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1. Introduction 
 

After four decades of development, structural control 

has evolved from a concept (Yao 1972) to a technique with 

systematic design methods and abundant practical 

applications (Spencer and Nagarajaiah 2003). Many smart 

energy dissipation devices have been developed and applied 

in structural control systems due to their distinctive 

adjustable or controllable behaviors. These behaviors, often 

exhibiting highly nonlinear hysteresis, are tuned in real-time 

by following a control design to generate time-varying 

physical inputs (e.g., electric current) in response to random 

loading conditions. However, to achieve the desirable 

control performance with such a nonlinear device, an 

accurate model describing its nonlinear controllable 

behavior is essential. This study presents a real-time 

nonlinear model updating study on one type of such smart 

devices—magnetorheological fluid damper (“MR damper” 

in short), which provides an accurate mathematical model  
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for the MR damper, and the real-time computation 

environment enables the online estimation of model 

parameters as feedback for potential nonlinear control 

design. 

As one of the widely studied control devices, the MR 

damper has shown great promise for seismic protection 

(Dyke et al. 1998). Like many other energy dissipative 

devices, the MR damper (A in Fig. 1) exhibits strong 

nonlinear behavior. The MR fluid filled in the damper 

reacts to the surrounding magnetic field by transforming its 

fluid form with relatively low viscosity to a quasi-solid as 

the field strength increases. The varying magnetic field is 

often realized by changing the command voltage signal sent 

to the power supply unit (PSU) of the damping system (B in 

Fig. 1). To design a reliable control law to accomplish this 

change, an accurate mathematical model for understanding 

and predicting the controllable damping force of the MR 

damper under a wide range of inputs, for both motion and 

command voltage, is necessary. 

Many existing MR damper models have been developed 

over the years. The commonly used phenomenological 

model for MR devices is based on the Bouc-Wen model, 

and was introduced in (Spencer et al. 1997). Other models 

include the Bingham visco-plastic model (Stanway et al. 

1987), nonlinear hysteretic biviscous model (Wereley and 

Pang 1998), hyperbolic tangent model (Gavin 2001, Bass 

and Christenson 2007), modified Bouc-Wen model (Lin et 

al. 2005), viscous plus Dahl model (Rodriguez et al. 2009),  
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Abstract.  Magnetorheological (MR) damper is a type of controllable device widely used in vibration mitigation. This device 

is highly nonlinear, and exhibits strongly hysteretic behavior that is dependent on both the motion imposed on the device and the 

strength of the surrounding electromagnetic field. An accurate model for understanding and predicting the nonlinear damping 

force of the MR damper is crucial for its control applications. The MR damper models are often identified off-line by conducting 

regression analysis using data collected under constant voltage. In this study, a MR damper model is integrated with a model for 

the power supply unit (PSU) to consider the dynamic behavior of the PSU, and then a real-time nonlinear model updating 

technique is proposed to accurately identify this integrated MR damper model with the efficiency that cannot be offered by off-

line methods. The unscented Kalman filter is implemented as the updating algorithm on a cyber-physical model updating 

platform. Using this platform, the experimental study is conducted to identify MR damper models in real-time, under in-service 

conditions with time-varying current levels. For comparison purposes, both off-line and real-time updating methods are applied 

in the experimental study. The results demonstrate that all the updated models can provide good identification accuracy, but the 

error comparison shows the real-time updated models yield smaller relative errors than the off-line updated model. In addition, 

the real-time state estimates obtained during the model updating can be used as feedback for potential nonlinear control design 

for MR dampers. 
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and algebraic model (Choi et al. 2001, Song et al. 2005, 

Ruangrassamee et al. 2006). In (Jiang and Christenson 

2011), a study was conducted to compare several MR 

damper models‟ stability, convergence, computational time 

and response prediction in real-time hybrid tests using a 

large-scale 200 KN MR damper. Typically, these models 

are calibrated at constant current levels. Then a regression 

analysis is applied on the calibrated modeling parameters 

with respect to the corresponding current levels to 

characterize the tuning effects from current to the damper 

force. In such a characterization process, a significant 

amount of data sets, covering a wide range of inputs, need 

to be analyzed off-line, posing a large computational 

demand. In addition, the dynamics of the PSU, which is an 

integrated component in the MR damping system, is often 

ignored in this characterization process. 

This study proposes the use of real-time model updating 

method for the identification of MR damper as an integrated 

system, under in-service conditions with random inputs for 

both motion and command voltage. One of the existing MR 

damper models, the phenomenological Bouc-Wen model 

developed in (Spencer et al. 1997) is combined with a 

dynamic model of the PSU as the integrated system model 

to be identified in this study. The proposed real-time model 

updating method is based on the unscented Kalman filter 

(UKF), and is implemented on a cyber-physical platform to 

conduct the experimental study in real-time computation 

environment. The experimental study presented in this 

paper aims to demonstrate the capability of the proposed 

model updating method in accurately identifying a complex 

nonlinear model for the integrated MR damper system, but 

more importantly, doing so in real-time under in-service 

conditions with time-varying inputs for both motion and 

command voltage. The electric current applied during the 

experimental study includes band-limited white noise 

(BLWN) and random varying signals from clipped-optimal 

control developed in (Dyke et al. 1996), mimicking the 

working condition of a semi-actively controlled MR damper 

in the field. To the best of the author‟s knowledge, this is 

the first time that the identification of MR damper model is 

completed under in-service conditions with non-constant 

current levels. The advantage of the presented nonlinear 

real-time updating can be seen in these aspects: i) providing 

an accurate nonlinear dynamic model for the complex MR 

damper behavior in an efficient online manner, reducing the 

computing time from hours to a few seconds; ii) the real-

time state estimates obtained under in-service condition can  

 

 

be used as feedback for future nonlinear control design; and 

iii) the integration of the damper and the PSU enables a 

direct dynamic model from the motion and command 

voltage inputs to damping force output, and eliminates the 

need of current measurement in the identification and even 

control process. These features can enable more robust 

control design for MR damper in the field. For instance, the 

requirement of current sensors may be accompanied with a 

higher chance of failure, noise contamination, and 

additional cost. 

The paper is organized as follows: First, the integrated 

MR damper model is introduced in section 2, which 

contains both the phenomenological Bouc-Wen model and 

a PSU model. Then, the real-time model updating platform 

is presented in section 3, including both the UKF technique 

and the real-time updating experimental platform. In the 

“Experimental Study” section, the real-time updating results 

obtained under in-service condition (random inputs and 

clipped-optimal control inputs) are compared with the ones 

obtained using conventional off-line identification 

approach. A summary of the results and observations are 

presented in the end. 

