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1. Introduction 
 

Nowadays, nanoscale piezoelectric structures have 

gained many interests in scientific communities due to their 

potential applications as sensors and energy harvesters in 

the nanoelectromechanical systems (NEMS) because of 

possessing excellent electromechanical coupling and unique 

specifications at the submicron scale (Ebrahimi and Barati 

2017). Thus, it is of great importance to obtain a 

comprehensive understanding on the electromechanical 

coupling behaviors of a piezoelectric structure at the 

nanoscale. 

Recently, molecular dynamics simulations and 

experimental observations have indicated that the elastic 

and piezoelectric constants of a piezoelectric material 

become size-dependent at the nanoscale (Zhang et al. 

2009). Such an important fact distinguishes a nanoscale 

piezoelectric material from a macroscopic bulk counterpart. 

Accordingly, many investigations have been performed to 

understand the size-dependent mechanical behaviors of 

piezoelectric nanostructures by means of higher order 

elasticity theories which are capable of describing the size 

effects. A linear surface elasticity theory (Gurtin and 

Murdoch 1975) is introduced to incorporate the size-

dependent properties of nanomaterials with surface effects 

raised from the large ratio of surface area to volume. This 

theory introduces surface layers having zero thickness with 

specified elastic constants attached to a bulk material. 

Based on this theory, the size-dependent static and dynamic  
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characteristics of piezoelectric nanostructures have been 

widely investigated (Asemi et al. 2014, Zang et al. 2014, 

Zhang et al. 2014, Arani et al. 2015, Li and Pan 2016, Wang 

et al. 2016, Yan 2016, Shen et al. 2017, Karimi and Shahidi 

2017) . Recently, size-dependent analysis of nanostructures 

by means of nonlocal elastic field theory of Eringen (1983) 

has received wide importance. Nonlocal elasticity theory 

has the potential to describe the long range interactions 

between atoms inside the material. The prominence of 

nonlocal elasticity has stimulated the researchers for 

modeling and analysis of the nanoscale structures (Barati 

and Shahverdi 2017, Gholami and Ansari 2017, Elmerabet 

et al. 2017, Ebrahimi and Salari 2017, Li and Hu 2016, 

Akbas 2016, Li et al. 2016, Abouel et al. 2016, Bounouara 

et al. 2016, Ebrahimi and Barati 2016, Asemi et al. 2014). 

The flexoelectricity is known as a specific 

electromechanical coupling phenomenon between electrical 

polarization and strain gradients. It is reported that the strain 

gradients or non-uniform strain fields can locally break the 

inversion symmetry of the materials and thus induce the 

polarization in the structures. Such important phenomenon 

has been neglected in above-mentioned studies on 

piezoelectric nanostructures. Actually, the flexoelectricity 

provides an inherent size effect in small scale structures 

which is not available in the additional piezoelasticity. 

Recently, this important phenomenon is considered in some 

investigations on piezoelectric nanostructures. Surface and 

flexoelectricity effects on static response of piezoelectric 

nanobeams are examined by Liang et al. (2014). Static 

behavior of a piezoelectric nanobeam with integrated 

flexoelectric layers acting as nanoacturators is analyzed by 

Ray (2016). A size-dependent bending and vibration 

analysis of flexoelectric nanobeams in presented by Yan and 

Jiang (2013) based on Timoshenko beam theory. Surface 
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and flexoelectricity effects on static response of 

piezoelectric nanoplates under uniform static load are 

examined by Zhang and Jiang (2014). They showed that 

configuration of a piezoelectric nanoplate in bending is 

significantely affected by the flexoelectricity and applied 

voltage. Ebrahimi and Barati (2017b,c) examined surface 

effects on linear vibration behavior of open circuit 

flexoelectric nanobeams and nanoplates. Liang et al. (2016) 

examined buckling and vibration responses of open circuit 

flexoelectric nanofilms subjected to mechanical loads. One 

can see that analysis of flexoelectric nanostructures is still 

at the beginning stage. In fact, literature survey indicates 

that there is no published paper on vibration analysis of 

double-layered or elastically connected flexoelectric 

nanoplates under closed circuit electric field condition. 

