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Abstract.

In this article, a free vibration analysis of functionally graded (FG) plates resting on elastic foundations is

presented using a quasi-3D hybrid-type higher order shear deformation theory. Undetermined integral terms are employed
in the proposed displacement field and modeled based on a hybrid-type (sinusoidal and parabolic) quasi-3D HSDT with
five unknowns in which the stretching effect is taken into account. Thus, it can be said that the significant feature of this
theory is that it deals with only 5 unknowns as the first order shear deformation theory (FSDT). The elastic foundation
parameters are introduced in the present formulation by following the Pasternak (two-parameter) mathematical model.
Equations of motion are obtained via the Hamilton's principles and solved using Navier's method. Accuracy of the
proposed theory is confirmed by comparing the results of numerical examples with the ones available in literature.
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1. Introduction

Functionally  graded materials  (FGMs)  are
microscopically ~ inhomogeneous  composites  often
fabricated from a mixture of metals and ceramics. The
mechanical characteristics of FGM vary gradually and
continuously within the thickness direction in the material
depending on a function. Because of this feature, the FGMs
have some advantages such as avoiding the material
discontinuity and decreasing the delamination failure,
diminishing the stress levels and deflections. Combination
of these properties attracts practical application of FGMs in
many engineering areas such as aircraft, aerospace,
naval/marine, construction and mechanical engineering
(Bourada et al. 2012, Bessaim et al. 2013, Bouderba et al.
2013, Ait Amar Meziane et al. 2014, Akbas 2015, Arefi
2015a, b, Arefi and Allam 2015, Attia et al. 2015,
Bouguenina et al. 2015, Bennai et al. 2015, Bakora and
Tounsi 2015, Ait Atmane et al. 2015, Barati and Shahverdi
2016, Boukhari et al. 2016, Barka et al. 2016, Akbarov et
al. 2016, Aizikovich et al. 2016, Abdelbari et al. 2016,
Abdelhak et al. 2016, Ahouel et al. 2016, Benferhat et al.
2016, Celebi et al. 2016, Darabi and \Vosoughi 2016,
Ebrahimi and Jafari 2016, Ebrahimi and Shafiei 2016, Trinh
et al. 2016, Turan et al. 2016).