 

 

2. Integrated MR damper model 
 

The integrated MR damper model (see Fig. 1) describes 

the damping force (the output) under the varying motion 

and command voltage (the inputs) is introduced herein. It 

contains two components: i) MR damper model (A in Fig. 

1) and ii) PSU model (B in Fig. 1). They are introduced in 

details in the following sections. 

 

2.1 Modeling for MR damper 
 

MR damper harnesses the behavior of the magneto-

rheological (MR) fluid, a type of controllable fluid with the 

ability to reversibly change from a free-flowing, linear, 

viscous fluid to a semi-solid when exposed to a magnetic 

field (Dyke 1996). The MR damper used in study consists 

of a fixed orifice monotube filled with magneto-rheological 

fluid as shown in Fig. 2. The main cylinder houses the 

piston, the magnetic circuit, an accumulator and MR fluid. 

The MR fluid is a proprietary formulation developed by the 

Lord Corporation, which has a very low plastic viscosity, 

and the particle separation and settling do not present any 

problem. In addition, the monotube chamber has an  

 

Fig. 1  General block diagram of the integrated MR damping system 
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accumulator containing high-pressure nitrogen gas (300 

psi). The accumulator serves as a volume compensator due 

to the change in volume available to the fluid caused by: i) 

the piston rod enters the monotube; and ii) thermal 

expansion of the MR fluid. 

As mentioned in the “Introduction”, many MR damper 

models have been developed and successfully applied in the 

structural control community. This study selects one of the 

most widely used MR damper models, the 

phenomenological Bouc-Wen model developed in (Spencer 

et al. 1997), as the MR damper model (A in Fig. 1). 

In this model (shown in Fig. 3), the accumulator 

stiffness is represented by   , the viscous damping 

observed at larger velocities is related to dashpot,   . 

Another dashpot, represented by   , is included in the 

model to produce the force roll-off at lower velocities. 

Spring    is applied to control the overall stiffness, and    

is the initial damper force due to the accumulator. 

According to Fig. 3, the forces on either side of the rigid bar 

are equivalent. Therefore the following equation can be 

derived 

 

 

 

 
 

�̇� =
1

(  +   )
[𝛼𝑧 +   �̇� +   (𝑥 − 𝑦)] (1) 

Where 𝑥 and �̇� are the motion inputs, in displacement 

and velocity, on the damper piston, and variables 𝑦 and 𝑧 

are internal state variables. The Bouc-Wen equation governs 

the state 𝑧 

�̇� = (�̇� − �̇�) − 𝛽|�̇� − �̇�|𝑧|𝑧|𝑛; − 𝛾(�̇� − �̇�)|𝑧|𝑛 (2) 

The output damping force is given as 

 =   �̇� +   𝑥 +    (3) 

This model has 9 parameters (𝛼, 𝛽, 𝛾, 𝑛,   ,   ,   ,   , 

  ) and 2 state variables (𝑦, 𝑧). Notice from the Bouc-Wen 

Eq. (2) that the parameter 𝐴 in the original publication is 

normalized to 1 to avoid non-unique model parameter sets 

(Song 2011). Based on the results obtained in the offline 

identification study shown later (section 4.3), the value of 

parameter    is close to zero, and therefore it is kept as 

zero in the real-time updating study. In addition, as a semi-

active device, MR damper is not expected to inject energy 

into the controlled system. This energy related feature can 

  
(a) (b) 

Fig. 2 Schematic (a) and actual picture and (b) of tested MR damper 

 

Fig. 3 Schematic of phenomenological MR damper model 
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be guaranteed in the modeling of MR damper by 

reinforcing passivity conditions. In this study, relationship 

𝛽 = 𝛾 is reinforced during the identification process, which 

leads to the bounded input bounded output (BIBO) property 

for the phenomenological Bouc-Wen model and 

subsequently the passivity condition (Ikhouane and 

Rodellar 2007). The units for the parameters are 𝛼 (lbf/in), 

𝛽  (in
-n

), 𝛾  (in
-n

),    (lbfs/in),    (lbfs/in),    (lbf/in), 

   (lbf). 

 
2.2 Modeling for power supply unit 
 

A full-fledged MR damper system requires a companion 

power supply unit (PSU). In this study, a LORD Wonder 

Box
®
 device serves as PSU to generate the electric current 

to the MR damper based on the command voltage input. 

This device offers both manual and external voltage control 

modes. For the experiment study conducted in this paper, 

only external voltage control is used. A photo of the Wonder 

Box is shown in Fig. 4. 

As mentioned in the “Introduction”, the behavior of MR 

damper depends on the strength of the surrounding 

electromagnetic field, which is in turn determined by the flow 

of the electric current generated by PSU under command 

voltage input. In structural control applications, when the 

current desired by the controller is constant or slowly varying, 

the dynamic effect of the PSU is not significant, then the 

desired current can be obtained by converting directly using a 

proportionate command voltage with a premeasured static 

gain. 

 
 

 

Fig. 4 LORD Wonder Box
®
 power supply unit 

 
 

 

Fig. 5 RL circuit diagram 

 

However, if the desired current levels varies significantly in 

time, which is often the case given the random nature of the 

possible inputs (e.g., earthquake, wind) to the structure, a 

dynamic model (B in Fig. 1) of the PSU is necessary to 

determine the command voltage signal. 

In (Yang 2001), a dynamic model depicts the MR 

damper electromagnetic circuit for a large-scale 200 KN 

MR damper was proposed using constant resistance and 

inductance parameters. Later, Jiang and Christenson (Jiang 

and Christenson 2012) further improved this model by 

considering a time-varying inductance due to the strong 

self-induction effects caused by the large electromagnetic 

coil in the same 200KN MR damper. In this study, because 

the MR damper (see Fig. 2) has a much smaller coil 

comparing to the previous 200KN one, the self-induction 

caused inductance variation is negligible. A resistor-

inductor (RL) circuit model (see Fig. 5) with constant 

resistance and inductance is applied as the PSU model to 

describe the dynamic relationship between the command 

voltage and the generated current. As will be shown later, 

the model fits the experimental results very well. The PSU 

model can be expressed as 

𝐼̇ = −
𝑅

𝐿
𝐼 +

1

𝐿
𝑈 (4) 

where 𝐼 is the output current and 𝑈 is the input command 

voltage; 𝑅 and 𝐿 indicate the resistance and inductance of 

the closed-loop circuit of the MR damping system. 