In the present analysis, a size-dependent vibrating model 

of a double-layered flexoelectric nanoplate is proposed 

based on the classical plate model and the flexoelectricity 

theory with consideration of surface effects. For the first 

time, out-of-phase and in-phase vibrations of a double-

layered flexoelectric nanoplate system are reported. The 

governing equations and boundary conditions of a double-

layered flexoelectric nanoplate under closed circuit 

conditions are derived from Hamilton’s principle. To 

illustrate the newly developed flexoelectric plate model, the 

free vibration problem of a simply supported and clamped 

plates is solved, and the corresponding numerical results are 

analyzed to show the importance of flexoelectric 

coefficient, surface elasticity, interlayer stiffness, applied 

voltage and nanoplate thickness on vibration frequencies. 

Obtained results can serve as a useful guidance for better 

modeling and analysis of double-layered piezoelectric 

nanostructures. 

 

 
2. Modeling of piezoelectric nanoplate with surface 
and flexoelectric effects 

 

Surface effects have been taken into consideration by 

assuming that the nanoplate is divided to a bulk part as well 

as surface layers having ignorable thickness as indicated in 

Fig. 1. Also, different models of vibration of system is 

shown in Fig. 2. As stated, the flexoelectricity influence is 

incorporated into the surface piezoelasticity theory by the 

strain gradient-polarization and also the polarization 

gradient-strain couplings. The bulk energy density can be 

represented by (Yang et al. 2015) 

, , , ,
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(1) 

Here, Pi and ij are the polarization and strain tensors, 

respectively; ijklc , kla and ijkd denote the elastic, reciprocal 

dielectric susceptibility and piezoelectric material constants, 

respectively.  Also, ijklb  represent the coupling between 

polarization gradients. Finally, ijklf  is the flexoelectricity 

coefficient representing the coupling of strain gradient and 

polarization. 

Finally, the constitutive relations for the bulk 

considering flexoelectricity effects can be written as (Yang 

et al. 2015) 
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where ij and iE denote the stress and electric field 

tensors, respectively.  

To consider the surface effects, i.e., the residual surface 

stress, the surface elasticity, and the surface piezoelectricity, 

the surface internal energy density Us can be defined as 

0
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where
sP and 

s
  are surface polarization and surface 

strain tensors, respectively. Also, 0     is surface 

residual stress tensor; 
sa  and 

sc  denote the surface 

dielectric susceptibility and surface elastic constants. Also, 

the surface piezoelectric constants are represented by 
sd

. Thus, the surface constitutive relations can be expressed 

by 
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in which 
s
  and 

sE  are the surface stress tensor and 

surface electric field vector. 

 

 
3. Theoretical formulation 

 

In this study, the classical plate theory is adopted for 

modeling of a thin flexoelectric nanoplate accounting for 

surface effects. Thus, it is possible to represent the 

displacement field of the nanoplate as 
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where u and v  are in-plane displacements, respectively 

and w is the lateral displacement. Then, the strains and 

strain-gradients are obtained as 
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(6) 

The polarization direction is assumed as the same as z-

direction or transverse direction. Thus, the electric field in 

this direction is defined as 
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where   is the electrostatic potential. Inserting Eq. (6) 

into Eq. (2(e)) gives 
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The Gauss’s law requires the following relation in 

absence of the free electric charges 

, 0zz z zP     (9) 

in which 0 b   . Here, 
12 1 1

0 8.85 10 CV m      

and 6.62b  are the permittivity of the air and the 

background permittivity. Also, electric boundary conditions 

under closed circuit conditions are 

( ) , ( ) 0
2 2

h h
V      (10) 

Now, substituting Eqs. (8) and (10) into Eq. (9) gives the 

following expressions electric potential, electric field and 

 

Fig. 1 Geometry and coordinates of flexoelectric nanoplate system 

  

(a) Out-of-phase vibration (b) In-phase vibration 

 
(c) One nanoplate fixed 

Fig. 2 Different types of motion for a double-layered nanoplate 
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electrical polarization as 
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stress field using Eq. (2) as 
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Moreover, the surface stresses of a flexoelectric 

nanoplate under electric voltage can be expressed by 
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Through extended Hamilton’s principle, the governing 

equations can be derived as follows 
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in which K and W are kinetic energy an work done by 

non-conservative forces. Also, H=Hb+Hs is the electric 

enthalpy including both the bulk and surface components. 