Given the widespread employ of engineering structures
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including FGM, many computational models have been
proposed to assess its structural response. Reddy and Chin
(1998) performed a thermo-mechanical investigation of
FGM cylinders and plates. Kashtalyan (2004) presented a
three dimensional elasticity solution for a simply supported
FG plate under transverse loading. Birman and Bird (2007)
proposed a system of FGM-structural modeling. Matsunaga
(2009) used a two-dimensional higher-order theory for
analyzing the displacement and stresses in FG plates under
to thermal and mechanical loadings. Zhao et al. (2009)
investigated the free vibration behavior of FG plates that
utilizes the element-free kp-Ritz method. The FSDT is
employed to consider the transverse shear strain and rotary
inertia, and mesh-free kernel particle functions are
employed to  approximate the  two-dimensional
displacement fields. Other works where we can find the use
of FSDT can be consulted in references of Meksi et al.
(2015), Adda Bedia et al. (2015), Hadji et al. (2016),
Bouderba et al. (2016) and Bellifa et al. (2016). Baferani et
al. (2011) discussed the vibration response of FG
rectangular plate resting on two parameter elastic
foundation by employing the third-order shear deformation
plate theory. Tounsi et al. (2013) proposed a refined
trigonometric shear deformation theory for thermoelastic
bending of FG sandwich plates. Taj and Chakrabarti (2013)
studied FG skew plates subjected to static and dynamic
loadings. Zhang et al. (2014) presented a 3D elasticity
solution for static bending of thick FG plates using a hybrid
semi-analytical approach-the state-pace based differential
quadrature method. Hosseini-Hashemi et al. (2011)
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proposed an exact analytical solution for transverse
vibration investigation of Lévy-type rectangular plates
based on the Reddy’s third-order shear deformation plate
model. Hasani Baferani et al. (2011) studied the vibration
behavior of a FG rectangular plate resting on elastic
foundation by employing the third-order shear deformation
plate theory. Sheikholeslami and Saidi (2013) analyzed the
free vibration response of FG plates resting on two-
parameter elastic foundation by utilizing a higher-order
shear and normal deformable plate theory. The authors
expanded the displacement components in the thickness
direction via the Legendre polynomials. Taibi et al. (2015)
proposed a simple shear deformation theory for thermo-
mechanical behaviour of FG sandwich plates on elastic
foundations. Ait Yahia et al. (2015) studied the wave
propagation in FG plates with porosities applying various
higher-order shear deformation plate theories of four
unknowns. Mahmoud et al. (2015) examined the problem of
wave propagation in magneto-rotating orthotropic non-
homogeneous medium. Kar and Panda (2015) studied the
free vibration responses of temperature dependent FG
curved panels under thermal environment. Bounouara et
al. (2016) presented a nonlocal zeroth-order shear
deformation theory for free vibration of FG nano-plates
resting on elastic foundation. Many investigations are
reported in literature to present HSDTs for composite
structures as well as graded CNT structures such as (Mehar
et al. 20174, b, ¢, Mehar and Panda 20173, b, Hirwani et al.
2017a, b, Kar and Panda 2017, Kar et al. 2017, Sahoo et al.
2017, Kar et al. 2016, Singh et al. 2016, Houari et al. 2016,
Bousahla et al. 2016, Kar and Panda 2016a, b, Mahi et al.
2016, Katariya and Panda 2016, Sahoo et al. 2016, Mehar et
al. 2016, Singh and Panda 2015, Belkorissat et al. 2015,
Larbi Chaht et al. 2015, Bourada et al. 2015, Panda and
Katariya 2015, Nguyen et al. 2015, Zemri et al. 2015,
Zidi et al. 2014, Merazi et al. 2015, Mouaici et al. 2016,
Laoufi et al. 2016, Beldjelili et al. 2016, Raminnea et al.
2016, Saidi et al. 2016, El-Hassar et al. 2016, Ghorbanpour
Arani et al. 2016, Bellifa et al. 2017, Bouafia et al. 2017,
Benahmed et al. 2017, Zidi et al. 2017, El-Haina et al.
2017, Mouffoki et al. 2017, Klouche et al. 2017, Sekkal et
al. 2017).

Jin et al. (2014) proposed a 3D exact solution for the
free vibrations of thick FG plates with general boundary
conditions. Akavci (2014) studied the free vibration
response of FG plates on elastic foundation using a non-
polynomial HSDT and an optimization procedure. Alijani
and Amabili (2014) studied the nonlinear forced vibrations
of moderately thick FG rectangular plates by using higher-
order shear deformation theories that consider the thickness
deformation effect. Belabed et al. (2014) proposed an
efficient and simple higher order shear and normal
deformation theory for FG plates. Hebali et al. (2014)
presented a new quasi-3D hyperbolic shear deformation
theory for the static and free vibration analysis of FG plates.
Fekrar et al. (2014) developed a new five-unknown refined
theory based on neutral surface position for bending
analysis of exponential graded plates. Bousahla et al. (2014)
studied the bending of advanced composite plates using a
novel higher order shear and normal deformation theory

based on neutral surface position. Akavci and Tanrikulu
(2015) presented 2D and quasi-3D shear deformation
theories for bending and free vibration analysis of single-
layer FG plates using a new hyperbolic shape function.
Hamidi et al. (2015) presented a sinusoidal plate theory
with 5-unknowns and stretching effect for thermo-
mechanical bending of FG sandwich plates. Meradjah et al.
(2015) proposed a new higher order shear and normal
deformation theory for FG beams. Akavci (2016) presented
a new hyperbolic shear and normal deformation plate theory
to study the static, free vibration and buckling analysis of
the simply supported FG sandwich plates on elastic
foundation. Draiche et al. (2016) presented a refined theory
with stretching effect for the flexure analysis of laminated
composite plates. Bennoun et al. (2016) presented a novel
five variable quasi-3D plate theory for vibration analysis of
FG sandwich plates.