 

2.3 Integrated model for MR damping system 
 
An integrated model of the entire MR damping system 

is constructed by i) MR damper model (Eqs. (1)-(3)); ii) 

PSU model (Eq. (4)); and, iii) relationship between the 

model parameters and the electric current. The last 

component, the relationship between the model parameters 

and the electric current, reflects the change in the behavior 

of the MR fluid in response to the strength of the 

surrounding magnetic field. In this study, based on the 

findings in the off-line identification study shown later 

(section 4.3), linear equations are adopted herein to describe 

the relationships between the modeling parameters (𝛼,   , 

  ) and the current (𝐼). These linear equations are expressed 

as  

𝛼(𝐼) = 𝛼𝑎 + 𝛼𝑏𝐼 (5) 

 

  (𝐼) =   𝑎 +   𝑏𝐼 (6) 

 

  (𝐼) =   𝑎 +   𝑏𝐼 (7) 

Based on Eqs. (1)-(7) the dynamic model of the 

integrated MR damping system is described by the 

following nonlinear state space equations 

 
 
 
 
 

current output

external 

power supply
command 

voltage input
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with the output equation for the damping force given as 

𝑦 =  =   �̇� +   = (𝑥  + 𝑥  𝑥3)�̇� + 𝑥 5 (9) 

The above state space equations show that the integrated 

MR damping system can be described by the state vector 𝐱. 

This vector contains a total of 15 state variables, including 3 

state variables (𝑦, 𝑧, and 𝐼) augmented with 12 modeling 

parameters to facilitate the real-time model updating. This 

model can fully characterize the integrated MR damping 

system shown in Fig. 1. The inputs to the system are the 

motion (displacement— 𝑥  and velocity— �̇� ) and the 

command voltage 𝑈 . The output of the system is the 

damping force  . 

 

 

3. Real-time nonlinear model updating platform 
 

A nonlinear real-time model updating platform is 

presented in this section. It contains both cyber and physical 

components. The cyber components are the real-time 

updating algorithm and the real-time computation 

environment applied in the study, and the physical 

components are the hardware that enables the 

implementation of the cyber components and the interface 

to the MR damping system. Details of the cyber and 

physical components of the platform are described as 

follows. 

 
3.1 Unscented Kalman Filter (UKF) 
 

In recent years, many techniques have been developed 

towards the goal  of  nonlinear  hysteret ic  model 

identification, including off-line techniques (Song et al. 

2009, Song 2011, Song et al. 2013); the least squares 

estimation (LSE) (Smyth et al. 1999, Lin et al. 2001); the 

extended Kalman filter (EKF) (Yun and Shinozuka 1980, 

Hoshiya and Saito 1984, Ghanem and Shinozuka 1995a, 

1995b, Yang et al. 2006, Song and Dyke 2010); the 

unscented Kalman filter (UKF) (Wu and Smyth 2007, 

Chatzi and Smyth 2008, Wu and Smyth 2008, Chatzi et al. 

2010, Song and Dyke 2010); and particle filter (PF, also 

known as sequential Monte Carlo methods) (Van der Merwe 

and Wan 2003, Chatzi and Smyth 2008). Among them,  

 

UKF has demonstrated great potential for real-time model 

updating. The UKF was first proposed by Julier and 

Uhlmann (Julier et al. 1995) and further improved in (Julier 

2002). Comparing to EKF, UKF does not require to 

evaluate Jacobian and Hessian matrices, and has superior 

accuracy to EKF in approximating the statistics of highly 

nonlinear systems (Wu and Smyth 2007); furthermore, UKF 

has the advantage over PF by demanding a much smaller 

number of sampling points, which provides the necessary 

computational efficiency for possible real-time applications 

(Chatzi and Smyth 2008). 

Recently, there have been a few UKF applications in 

off-line estimation of the parameters of nonlinear hysteretic 

systems (Wu and Smyth 2007, Chatzi and Smyth 2008, Wu 

and Smyth 2008, Chatzi et al. 2010). Song and Dyke (Song 

and Dyke 2014) have successfully applied UKF to update a 

nonlinear hysteretic model for a steel mode building 

subjected to earthquake excitation in real-time. Later, UKF 

has also been applied in updating nonlinear structural 

components in hybrid simulation (Hashemi et al. 2014, Wu 

and Wang 2014, Shao et al. 2016, Ou et al. 2017). Because 

of its capability and the computational efficiency in 

nonlinear system estimation, UKF is chosen for conducting 

the MR damper real-time updating study in this paper. The 

algorithm is briefly reviewed herein. Consider a general 

nonlinear dynamical system to be updated 

�̇� = 𝐅[𝑡, 𝐱(𝑡), 𝐮(𝑡), 𝐰(𝑡)] (10) 

with the measurement equation at 𝑡 =  ⋅ ∆𝑡 given as 

𝐲𝑘 = 𝐡(𝐱𝑘, 𝐮𝑘 , 𝐯𝑘) (11) 

where 𝐅  and 𝐡  are nonlinear functions; ∆𝑡  is the 

sampling period; 𝐱𝑘  and 𝐮𝑘  are the state vector 𝐱 and 

the measurable system input 𝐮  evaluated at time 

𝑡 =  ⋅ ∆𝑡; 𝐲𝑘 is the system output at time 𝑡 =  ⋅ ∆𝑡; 𝐰 

and 𝐯 are the process and measurement noise vectors, 

which are assumed to be zero mean multivariate Gaussian 

noises with covariance 𝐐𝑘  and 𝐑𝑘  at 𝑡 =  ⋅ ∆𝑡 , 

respectively. 