1

2
b b i j i iH U P    

 

(19) 

 

s s

s s k kH U P 
 

(20) 

where 
s is surface electric potential. Inserting Eqs. (1) 

and (3) into Eqs. (19) and (20) yields 
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while internal energy variation using Eqs. (1) and (3) can be 

expressed as 
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The work done by applied forces can be written in the 

form 
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where 
0 0,x yN N are in-plane applied loads. The first 

variational of the virtual kinetic energy of present plate 

model can be written in the form as 
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in which the mass inertias are defined as 
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The following Euler–Lagrange equations are obtained 

by inserting Eqs. (21)-(25) in Eq. (18) when the coefficients 
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and the associated boundary conditions 
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Finally, the governing equations of each nanoplate in 

terms of displacements can be obtained using Eqs. (12)-(14) 

and (27) as 
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4. Solution procedure 
 

In this section, a Galerkin solution of the governing 

equation system is presented for simply-supported (S) and 

clamped (C) edge conditions  
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(31) 

 Clamped (C): 

0
w w

w
x y

 
  
 

     at x=0,a and y=0,b (32) 

The double-layered nanoplates experience three kinds of 

vibrations as indicated in Fig. 2: 

 Out of phase vibration:   
1 2 0w w w     

 In-phase vibration:     
1 2 0w w w     

 One nanoplate fixed:    
1 0w w    

First, the transverse displacement with the functions Ni 

and Nj that satisfy the considered boundary conditions is 

assumed as 
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where W  is the unknown coefficient. Inserting Eq. (33) 

into the governing equation leads to 
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Here, approximate functions to satisfy the above-

mentioned boundary conditions are assumed as 

SSSS: 𝑁𝑖(𝑥) = sin(
𝑖𝜋

𝑎
𝑥), 𝑁𝑗(𝑦) = sin(

𝑗𝜋

𝑏
𝑦)  (37) 

 

CCCC: 𝑁𝑖(𝑥) = sin2(
𝑖𝜋

𝑎
𝑥), 𝑁𝑗(𝑦) = sin2(

𝑗𝜋

𝑏
𝑦)  (38) 

Also, for better presentation of the results the following 

dimensionless quantity is adopted 

 

4 2

0 0

0 11

, , ,p p

a a
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D D


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
    (39) 

where 0 is the vibration frequency without surface and 

flexoelectric effects. 

 

 

5. Numerical results and discussions 
 

In this section, frequency analysis of a double-layered 

piezoelectric nanoplate under closed circuit condition will 

be conducted considering flexoelectric and surface effects.  

The top surface of the nanoplate is subjected to an 

electric voltage, while the bottom surface has no voltage. 

The flexoelectric nanoplate is made of BaTiO3 where the 

elastic properties are considered as c11=167.55 GPa, 

c12=78.15 GPa, c66=44.7 GPa and the piezoelectric and 

dielectric coefficients are assumed as d31=3.5×10
8
 V/m, 

a33=0.79 × 10
8
 Vm/C and b33=1 × 10

-9
 Jm

3
/C

2
. The 

flexoelectric coefficient is also considered as f31=1-10 V. 

The surface elastic and piezoelectric constants for BaTiO3 

can be considered as: 11

sc =9.72 Pa, 12

sc =4.35 Pa, 66

sc

=2.68 Pa and 31

sd =-0.056 C/m. 

A verification study of vibration frequencies has been 

carried out with those of Yang et al. (2015) for a single-

layer flexoelectric nanoplate under open circuit electric 

condition. This comparison study is shown in Fig. 3 for a 

variety of nanoplate thickness and a good agreement is 

observed. In this figure, only fully simply-supported 

boundary condition is considered, since there is no 

published study on vibration behavior of flexoelectric 

nanoplates with fully clamped edge conditions. 

Fig. 4 illustrates the variation of the normalized 

vibration frequency of flexoelectric nanoplates versus the 

thickness value for different applied electrical voltages at 

a=b=50h, f31=10 and K0=100. In this figure, out-of-phase 

vibration of system is considered. One can see from this 

figure that the combined influences of the flexoelectricity 

and surface on the vibration frequency are dependent on the 

applied electric voltage. In fact, frequency ratio decreases 

with the increase of applied voltage from negative to 

positive values. However, frequency ratio of flexoelectric 

nanoplate increases with the increment in the thickness 

value. But, frequency ratio is less affected by the higher 

values of nanoplate thickness. It means that flexoelectricity 

effect is more important at smaller values of nanoplate 

thickness. This feature shows the inherent size-dependent 

phenomenon in piezoelectric nanostructures provided by 

flexoelectricity. The discrepancy of the curves in this figure 

proposes a possible way for frequency tuning by means of 

the applied electric voltage. However, such a frequency 

tuning process in the design of piezoelectric nanosctructures 

may be altered by the combined effects of the 

flexoelectricity and the surface. 

