6 

Type 4 {36,37},{40,41},{57,58} 3 

Type 5 Other positions 30 
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3.3 Comparison of optimal sensor placement with 
different threshold 

 

When the threshold k=0.85, there are 42 sub-matrices 

arranged along the diagonal in the clustering correlation 

matrix. The classification of 84 cable positions is shown in 

Table 2 and number of combinations for potential 

monitoring points from Type 3 and Type 4 categories is 
1 1 1 1 1 1 1 1 1 1 1

2 4 3 5 2 2 2 2 2 2 2

ype3 ype4

15360

T T

C C C C C C C C C C C         

. A total  

 

 

 

 

 

 

of 32 optimal monitoring positions can be obtained through 

minimising the average correlation degree shown in Fig. 14.  

The optimal sensor placement using the Pearson 

coefficient matrix 
ij n n

Corr


   R
 can also be conducted in 

the same way. Table 3 summarizes the optimal monitoring 

positions using different thresholds and different correlation 

analysis methodology. It can be seen from Table 3 that the 

number of optimal monitoring positions, obtained through 

MI and Pearson coefficients, increased with the correlation 

threshold increase. Moreover, the number of optimal points 

generated by the MI based method is always less than that 

 

Fig. 12 Average correlation degree of potential optimal position combinations 

 

Fig. 13 Optimal sensor placement when k=0.9 

 

Fig. 14 Optimal sensor placement when  k=0.85 

North Tower South Tower

The optimal measuring points

The optimal measuring points

North Tower South Tower
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of the Pearson based method with the same threshold, 

which is inseparable from the fact that the mutual 

information can not only describe the linear, but also 

nonlinear relationship between cable forces. The minimum 

number of optimal monitoring positions settled around 16 in 

both methods when choosing a strong correlation threshold

060.k  , reflecting at a certain extent, that at least 16 cable 

sensors should be installed on the Nanjing Yangtze River 

Bridge to obtain a comprehensive knowledge of cables in 

the upstream. However, the choice of threshold or number 

of optimal sensor positions is also significantly influenced 

by the accuracy, budget, and even the administrative 

authority.  

The comparison of optimal sensor placements making 

use of the MI with threshold k=0.8 and Pearson coefficient 

with threshold k=0.75 is shown in Fig. 15 (with same 

optimal sensor number), revealing a similar regulation that 

points are more intensive among the short cables close to 

the tower, and sparse among long cables. More than 50% of 

optimal sensor positions are arranged on the same cable.  

For optimal sensor placement based on spatial 

correlation, the most important issue is the correlation 

matrix determination. Usually there are two approaches, 

generated from a finite element model or from monitoring 

datasets. The monitoring system provides the actual  

 

 

 

 

 

 

structure response under actual environmental and load 

conditions. The correlation matrix calculated from long-

term monitored cable forces will provide guidelines for the 

same type bridges. 

 

 

4. Conclusions 
 

Reasonable sensor placement is crucial and essential for 

establishing and maintaining a cost-effective structural 

health monitoring system and obtaining the necessary 

structural response data to precisely evaluate the state of the 

bridge. This paper investigates the spatial correlation 

between monitored cable forces and employs the bond 

energy algorithm to conduct optimal sensor placement 

using a correlation matrix. The following conclusions are 

obtained:  

 The Pearson correlation coefficient, MIC, and MI 

are employed to investigate the deep spatial correlation 

in the monitored cable forces. In addition, the MI shows 

certain superiority over the other two measures, and 

explores the linear and nonlinear spatial correlation in 

cable forces, which provides a solid basis for reasonable 

sensor placement optimisation. 

MI-based method

Pearson-based method

North Tower South Tower

 

Fig. 15 Optimal sensor placement for two spatial correlation analysis methods 

Table 2 Classification of cable positions 

Category Cable Position Total 

Type 1 16,18,19,25,28,29,47,59,60,62,67,69,70,72,80,81 16 

Type 2 3,14,44,46,48,54,56,65 8 

Type 3 {15,17},{26,27,57,58},{82,83,84} 3 

Type 4 {7,8,9,11,12},{22,63},{30,31},{33,37},{39,40},{41,42},{49,50},{61,66} 8 

Type 5 Other positions 32 

Table 3 Number of optimal monitoring positions 

Threshold 0.9 0.85 0.8 0.75 0.7 0.65 0.6 

Mutual information 41 32 26 22 16 15 13 

Pearson coefficient 48 35 30 26 22 18 17 
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 Several schemes of sensor arrangement with 

different thresholds, using the BEA algorithm, were 

discussed. The number of optimal sensors calculated by 

the MI-based method is less than that of the Pearson-

based method under the same threshold. Further, the 

optimal sensor points are more intensive among the 

short cables, while sparse among long cables 

In practice, the optimal cable force monitoring points 

are often difficult to determine or justly determined by 

virtue of experience. The presented approach incorporates 

monitored cable forces that will lead to a better 

understanding of spatial correlation between cables and 

reasonable sensor monitoring locations, which will shed 

light on the safety assessment and decision making process 

in the future. 

It should be noted that dead load and temperature load 

induced cable force has been employed in the proposed 

optimal sensor placement method, while vehicle load, 

playing a significant role in cable force variation, has not 

been considered for inherent complicated relevance. 

Optimal sensor placement utilizing vehicle load induced 

cable force would be discussed in the near future. 
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