To implement the UKF, Eq. (10) is converted into 

discrete time form with the following difference equation 

𝐱𝑘: = 𝐟( , 𝐱𝑘, 𝐮𝑘 , 𝐰𝑘) (12) 

�̇� =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
�̇� 
�̇�2
�̇�3
�̇�4
�̇�5
�̇�6
�̇�7
�̇�8
�̇�9
�̇�  
�̇�  
�̇� 2
�̇� 3
�̇� 4
�̇� 5]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�̇�
�̇�
𝐼̇

�̇�𝑎
�̇�𝑏

�̇�(= �̇�)
�̇�
 ̇ 𝑎
 ̇ 𝑏
 ̇ 𝑎
 ̇ 𝑏
𝑅
𝐿
 ̇ 
 ̇ ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

(𝑥8 + 𝑥9𝑥3 + 𝑥  + 𝑥  𝑥3)
[(𝑥4 + 𝑥5𝑥3)𝑥2 + (𝑥8 + 𝑥9𝑥3)�̇� + 𝑥 4(𝑥 − 𝑥 )]

(�̇� − �̇� ) − 𝑥6|�̇� − �̇� |𝑥2|𝑥2|
𝑥7; − 𝑥6(�̇� − �̇� )|𝑥2|

𝑥7

−
𝑥 2
𝑥 3

𝑥3 +
1

𝑥 3
𝑈

0
0
0
0
0
0
0
0
0
0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (8) 
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where function 𝐟 is obtained by 

𝐟( , 𝐱𝑘 , 𝐮𝑘 , 𝐰𝑘)  = 𝐱𝑘 +∫ 𝐅[𝑡, 𝐱(𝑡), 𝐮(𝑡),𝐰(𝑡)]
(𝑘: )∆𝑡

𝑘∆𝑡

⋅ d𝑡 (13) 

and the integral in Eq. (13) can be evaluated using any 

suitable time stepping method. However, in the case of real-

time computing, an explicit form such as a fourth order 

Runge-Kutta method is more favorable to avoid the need 

for iteration in solving the nonlinear equations.  

As shown in the flowchart (see Fig. 6), the UKF 

algorithm has a recursive formulation which contains the 

following essential steps 

1.  Sigma Points Generation: Based on the state 

estimate (�̂�𝑘 ) and covariance (𝐏𝑘|𝑘 ) obtained in the 

previous step (=  ), a set of 2𝐿 + 1 sampling points 

�̃�𝑘
𝐚 , namely sigma points, are generated, where 𝐿 is the 

dimension of the state vector 𝐱. 

2.  Prediction: The generated sigma points propagate 

through the nonlinear functions 𝐟  and 𝐡 , and the 

corresponding sampled mean and variance are used to 

calculate the predicted state estimate ( �̂�𝑘: |𝑘 ) and 

estimate covariance (𝐏𝑘: |𝑘).  

3.  Kalman Gain: Based on the estimated covariance 

𝐏�̃��̃� and 𝐏�̃��̃�, the optimal Kalman gain can be obtained 

as 𝐊𝑘: . 

 

 

4.  Update: The predicted state estimate (�̂�𝑘: |𝑘) and 

estimate covariance (𝐏𝑘: |𝑘) are updated using Kalman 

gain to obtained the updated state estimate (�̂�𝑘: |𝑘: ) 

and estimate covariance (𝐏𝑘: |𝑘: ), and then proceed to 

the next time step. 

It can be shown that UKF is accurate to the third order 

for any nonlinear function 𝐟 , if the distribution of the 

original random variable 𝐱 is Gaussian. For non-Gaussian 

𝐱, the approximations are accurate to at least the second 

order, with the accuracy of third and higher order depending 

on the parameter setting of UKF. 

 

3.2 Real-time computation environment 
 

The real-time computation environment is an essential 

component supporting this model updating study. It 

contains i) real-time operating system (RTOS) and ii) 

algorithm development environment (ADE). RTOS is 

responsible for managing hardware resources, prioritizing 

tasks and scheduling task executions. ADE provides 

necessary software support to implement the model 

updating algorithm—UKF for the real-time execution. In 

this study, the xPC Target™ and the Simulink Real-Time™ 

(MATHWORKS 2016) are used to provide the required 

real-time computation environment:  

 

 

Fig. 6 Flowchart of Unscented Kalman Filter (UKF) 

 =  + 1

Sigma Points Generation:

Initial Values

�̂� , 𝐏 | 

�̂�𝑘
𝐚 =  𝐱𝑘

𝐚 = �̂�𝑘
 0 0  

𝐏𝑘|𝑘
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𝐏𝑘|𝑘 0 0
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𝐚 �̂�𝑘
𝐚 + 𝐿 +  𝐏𝑘|𝑘

𝐚

 

�̂�𝑘
𝐚 − 𝐿 +  𝐏𝑘|𝑘

𝐚

 

Prediction:

�̃� ,𝑘: |𝑘
𝐱  = 𝐟  , �̃� ,𝑘

𝐱 , 𝐮𝑘 , �̃�𝑘
𝐰

�̂�𝑘: |𝑘 =   
 

2 

 < 

�̃� ,𝑘: |𝑘
𝐱

Update:

𝐏𝑘: |𝑘 =   
 

2 

 < 

�̃� ,𝑘: |𝑘
𝐱 − �̂�𝑘: |𝑘

⋅ �̃� ,𝑘: |𝑘
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�̃� ,𝑘: |𝑘 = 𝐡 �̃� ,𝑘: |𝑘
𝐱 , 𝐮𝑘: , �̃�𝑘

𝐯

�̂�𝑘: |𝑘 =   
 

2 

 < 

�̃� ,𝑘: |𝑘

𝐏�̃��̃� =   
 

2 

 < 

�̃� ,𝑘: |𝑘 − �̂�𝑘: |𝑘

⋅ �̃� ,𝑘: |𝑘 − �̂�𝑘: |𝑘
 

𝐏�̃��̃� =   
 

2 

 < 

�̃� ,𝑘: |𝑘
𝐱 − �̂�𝑘: |𝑘

⋅ �̃� ,𝑘: |𝑘 − �̂�𝑘: |𝑘
 

𝐊𝑘: = 𝐏�̃��̃�𝐏�̃��̃�
; 

Kalman Gain: 

�̂�𝑘: |𝑘: = �̂�𝑘: |𝑘 + 𝐊𝑘: �̃�𝑘: 

𝐏𝑘: |𝑘: = 𝐏𝑘: |𝑘 − 𝐊𝑘: 𝐏�̃��̃�𝐊𝑘: 
 

 = 𝛼2 𝐿 +  − 𝐿

  
 =  𝐿 +   

  
 =   

 + 1 − 𝛼2 + 𝛽

  
 =   

 = 1 2 𝐿 +   

Constants:
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 Simulink Real-Time™ serves as the ADE. The 