The present article presents a generalized quasi-3D
hybrid-type higher order shear deformation theory for the
vibration analysis of FG plates on elastic foundation. The
highlight of this model is that, in addition to introducing the

thickness stretching effect (&, # 0), the displacement field

is modeled with only 5 unknowns by considering
undetermined integral terms. Thus the number of unknowns
is even less than the FSDT and do not need shear correction
factor. The displacement field is modeled based on a
hybrid-type (sinusoidal and parabolic) shear strain shape
functions. The mechanical properties of the plates are
supposed to vary in the thickness direction according to a
power law variation in terms of the volume fractions of the
constituents. The equations of motion of FG plates resting
on elastic foundation are derived by using the Hamilton’s
principle. These governing equations are then solved via
Navier method. As a result, fundamental frequencies are
obtained by solving eigenvalue problem. The accuracy of
the present theory is verified by comparing the obtained
results with those of HSDT’s solutions available in
literature.

2. Analytical modeling
2.1 Functionally graded plates

We consider in this work, a rectangular plate of uniform
thickness “h “, length “ @, and the width “b “, fabricated
from FGM and supported by an elastic foundation. The
rectangular Cartesian coordinate system X, y, z, has the
surface z =0, coinciding with the mid-plane of the plate.

The material characteristics change across the thickness
according to a power law distribution, which is defined
below

k
P(z)=P, +(P, P, )(% +%) (1)

where P represents the effective material property, P,

and P, represent the property of the top and bottom faces
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of the plate, respectively, and “K > is the exponent that
specifies the material distribution profile within the
thickness. The effective material characteristics of the plate,
including Young’s modulus, E, and shear modulus, G,
vary according to Eq. (1), and Poisson ratio, “ Vv ” is
considered to be constant (Qian et al., 2004).

2.2 Kinematic relations and constitutive relations

In this work, the conventional quasi-3D HSDT is
modified by considering some simplifying suppositions so
that the number of unknowns is reduced. The displacement
field of the conventional quasi-3D HSDT is defined by

u(x,y,z,t)=uo(x,y,t)-z%+f(z)cox(x,y,t) (22)

V(X,y,Z,1) =Vo(X,y,t)- ] 3y +f(2)¢)y(x y.t) (2b)

WX, Y,Z,t) =Wo(X,y,t)+9(2)ep, (X, y,t) (2¢)

where Uy, Vo, Wy, @,, ¢, and ¢, are six unknown

displacements of the mid-plane of the plate, f(z)

represents shape function defining the variation of the
transverse shear strains and stresses within the thickness.

By considering that ¢X=I0(X, y)dx  and

®, =I€(X, y)dy (Merdaci et al. 2016, Benbakhti et al.

2016, Bourada et al. 2016, Hebali et al. 2016, Chikh et al.
2016, Benchohra et al. 2017, Chikh et al. 2017, Fahsi et al.
2017, Meksi et al. 2017, Khetir et al. 2017, Besseghier et
al. 2017, Menasria et al. 2017), the Kinematic of the
proposed theory can be expressed in a simpler form as

u(x,y,z,t)zuo(x,y,t)-z%+klf(z)_[0(x,y,t) (3a)
v(x,y,z)=v0(x,y,t)-Z%Jrsz(z)'[e(x,y,t)dy (3b)

WY, Z0 =Wo(x YD+ U@ () g0

In this study, the hybrid type shear strain shape
functions are

2
f(Z)zESinE, and g(z)=1—4(£j (4)
Vg h h

The necessary equations are obtained by assuming small
strains are assumed (i.e., displacements and rotations are
small, and obey Hooke’s law). The linear strain relations
determined from the kinematic of Egs. (3(a)- 3(c)), valid for
thin, moderately thick and thick plate under consideration
are as follows

& | e ky ks
b s
e, r=1¢&, t+zeky v+ F(2) k5 1
0 b S
yxy 7/xy kxy kxy (5)
0
Vv . /
{ Y}=g(z){7 , } 9'(2)e)
7 xa 7 xz
where
au,
g;) OX
53 = % )
0 oy
Pl Uy | v
oy oX
%W,
ky ox° (62)
kb — _aZWO
y 2 !
kb ay
X _282w0
oxoy
kS k,0
ki b= k,0
s 0 0
Ky klgjedx+kzgj.0dy
o1 |k, j ody+ %
{7%2}: 82/ , (6b)
7 xz 7z
K, j 0 dx+
& =p, ad g'(z) = 92
0z

The integrals appearing in the above expressions shall
be resolved by a Navier type solution and can be expressed
as follows

_Iad _A'SX;; %IadyzB'azg @)
. .00
[odx= A jad y=B

where the coefficients A and B' are defined according
to the type of solution adopted, in this case via Navier.
Therefore, A" and B' are expressed as follows
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1 1 2 2
A=-—, B=-——"k=a"k,=p 8
2 5 2 8)
where o« and [ are defined in expression (24).