Fig. 5 shows the variation of frequency ratio versus the 

thickness value for various flexoelectric coefficients when 

a=b=50h, V=+0.1 and K0=100 for out-of-phase vibration. In 

the case without flexoelectricity, only surface effects are 

considered. It can be seen that increase of flexoelectric 

coefficient yields smaller frequency ratios. However, the 

frequency ratio increases with higher rates with respect to 

nanoplate thickness at higher flexoelectric coefficients. It 

means that the dependency of vibration behavior of 

piezoelectric nanoplates on thickness values increases with 

the rise of flexoelectric coefficient. Such important 

observation cannot be find in conventional piezoelectric 

materials. Actually, it is observed from the figure that when 

no flexoelectricity is considered, the normalized natural 

frequency is decreasing as the plate size is increasing. 

For a square nanoplate (a = b = 50h) subjected to a 

voltage (V=+0.1), the variation of the normalized frequency 

with the plate thickness h is depicted in Fig. 6 for both 

SSSS and CCCC boundary conditions. It can be deduced 

that with the considered surface material parameters and the 

flexocoupling coefficients, both the surface effects and the 

flexoelectricity influence the vibration frequency 

significantly. Actually, the surface effects may enhance the 

frequency ratio with a positive residual surface stress but 

reduce the resonant frequency with a negative one. Because 

of the opposite trends of the flexoelectricity and the positive 

residual surface stress upon the frequency ratio, the size-

dependent vibration may disappear. However, the combined 

effects are more announced for the thinner plates with 

smaller thickness and diminish with the increasing plate 

thickness as indicated by all the curves tending to approach 

a unity. Thus, it is necessary to incorporate both the 

flexoelectricity and surface effects in investigating the 

dynamic response of nanoscale piezoelectric structures. 

Fig. 7 indicates the variation of frequency ratio versus 

interlayer stiffness (K0) for various types of vibration when 

a=b=50h, V=+0.1 and f31=5. It is found that presence of 

interlayer elastic medium has a significant effect on the 

vibration behavior flexoelectric nanoplates. As stated, in-

phase vibration of system is not affected by the interlayer 

stiffness. In two other cases interlayer elastic medium 

makes the flexoelectric nanoplate system more rigid and 

vibration frequencies increase. However, out-of-phase 

frequency ratio is more influenced by the interlayer elastic 

medium compared with when one nanoplate is fixed. Also, 

a SSSS flexoelctric nanoplate system is more affected by 

the interlayer elastic medium, since clamped edges makes 

the nanoplate more rigid. Then, effect of interlayer elastic 

medium on frequency ratio of a nanoplate system with 

CCCC edges is less significant than those with SSSS edge 

conditions. 
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Fig. 3 Comparison of natural frequency of flexoelectric nanoplates (a=b=50h) 

  
(a) single-layered nanoplate (b) double-layered nanoplate 

Fig. 4 Variation of frequency ratio versus the thickness value for different applied electric voltages (a=b=50h, f31=10, 

K0=100) 

  
(a) SSSS (b) CCCC 

Fig. 5 Variation of frequency ratio versus the thickness value for various flexoelectric coefficients (a=b=50h, V=+0.1, 

K0=100) 
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6. Conclusions 
 

This paper develops a size-dependent and double-

layered flexoelectric nanoplate system incorporating surface 

effects for vibration analysis of elastically bonded 

piezoelectric nanoplates. The governing differential 

equation and related boundary edges were derived by 

exploiting the use of the Hamilton’s principle. The 

governing equation solution is provided employing 

Galerkin’s approach which has the potential to capture 

various boundary conditions. It is found that with increase 

of nanoplate thickness the strain gradients reduce and 

flexoelectriciy can be negligible. Actually, flexoelectricity is 

more important at smaller thickness. However, vibration 

frequencies depend on the sign and values applied electric 

voltage and residual surface stress. Also, interlayer elastic 

medium has a great influence on vibration behavior of 

double-layered flexoelectric nanoplates depending on the 

type of vibration.  
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