UKF algorithm for MR damper updating is 

implemented in Simulink model as a custom function 

block using the Simulink Real-Time™. This process 

takes place in a “host PC”—a regular laptop that is 

operated under Windows
®
 environment (see “Host PC” 

in Fig. 7). Several custom block options are available in 

Simulink Real-Time™ for this implementation. The one 

is adopted in this study is the “S-function block” created 

using C code because of its flexibility in implementing 

diverse functionalities and a wide range of supporting 

APIs. Once implemented, the Simulink model is 

compiled and downloaded to the Target PC. 

 xPC Target™ serves as the RTOS. The compiled 

Simulink model is called “target model”, and is 

downloaded to a target PC operated under “xPC 

Target™” (see “Target PC” in Fig. 7) for real-time 

execution. The xPC Target™ coordinates all the 

computation and connected hardware, and guarantees 

the precise timing in real-time task execution. In this 

study, a Speedgoat performance real-time target 

machine equipped with an Intel core i7 3.5GHz 

processor and 4 GB or RAM is used as the target PC.  

The target PC has a hardware input/output (I/O) 

interface which establishes the communication between 

the target machine and other hardware. 

 

3.3 Cyber-physical platform 
 

The UKF and the real-time computation environment 

introduced above, combined with the necessary hardware 

required for the MR damper experimental setup, constitute 

a cyber-physical platform for the real-time model updating 

experimental study, shown in Fig. 7. The cyber components 

include the UKF, the real-time computation environment, 

the necessary computation elements (Host PC and Target 

PC), and the data acquisition (DAQ) system (as “I/O”). The  

physical components include the MR damper, PSU, the 

servo-hydraulic controller and actuator, and sensors  

 

 

(LVDT—Linear Variable Differential Transformer, LVT—

Linear Velocity Transducer, load cell and current probe). 

During the real-time model updating, the motion and 

command voltage inputs to the MR damping system (shown 

in Fig. 1) are sent from the I/O of the target PC. The 

displacement of the damper piston is measured by the 

internal LVDT inside the actuator, and the damping force 

generated in the MR damper is measured by the load cell. 

The velocity is measured by an external LVT. It is noted 

that the current is also measured by a current probe.  

Actually based on Fig. 1 and Eqs. (8) and (9) the current 

𝐼 is one of the state variable not the system output, and 

therefore is not required to be measured for model updating. 

However, the current is still measured in this study for the 

purpose to evaluate the updating results, and therefore the 

associated signal connections are indicated by dashed lines 

rather than solid lines in Fig. 7. The details of each physical 

component will be introduced in the “Experimental 

Implementation” section later. 

 

 

4. Experimental study 
 

The real-time nonlinear model updating of the MR 

damping system is described in this section. First, the 

experimental setup is presented in details to realize the 

physical components shown in Fig. 7; then, a MR damper 

model is identified using conventional off-line technique 

under sinusoidal motion combined with different levels of 

constant current; after that, two MR damper models are 

obtained using the proposed real-time nonlinear updating 

technique under two in-service conditions: i) random 

motion with random current levels and ii) earthquake 

motion with semi-actively controlled current levels; In the 

end, the accuracy of the three obtained MR damper models 

are evaluated using the data obtained under a new set of 

random motion with random current inputs. 

 

 

 

Fig. 7 Schematic of MR damper real-time updating platform 
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4.1 Experimental Implementation 
 
The experimental setup shown in Fig. 8 is a realization 

of the physical components described in Fig. 7. The MR 

damper used in study (also see Fig. 2) can generate a peak-

to-peak damping force of 2447 N (550 lbf) with relatively 

low power requirement (approx. 1 Amp). The stroke of the 

damper is 74 mm (2.91 in), with the fully extended length at 

248 mm (9.76 in). The main cylinder is 41.3 mm (1.625 in) 

in diameter. The motion input to the damper is generated by 

a MTS actuator—model number 244.12, with 5.5 kip force 

capacity and 6 inch stroke. The controller for the actuator is 

MTS 407. The displacement input 𝑥 is measured by the 

internal LVDT in the actuator, and the signal is sent back to 

the I/O via the controller. The velocity input �̇� is measured 

by a LVT made by Trans Tek, Inc., with 4 inch stroke and 

20 inch/sec limit. The MR damper is connected to a Wonder 

Box as the PSU (same as shown in Fig. 4), which can 

generate a maximum current of 2 Amp with a 0-5 Volts DC 

signal input. The command voltage 𝑈 is sent to the PSU 

and measured directly by the I/O. The current level 𝐼 
generated in the closed loop circuit is measured by a current 

probe manufactured by Tektronix, with the working range 

from 50 mA to 100A for a frequency bandwidth up to 100 

kHz. The force   generated from the damper is measured 

by a MTS load cell with 2 kip measuring range. With all the 

inputs (𝑥, �̇� , 𝑈) and outputs (𝐼—only for performance 

evaluation not for updating,  ) of the MR damping system 

being measured in real-time, the updating platform shown 

in Fig. 7 can be applied for identifying nonlinear models for 

MR damper. 

Information regarding the noise level is required in the 

determination of 𝐐𝑘 and 𝐑𝑘 in the UKF formulation (see 

Eqs. (10)-(12)). To reduce the noise level in the real-time 

updating, a low-pass IIR (infinite impulse response) 

Butterworth filter with cut-off frequency at 30 Hz is applied 

on all collected channels. In this study, the sampling 

frequency for the data acquisition and real-time updating is 

chosen to be 2048 Hz (corresponding to 0.49 ms sampling 

period). With this sampling frequency and the presented 

experimental setup, the noise levels of i) the actuator 

displacement measured by the internal LVDT corresponding  

 

 

to variance 4×10
-8

 [in]
2
, ii) the velocity measured by the 

LVT corresponding to variance 3×10
-7

 [in/s]
2
, iii) the 

command voltage measurement corresponding to variance 

1×10
-9

 [V]
2
, iv) the force measured by the load cell 

corresponding to variance 1×10
-4

 [lbf]
2
, and, v) the current 

measured by the current probe corresponding to variance 

1×10
-5

 [Amp]
2
, are all measured by averaging 24 

measurements taken throughout a day. Again, the current 

measurement is not used in real-time updating and it is only 

applied to examine the accuracy of the model updating 

results. Furthermore, to reach real-time performance, the 

task execution time (TET) for each time step cannot exceed 

the sampling period 0.49 ms as a timing constraint. 