For the FG plates, the stress—strain relationships for
plane-stress state can be written as

o [Qi Q, Qs O 0 0 x
Gy Q, Qp Q3 0 0 0 y
o) |0 @ @ 0 0 0fal
Ty, 0 0 0 Q, 0 0 |7y,
Ty 0 0 0 0 Qs 0 |7k
Ty) | O 0 0 0 0 Qgll7y

inwhich, (o, o,, 0,, 7, T,, T,)and(&,, &,

gz' j/xy'
with respect to the plate coordinate system. The Qij

Vy2r Vx ) are the stresses and the strain vectors

expressions in terms of engineering constants are given
below

E(z)1-v)

Q1 =Qy =Qy = (1_ 2‘/)(1"' V)’ (10a)
B B _ vE(2)

Q=== )y 0O
_ _E(2)

Qus =Qs5 = Qg = 2(1+v) ' (10c)

2.3 Hamilton’s principle

Hamilton’s principle is employed herein to obtain the
equations of motion appropriate to the displacement field
and the constitutive equations. The principle can be stated
in analytical form as

t
ozj(au +3V, —5K)dt (11)
0

where dU is the variation of strain energy; oV, is the
variation of the potential energy of elastic foundation; and
o K is the variation of kinetic energy.
The variation of strain energy of the plate is given by
suU :j[ﬂxﬁgx+oy§£y+oz(3£z+rﬂ57ﬂ+rﬂ§;fﬂ +rxzé)‘;/xz]dv

v

=[N, el +N S e N, 5l + N, 575+ MESKE + MESKE + M 5K, (12)
A

FMESKE + MK+ M Sk +S5, 575 +S5 6 7% |dA

where A is the top surface and the stress resultants N,
M ,and S are defined by

h/2

(N.MEME)= [z fodz, (=xy.xy),  (13)
h/2 e h/2
- jg’(z) o, dz and (XSZ,SSZ)— J'g(rxz,ryz)dz
~h/2 —h/2

The variation of the potential energy of elastic
foundation can be expressed by

8V, = [ f.5wodA (14)
A

where f, is the density of reaction force of foundation.
For the Pasternak foundation model:

2 2
f=KwoK, |V, TW (15)
OX oy
in which K, and K, are the Winkler foundation

stiffness and the shear stiffness of the elastic foundatio
n.

The variation of kinetic energy of the plate can be
written as

SK=[[usu+vsv+wsw]p(z)dv
v

j Uy S Uy +Vo SV +Vilp Sy )+ I (W S, + @, SWp)
A

“1a, DO W, vabu”vu OO W, OW"avn
ox oy
50 26 350 26
[kA((u0 o +§éua]+k B(vU Y +Eav0]] (16)
+IZ[0WO a5y, vy 65w0] ((k A)zaaose ks )263059]
ox ox oy oy oy oy

A 0 ) 506 O ]
o[k af 2250 0005w, o f oW 250 2085, +Ka¢zr>‘¢zldA
X X X ox oy oy oy oy |

where  dot-superscript ~ convention  indicates  the

differentiation with respect to the time variable t; p(z)
is the mass density given by Eq. (1); and (1,, J;,K;) are
mass inertias expressed by

hi/2
(o 1153109, 36, Ko  Ky) = (2,22, 1, 2f, g, g2 f

-h/2

*)o(2) dz (17)