 
4.2 Error quantification 
 
To evaluate the performance of the updated models, the 

following three error indices are applied in this study 

𝐉𝟏 = √
∑ 𝜃e

2
𝑛

𝑛
= RMS(𝜃e) (14) 

 

𝐉𝟐 = √
∑ 𝜃e

2
𝑛

𝑛
√
∑ 𝜃m

2
𝑛

𝑛
⁄ = RMS(𝜃e) RMS(𝜃m)  (15) 

where 𝜃 indicates the response to be compared, which can 

be either the damping force or the current; 𝜃e = 𝜃s − 𝜃m is 

the error between the response simulated by the updated 

model 𝜃s  and the measured response 𝜃m ; and, 𝑛 

indicates the time index of the data. 𝐉𝟏 is considered as an 

absolute measure of the updating error, whereas 𝐉𝟐  is 

considered as relative updating errors in the RMS measure.  

For both indices, the lower the value, the better the 

updating results. 

 

4.3 Sinusoidal displacement with constant voltage 
(current) inputs—off-line identification 

 

Before applying the real-time model updating, the 

conventional off-line technique under sinusoidal motion  

 

Fig. 8 Experimental setup for MR damper 
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combined with different levels of constant current is applied 

to obtain a MR damper model. This section briefly explains 

this process and shows the obtained damper model for 

further comparison later. 

A total number of 72 tests are conducted to generate 

data sets that can cover a range of motion and current 

inputs. The sinusoidal displacement inputs are excitations 

with amplitudes of 0.3in, 0.4in, and 0.5in; frequencies of 

2Hz, 3Hz, 4Hz, and 5Hz; command voltage inputs 0.5V, 1V, 

1.5V, 2V, 2.5V and 3V, corresponding to (approximately) 

the constant current level 0A, 0.2A, 0.4A, 0.6A, 0.8A and 

1A, respectively. The duration for each test is 20 seconds. 

For each of the test under constant voltage, the parameters 

of the phenomenological Bouc-Wen model given by the 

Eqs. (1)-(3) are determined by using the fmincon function 

in MATLAB (MATHWORKS 2016). This function 

minimizes the root mean square error (RMSE) between the 

measured force and the force obtained using the model. The 

following initial values are chosen 

�̂� = [𝑦 𝑧 𝛼 𝛽(= 𝛾) 𝑛           ]
  

= [0 0 2 × 104 2 × 104 1 50 200 100 10 10]  
(16) 

It takes between 15 to 30 minutes to complete the 

optimization run for one test case. After the total 72 sets of 

parameters identified, regression analysis is conducted to 

obtain the relationship between each parameter and the 

current level. Simple linear relations have been observed for 

parameters 𝛼,   ,   , which is consistent with the findings 

in (Spencer et al. 1997). Therefore, the linear equations 

(Eqs. (5)-(7))are used to model the current dependent 

behavior of these parameters. However, parameters 𝛽 

(which is set to be equal to 𝛾),   ,    and    are not 

sensitive to the current change, and therefore are considered 

as constants in the MR damper model. Furthermore, the 

value of parameter    is close to zero, and therefore it is 

kept as zero in the real-time updating study later. It is also 

noted that in the above off-line identification process, the 

model obtained is for the MR damper only, and no 

modeling parameters related to the PSU is identified. In 

other words, the dynamics of the PSU is ignored in the off-

line updating process. The identified MR damper model is 

shown in Table 1. 

 
4.4 Random displacement with random voltage 

(current) inputs 
 

In this case, bandlimited white noises (BLWNs) are  

 

 

 

 

applied as the displacement input to the damper and the 

command voltage to the PSU, to simulate one of the two in-

service conditions considered in this study. The 

displacement input to the damper is a bandlimited white 

noise (BLWN) with maximum amplitude of 0.5 inch and 

frequency bandwidth of 0-5 Hz. The command voltage to 

the PSU is another BLWN with frequency bandwidth of 0-

15 Hz and amplitude between 0.5V and 3V, similar range as 

the constant current levels in the previous off-line 

identification case. The duration of the test is 60 seconds, 

and the parameters of the MR damping system are updated 

using the cyber-physical platform in real-time as the test 

progresses.  

For the real-time updating, the UKF is applied by 

replacing system Eqs. (10) and (11) with the MR damping 

system model— Eqs. (8) and (9) To start the updating 

process descried in Fig. 6, the following initial values are 

chosen 

�̂�𝟎
𝐚

= [𝑦 𝑧 𝐼 𝛼𝑏 𝛼𝑏 𝛽(= 𝛾) 𝑛   𝑎   𝑏   𝑎   𝑏 𝑅 𝐿     ]
  (17) 

=[0  0  0  2  104   4  104   2  104   1  10  10  100 

200  1  10-3   100  10]T
 

and, the corresponding initial covariance matrix is chosen 

as 

𝐏 | 
𝐚 = 

diag([0.1  0.1  0.1  2  107   3  107  1.5  107  0.01  10  10  103 

2  103  1  10-6  103  50]) 

(18) 

In the above formulation, 𝑑𝑖𝑎𝑔(𝐱) indicates a square 

diagonal matrix with the elements in vector 𝐱 on its main 

diagonal. It is noted that different choices of initial values 

for the state variable �̂�𝟎
𝐚 and covariance 𝐏 | 

𝐚  may affect 

the convergence of the UKF algorithm. The selection of the 

most appropriate set of initial values is out of the scope of 

this study. The above initial values �̂�𝟎
𝐚 are selected to have 

the same or similar order of magnitude of the corresponding 

off-line updated model (see Table 1), except the parameters 

𝑅 and 𝐿 for the PSU model. Based on the selected �̂�𝟎
𝐚 

values, the choice of the initial covariance values 𝐏 | 
𝐚  is 

made by ensuring the corresponding coefficient of variation 

for each parameter is within the range between 0.1 and 1. 

Furthermore, the covariance matrices 𝐐𝑘  and 𝐑𝑘  are 

determined using the measured noise levels described in 

section 4.1. 