Employing the generalized displacement-strain
expressions (Egs. (5) and (6)) and stress—strain relations (9),
and applying integrating by parts and the fundamental
lemma of variational calculus and collecting the coefficients
of dU,, O0V,, OW,, 66 and OS¢, in Eq. (11),

the equations of motion are obtained as

oN, N, oW, o6
Suy s S T i - L +J,k]A’£

ox ay X

N, N,
P s TR I%h]kBﬂ

o o oy oy
5wﬂ»62M5 LM ZL My o,

F P LS oy f70WD+Jﬂ(p+I(—+ °) IVW0+J(kA—+kB Nz) (18)

s
50 1 —kMS kM - (kA +k, s) 7—J(kA—+kB—)

+J (kA

”y z

0s: 85
+ P

[ ox

S, : =N, =W, + K@,
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Substituting Eg. (5) into Eg. (9) and the subsequent
results into Eq. (13), the stress resultants can be expressed

in terms of generalized displacements (Uy,Vy, Wy, 6 ,9,)
as

au,
ox
N Ail AJZ 0 Bll B]Z 0 B]S] B]SZ O Xlﬁ ay
s ns o
N, A, A, 0 B, B, 0 B, B, 0 Xy, Qo , Mo
N, 0 0 A, O O By, O 0 By 0 y x
M| |By B, 0 D, D, 0 Dy Dy 0 Y, -
s &
M? _ B, B, 0 D, D, 0 D), D 0 Y {‘7‘?W0 (19a)
M), 0 0 B, 0 0O D, 0 0 D O Y
M3 By, B, 0 D D, 0 Hj H; 0 Yj; 0w
M B, B, 0 D D; 0 Hj H, 0 Y5 oxdy
M 0 0 B, 0 0 Dy 0 0 Hi © k&
N, Xz Xz 00 Y5 Yy 0 Ylsa sta 0 Zas, k;0 20
(k,A+k,B")
oxoy
?,
. 00  Og,
ss ] [a, o]|%® 5"
ol 4 ay 6')/ (19b)
S s 00 0
sz 0 ASS kl A __;,_ﬁ
oX  0Ox

where

h/2

(A\iji?v B;. D;. B, Dy, Hi?): J.Qij (ng(z)’zyzz’ f(2),z f(2), fz(z)):jz (208.)

-h/2

h/2

(Xij’Yij’Yijs’Zij)z j(llzlf(z)!gl(z))gl(Z)Qijdz (20D)

-h/2

Substituting Egs. (19) into Egs. (18), the equations of
motion of the proposed quasi-3D hybrid-type HSDT can be

expressed in terms of displacements (U,,V,,W,, €, ¢,)
as

Ay iUy + Agg doolig + (A, + Asg) dizVo — By dyy Wy — (By, +2Bg) dp i + (K, By +k, By ) d,0
+ (kA + kBB, + X3, = Loty — 1,y + (k, A)J,d,6

(21a)

(Ap + Agg) ity + Asg Ay + Ay Vg = (B, + 2B5g) dyy Wy — By, Aoy Wy + (K, By, +,B3,) d,0 (21b)
+ (kA + K, B") B0, 1,0 + X pqd, 0, = 10, — 1,d, W, + J,k,B'd, &

By1 diailly + (By, +2Bgg) dipally + (Brp +2Bgs) diyoVg + ByloonVo — Dy Gy Wy — Doyl
= 2(Dy; +2Dg5) Ao + (K Dfs + K, Djy) dys0 + (KD + K, D) dp0 + 2(k, A+ k;B') Dgosso ) (21.C
+Y3503,0, + Yoo, = o = Lol + o, + 1, (dytly +d,¥, )= 1,V 20, +‘]2(klA’d11é+ sz’dzzé) )

— (KB}, + Ky B) dyuy — (K, B, + K, B2,V — Bl (KA + K, BY) (dyplly + Uy;.00)
+(k, Dy + k,Dy,) dy W, + (k, Dy, + k,D3,)d,,wy + 2Dgg (k, A’ + k,B") d, 1, W,
(kP HE G HE + 20k HE) 0+ (G A) Ay 0+ (KB AL,,0 - Hig (kA +k;B) 2 dypt (2101)
— (kY3 +k,Ya)o, + K AALd, 0, +K,B'ALd,0, = -J,(k A'd,l, +k,B'd,V,)

+3, (kA Wy + K, B'd W, ) — K, (K, A)2d s + (k,B')2d )