 

Table 1 Identified model under constant voltage/current 

𝛼𝑎 𝛼𝑏 𝛽 = 𝛾 𝑛   𝑎   𝑏   𝑎   𝑏       

8732.34 22081.83 9123.84 1.69 5.73 14.46 30.69 250.63 26.55 29.31 

Table 2 Identified model under random inputs 

𝛼𝑎 𝛼𝑏 𝛽 = 𝛾 𝑛   𝑎   𝑏   𝑎   𝑏 𝑅 𝐿(× 10;3)       

12715.09 33394.96 20907.19 1.86 8.80 6.87 88.88 185.99 2.29 4.10 43.86 31.77 
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 The time history of the updated parameter values are 

shown in Fig. 9. The vertical axis indicate the value of each 

parameter normalized by the corresponding initial value.  

The jump at 𝑡 = 2 seconds is due to switching on the 

real-time model updating platform. Based on the evolution 

of the time history, it can be seen that although the different 

parameters have different convergence speed, most of the 

parameters reach a stable value after 30 seconds. The 

updated model parameters are shown in Table 2. 

To demonstrate the updating performance, the updated 

damping force and current are compared with the measured  

 

 

 

 

values in Figs. 10 and 11. In each figure, the „real-time‟ and 

„ini‟ curves indicate the results obtained using the real-time 

updated model (see Table 2) and the initial model (see Eq. 

(17)), respectively. The „measured‟ curve indicates the 

actual damping force and current measurements. The 

„update‟ curve indicates the results obtained during the real-

time updating process. Two zoomed-in plots are provided 

for the beginning stage and the end stage of the real-time 

updating process. Based on the results shown in these two 

figures, it is clear to see the „real-time‟ curves agree very 

well with the actual measurements, whereas the results  

 

Fig. 9 Updating history of model parameters—random inputs 

 

Fig. 10 Comparison of damping force time history—random inputs 
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obtained by the initial model yields large error. In addition, 

the „update‟ curves converge to the „real-time‟ curve, and 

matches the actual „measured‟ curve in the end. The average 

and maximum TET are 0.42 ms and 0.46 ms, which satisfy 

the real-time computing constraint of 0.49 ms.  

The error comparison are summarized in Table 3. In the 

table, the error indices for both the damping force and 

current are calculated for real-time updated model (Table 2), 

off-line updated model (Table 1), and the initial model (Eq. 

(17)). Both the real-time and off-line updated models can 

provide good accuracy for damping forces. And the real-

time updated model shows better results in 𝐉𝟐 than the off-

line updated model, possibly because the off-line update 

model ignores the dynamic behavior of the PSU.  

Furthermore, the off-line updated model needs current 

measurement as an additional input, but the real-time 

updated model only requires force measurement and can 

successfully update the PSU model as indicated by a less 

than 2% error in the obtained current. 

 

4.5 Motion and voltage inputs under earthquake 
excitation 

 
In this real-time updating case, the motion and 

command voltage inputs to the MR damper are obtained 

under a simulated structural control application. For the 

two-story shear building shown in Fig. 12, the two natural 

frequencies are 1.1 Hz and 2.8 Hz, respectively. It is 

assumed that the MR damper is installed on the first floor of 

the building and the building is subjected to El Centro 

earthquake record. The motion input to the damper is the 

relative motion of the first floor with respect to the ground 

motion. The clipped-optimal control (Dyke et al. 1996) is 

applied to generate the command voltage input 

with ]minimum amplitude and maximum amplitude of 0.5V  

 

 

and 3V, respectively. This case is also used to examine the 

real-time updating performance when the MR damper is 

under in-service condition. The duration of the test is 45 

seconds. The updated model parameters are shown in Table 

4, and the time history of the updated parameter values are 

shown in Fig. 13. In this case, the average and maximum 

TET are 0.41 ms and 0.46 ms, which satisfy the real-time 

computing constraint of 0.49 ms. 

For the real-time updating, the initial values for the state 

variable �̂�𝟎
𝐚  and covariance 𝐏 | 

𝐚  are the same as the 

previous real-time updating case (Eqs. (17) and (18)). The 

updated damping force and current are compared with the 

measured values in Figs. 14 and 15. Similar as the results 

obtained from the previous case with random inputs, the 

„real-time‟ curves agree well with the „measured‟ curves for 

both the damping force and current, indicating good 

updating accuracy. The „update‟ curves reveals how the 

updating history is improved and finally converge to the 

„real-time‟ curves and the „measured‟ curves. The error 

comparison results are summarized in Table 5. It is noted 

that again the real-time updated model yields the least error 

for both damping force and current. Particularly, the error 

index 𝐉𝟐 of the current for the initial model is close to 50%, 

but the corresponding 𝐉𝟐 for the real-time updated model is 

only 7%, indicating a significant improvement in accuracy.  

 

 

Table 3 Error comparison under random inputs 

Error 

Index 
Damping Force (lbf) Current (Amp) 

 
Real-

time 
Off-line Initial 

Real-

time 
Initial 

𝐉𝟏 9.79 14.68 61.97 0.01 0.16 

𝐉𝟐 0.06 0.09 0.38 0.02 0.28 

 

 

Fig. 11 Comparison of current time history—random inputs 
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Fig. 12 Two-story shear building under ground motion 

 

Fig. 13 Updating history of model parameters— earthquake excitation 

 

Fig. 14 Comparison of damping force time history—earthquake excitation 
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Table 5 Error comparison under earthquake excitation 

Error 

Index 
Damping Force (lbf) Current (Amp) 

 Real-

time 
Off-line Initial 

Real-

time 
Initial 

𝐉𝟏 13.27 15.68 51.87 0.05 0.37 

𝐉𝟐 0.11 0.13 0.43 0.07 0.48 

 

 

However, in general, the errors obtained in this case are 

slightly higher than those shown in Table 3. It is likely due 

to the challenge of a wider frequency bandwidth in the 

generated current as a result of quickly switching between 

the minimum and maximum voltage commands during the 

clipped-optimal control. 

 

4.6 Comparison test (Random inputs) 
 

The final case is to evaluate the accuracy of the 

previously identified MR damper models under a new set of 

random inputs (different than the random inputs used for 

section 4.4). The displacement input is a BLWN with 

maximum amplitude of 0.5 inch and frequency bandwidth 

of 0-5 Hz. The command voltage to the PSU is another 

BLWN with frequency bandwidth of 0-15 Hz and amplitude 

between 0.5V and 3V. Using the obtained experimental data, 

the damping force and current obtained from the following  

models are compared: real-time updated model under 

random inputs (rt-rnd-rnd) from Table 2; real-time updated  

model under earthquake excitation (rt-eq-co) from Table 4;  

 

 

 

 

 

off-line updated model under constant voltage (off-sin-const) 

from Table 1 (with additional current measurement); and 

initial model (ini) from Eq. (17). 