- x13d1u0 - x23dzvo +Y13d11W0 +stdzzWo + (k1(A555 _Y153) + kz (AZA —Y;3))¢9

s s ; . 21e
+ Ay, + ALy, — Zygp, = JoW, + Ko, ( )

where d diji and djj, are the following differential

ij

operators
o o
G ==~ il =5
XiOX OXiOX jOX,
(22)
d A = i,jl,m=12
im = ————, 9i=—, (i,jI,5m=12).
I ook ondxg | ox (i.J )

3. Solution procedure

For the analytical solution of the partial differential Eqgs.
(21(a)-21(e)), the Navier method, based on double Fourier
series, is employed under the specified boundary
conditions. Using Navier’s procedure, the solution of the
displacement variables satisfying the above boundary
conditions can be expressed in the following Fourier series

Ug Uy cOS(ax X)sin( By )e' !
Vo w o | Vi Sin(ax)cos(By)e' !
Wyt =D > 4 Wy, sin(ax)sin( Ay e (23)
@ mAn=llox sin(ax)sin(gy)e'
?, @, sin(ax)sin(By)e'
where (U, Vi Wi, X s @y ) are unknown

functions to be determined and @ is the natural frequency.
a and [ areexpressed as

a=mzla and g=nxl/b (24)

Substituting Eg. (23) into equations of motion (21) we
get below eigenvalue equation for any fixed value of m

and N, for free vibration problem

m m m

11 12 13
S12 Sy Sz S Sys My My My My, My

< C
E

mn

513 523 533 SSA 535 - m13 m23 m33 mC!A m35 W =

514 S24 334 544 545 m14 m24 m34 m44 m45 X mn

Sis S5 S35 Sas Sy Mg Mps Mg Mys Mgy @,
where

su= A+ B A, Sip=aB( A+ Peg) ]
S13=—a°Byy—aff*( By +2Bgs) (26)
s, = —a(k,BS, +k,BS) +aff? B (k,A +k,B) ]
Sis =aXy3: S, =atAg+ A,
Sys ==’ 3(By, +2Bg,) _ﬂsBzzl
S, =—BK,B;, +k,B5,) +a’ Bk, A +Kk,B)Bg,
So5 = —PXys,

Sg3 = "Dy + Dy, +20° 7 (Dy, +2Dg) + K, + K (@ + 57)
S50 = @Ky Dfy + (K, + Ky 52) D, + 7K, D3, — 20 52 (K, A +K,B ) Dgg

Sg5 = @ Yy5 + SV
Hes +a? (kA )? Ass + B2 (K,B')? ALy
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Table 1 Material properties used in the FG plates
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Material Properties
Young’s modulus (GPa) Poisson’s ratio Mass density kg/m®
Aluminium (Al) 70 0.3 2702
Alumina (AlL,O3) 380 0.3 3800
Zirconia (ZrO,) 200 0.3 5700

Table 2 Non-dimensional fundamental frequencies

& =wa’p h/D, for simply supported isotropic square plates

alh Theory Made
(L1 (1.2 2,1 2,2) (L3 G.1) 2,3) $.2)
1000 Leissa (1973) 19.7392 49.3480 49.3480 78.9568 98.6960 98.6960 128.3021  128.3021
Zhou et al. (2002) 19.7115 49.3470 49.3470 78.9528 98.6911 98.6911 128.3048  128.3048
Akavci (2014) 19.7391 49.3476  49.3476  78.9557  98.6943 98.6943 128.3020 128.3020
Mantari (2015) 19.7395 49.3483  49.3483 78.9568 98.6957 98.6957 128.3037  128.3037
Present 19.7391 49.3476  49.3476  78.9557  98.6943 98.6943 128.3019  128.3019
100 Liu and Liew (1999) 19.7319 49.3027 49.3027 78.8410 98.5150 98.5150 127.9993 127.9993
Nagino et al. (2008) 19.7320 49.3050 49.3050 78.8460 98.5250 98.5250 128.0100 128.0100
Akavci (2014) 19.7322 49.3045 49.3045 78.8456 98.5223 98.5223 128.0346  128.0346
Mantari (2015) 19.7326  49.3056 49.3056  78.8477 98.5253 98.5253 128.0160 128.0160
Present 19.7323  49.3049 49.3049 78.8466 98.5239 98.5239 128.0143  128.0143
10 Liu and Liew (1999) 19.0584 45.4478 45.4478 69.7167 84.9264 84.9264 106.5154  106.5154
Nagino et al. (2008) 19.0653 45.4869 45.4869 69.8093 85.0646 85.0646 106.7350  106.7350
Akavci (2014) 19.0850 45,5957 45,5957 70.0595 85.4315 85.4315 107.3040 107.3040
Mantari (2015) 19.0909 45.6242 45.6242 70.1176 85.5096 85.5096 107.4092  107.4092
Present 19.0908 45.6251 45.6251 70.1214 85.5164 85.5164 107.4222 107.4222
5 Shufrin et al. (2005) 17.4524  38.1884 38.1884 55.2539 65.3130 65.3130 78.9864 78.9864
Hosseini et al. (2011) 17.4523  38.1883 38.1883 55.2543 65.3135 65.3135 78.9865 78.9865
Akavci (2014) 175149 38.4722 38.4722 55.8358 66.1207 66.1207 80.1637 80.1637
Mantari (2015) 175294 38.5079 38.5079 55.8561 66.1060 66.1060 80.0589 80.0589
Present 175303 38.5169 38.5169 55.8817 66.1471 66.1471 80.1296 80.1296

Sis = kY3 +K, Yo, + @’k A A + Bk, B A,
2 2
Ses =0 A + A + L3y

My =My =1y, my=mgy=m,;=m;=0
ma=-al, m,=akAl,,
ms =0, m23=—,8|1
m,, = Bk,BJ, My =1, +1,(a’+p%),

m,, = _‘]2(k1'6‘d2 +sz'ﬁ2)
m,, = Kz((klAl)zaz "‘(szl)zﬁz)

Mg :‘]O' Mg5 = Ko

4. Numerical results and discussions

The results of various numerical analyses are
presented in this section for vibration analysis of a
simply supported FG plates with various indexes that
specify the material distribution profile within the thick

ness and several values of the thickness ratio a/h

and aspect ratio a/b. Typical mechanical characteristic
s for metal and ceramics employed in the FG plates ar
e given in Table 1. For the validation of the proposed
quasi-3D hybrid-type HSDT, both, homogeneous isotro
pic plates and FG plates are investigated.

4.1 Investigation of homogeneous isotropic plates

In this part of study, homogeneous isotropic materia
| is investigated. Unless otherwise stated, the following
expressions to compute the non-dimensional natural fr
equencies and foundation parameters were used

& =wa’\/ph/D,, k,=K,a*/D,,
(27)
k,=K.,a?/D,, D,=Eh*/120-v?)]

Table 2 shows the first eight non-dimensional
fundamental frequencies. These values are compared with
the solutions of different researchers: 3D exact solutions by
Leissa (1973), Zhou et al. (2002), Nagino et al. (2008),
FSDT results obtained using differential quadrature element
method (DQM) by Liu and Liew (1999), and HSDTs by
Shufrin and Eisenberger (2005), Hosseini-Hashemi et al.
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(2011) Akavci (2014) and Mantari (2015). From these
results it can be deduced that for the thickness ratio

“a/h=1000 °, the computed results are very close to the
results reported by Leissa (1973) and have proximity with
the ones given by Akavci (2014), for the first eight modes
of free vibration. For the thickness ratio ““a/h =100 ", the
obtained results have also proximity with those computed
by Akavci (2014) and Nagino et al. (2008). By reducing the
thickness ratio “a/h > the obtained results demonstrate
good agreement with the other models presented in Table 2.