The comparison of the damping forces and currents are 

shown in Figs. 16 and 17, respectively. From these two 

figures, it can be seen that the initial model generates large 

errors throughout the entire time history for both damping 

force and current, and all the other three updated models 

provide good visual match to the measured results. The 

force versus displacement and force versus velocity plots 

are also shown in Fig. 18. Similar conclusion can be drawn 

from this figure that all the updated models (real-time and 

off-line) can capture the nonlinear hysteretic behavior of the 

MR damper very well, but the initial model produces large 

amount of error. 

To examine the accuracy of the identified PSU model, 

the experimental transfer function between the command 

voltage input 𝑈  and the current output 𝐼  is obtained. 

Then, an optimization procedure is conducted to find the 

optimal 𝑅  and 𝐿  values that can best fit the obtained 

transfer function. This „optimal‟ transfer function is 

compared with the PSU model from the real-time updated 

models in Fig. 19. The initial model is also included in the 

same figure. The comparison shows that both real-time 

updated models have capture the dynamic model of the 

PSU. Moreover, the good agreement between the models 

and the experimental transfer function indicates that the RL 

circuit model assumption (Eq. (4)) fits well with the actual 

dynamic behavior of the PSU. 

 

 

Fig. 15 Comparison of current time history—earthquake excitation 

Table 4 Identified model under earthquake excitation 

𝛼𝑎 𝛼𝑏 𝛽 = 𝛾 𝑛   𝑎   𝑏   𝑎   𝑏 𝑅 𝐿(× 10;3)       

13735.48 34512.06 22296.03 1.93 7.24 6.48 97.89 197.23 2.20 4.17 67.75 31.95 

631



 

Wei Song, Saeid Hayati and Shanglian Zhou 

 

 

 

 

 

The error comparison results are summarized in Table 6. 

It is shown that, all three updated models can provide good 

identification accuracy with 𝐉𝟐 around 10%. The two real-

time updated models offer similar performances but are 

better than the off-line updated model, possibly because the 

off-line updated model does not consider the dynamic 

behavior of the PSU. In addition, for the real-time updated 

models, the one updated under random inputs (rt-rnd-rnd) 

yields slightly smaller error than the one updated under 

earthquake excitation (rt-eq-co). The reason may be that the  

 

 

 

 

new set of inputs is of the similar type (amplitude and 

frequency range) as the inputs used in updating rt-rnd-rnd. 

Another interesting observation is, although the real-time 

updated model parameters are very different than the ones 

in the off-line updated model—some of the parameters, 

such as 𝛽(= 𝛾),   𝑎, can be more than 100% apart, the 

obtained damping forces and currents are very close when 

comparing to the measured values. 

 

 

 

Fig. 16 Comparison of damping force time history 

 

Fig. 17 Comparison of current time history 
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A possible explanation is that the phenomenological 

Bouc-Wen model may be overparameterized for modeling 

the behavior of this MR damper.  

The authors also have conducted the real-time updating 

for the case where only the MR damper model (A in Fig. 1) 

is present. In that case, due to removal of the PSU model (B 

in Fig. 1), the current (𝐼) is no longer a state variable as 

shown in Eq. (8), but rather a system input that needs to be 

measured. The corresponding updated model (without the  

 

 

 

PSU model) obtained under the same inputs as the section 

4.4 is also examined herein. The results show that this 

updated model yields 𝐉𝟏=11.26 and with 𝐉𝟐=0.07, very 

similar to the accuracy obtained by the rt-rnd-rnd model as 

shown in Table 6. This comparison result indicates that, 

even without the current measurement, the real-time 

updating technique can successfully identify the MR 

damper parameters with the similar accuracy as the case 

where the current is measured. 

 
(a) 

 
(b) 

Fig. 18 Comparison of the MR damper responses: (a) force versus displacement and (b) force versus velocity 
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5. Conclusions 
 

This paper presents an experimental study to identify an 

integrated MR damper model using real-time updating 

technique. The integrated MR damper model includes a RL 

circuit model to capture the dynamic behavior of the power 

supply unit, which is often ignored in off-line identification 

process. The presented real-time updating technique has the 

following advantages:  

 

i) Identify accurate nonlinear dynamic model for the 

complex MR damper behavior in an efficient online 

manner, reducing the required computing time from 

hours to seconds. 

ii) The real-time state estimates for the MR damper 

model can be obtained under in-service conditions with 

time-varying current levels, and therefore can be used as 

feedback for future nonlinear control design; and, 

iii) The integration of the damper and the PSU 

enables a direct dynamic model from the motion and 

command voltage inputs to damping force output, and 

eliminates the need of electric current measurement in 

the identification and even control process. 

 

In the experimental study, both off-line and real-time 

model identifications are conducted. The off-line  

 

 

 

 

identification is performed using conventional method 

under constant voltage/current levels; whereas the real-time 

identifications are conducted using the UKF under in-

service conditions with time-varying current levels. The 

real-time updating experiments are conducted via the 

nonlinear real-time model updating platform presented. The 

TETs obtained during the tests are all lower than the timing 

constraint of 0.49 ms, indicating successful real-time 

applications.  

From the experimental results, especially the 

comparison among all the updated models, it is shown that 

all the updated models (real-time and off-line) can provide 

good identification accuracy. But the two real-time updated 

models offer better performances (<10% in 𝐉𝟐) than the off-

line updated model, possibly because the off-line updated 

model does not consider the dynamic behavior of the power 

supply unit. Similar updating performance has been 

observed by comparing the above updating results with the 

ones obtained using the case without the PSU model. This 

indicates that, even without the current measurement, the 

real-time updating technique can successfully identify the 

MR damper parameters with the similar accuracy as the 

case where the current is measured. In addition, multiple 

updated models have been identified for the same system 

indicates parameter redundancies in the MR damper model. 

Further research is necessary to investigate this issue. 

 

Fig. 19 Transfer function comparison 

Table 6 Error comparison 

Error Index 
Damping Force (lbf) Current (Amp) 

rt-rnd-rnd rt-eq-co Off-line Initial rt-rnd-rnd rt-eq-co Initial 

J  11.73 13.40 18.43 67.01 0.01 0.03 0.20 

J2 0.07 0.08 0.11 0.40 0.02 0.05 0.31 
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