4.2 Investigation of FG Plates

In this part of study, FG plates are investigated. Two
types of FG plates (AlI/AI,O; and Al/ZrO,) are employed
(see mechanical properties in Table 1). Unless otherwise has
been stated, for this section, the following relations of non-
dimensional natural frequencies and foundation parameters
was used

Z):a)h,/pm/Em , B=owh|p. lE_, (28a)
w=(wa*lh)/p,E, . B=(wa®lh)/p,/E,,

k,=K,a'/D, k,=Ka’/D
where
D =h®/12(1-v2)|p(8+3p+ p? )Eyy + X2+ p+ p? )E, )/ (28b)
[a+p) 2+ p)E+p)]

In Table 3, non-dimensional fundamental frequencies of
simply supported plate are calculated for four different
gradient indexes and compared with the 3D exact solution
developed by Jin et al. (2014) and the theory proposed by
and Mantari (2015). The results obtained demonstrate good
accuracy for square plates. In rectangular plates, the results
are close to the referential value in the cases when the
thickness ratio a/h>5.

In Table 4, non-dimensional natural frequencies for
different gradient indexes are calculated and compared with
the 3D exact solution by Vel and Batra (2004), the quasi-3D
sinusoidal and hyperbolic HSDTs by Neves et al. (2012a,b);
and the HSDTs by Akavci (2014), Hosseini-Hashemi et al.
(2011), Mantari (2015) and Matsunaga (2008). It can be
observed that the results computed by the proposed theory
agree with the HSDTSs, quasi-3D and 3D exact results.

Table 5 shows the non-dimensional fundamental
frequencies of FG plates resting on elastic foundations for
different values of the thickness ratio a/h. The results
computed using the present model, are compared with the
FSDT’s results by Hosseini-Hashemi et al. (2010), and the
HSDTs by Akavci (2014) and Mantari (2015). From this
table can be observed that the results of the proposed theory
are closer to the results reported by Akavci (2014)
(optimized shear deformation theory for the dynamic
analysis of FG plates).

Table 3 Comparison of non-dimensional fundamental
frequencies @ =wh,/p, /E, of Al/Al,0sFG plates

b/a a/h p _Theory

Jinetal. Mantari Present

(2014) (2015)
1 10 0 0.1135 0.1135 0.1135
1 0.0870 0.0882 0.0882
2 0.0789 0.0806 0.0806
5 0.0741 0.0755 0.0755
5 0 0.4169 0.4169 0.4196
1 0.3222 0.3261 0.3261
2 0.2905 0.2962 0.2961
5 0.2676 0.2722 0.2720
2 0 1.8470 1.8510 1.8526
1 1.4687 1.4778 1.4789
2 1.3095 1.3223 1.3230
5 1.1450 1.1557 1.1547
2 10 0 0.0719 0.0718 0.0718
1 0.0550 0.0557 0.0557
2 0.0499 0.0510 0.0509
5 0.0471 0.0479 0.0479
5 0 0.2713 0.2713 0.2713
1 0.2088 0.2115 0.2115
2 0.1888 0.1926 0.1926
5 0.1754 0.1786 0.1785
2 0 0.9570 1.3044 1.3049
1 0.7937 1.0348 1.0352
2 0.7149 0.9296 0.9297
5 0.6168 0.8241 0.8231

Table 4 Comparison of non-dimensional fundamental
frequenciesw =wh,/ p,, / E,, of Al/ZrO, FG square plates
(a/h =5)

Theory p=2 p=3 p=5
Vel and Batra
(2004) 0.2197 0.2211 0.2225
Neves et al.
(20123) &, =0 0.2189 0.2202 0.2215
Neves et al.
(20122) £, #0 0.2198 0.2212 0.2225
Neves et al.
(2012b) ¢, =0 0.2191 0.2205 0.2220
Neves et al.
(2012b) ¢, %0 0.2201 0.2216 0.2230
Matsunaga
(2008) 0.2264 0.2270 0.2280
Hosseini-Hashemi
et al. (2011) 0.2264 0.2276 0.2201
Akavci (2014) 0.2264 0.2269 0.2278
Mantari (2015) 0.2285 0.2290 0.2295
Present 0.2285 0.2290 0.2295

4.3 Parameter studies

Fig. 1 presents the variation of non-dimensional
natural frequency of a simply supported FG plate
versus the gradient index “K  for different values of
the thickness ratio “@/h . It can be noticed from
this figurethat for a given value of ‘K », as the
thickness ratio increase, the natural frequency increase,
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Table 5 Comparison of non-dimensional fundamental frequencies 8 =wh,/p. /E. of Al/ZrO, FG rectangular plate
(a/b=15)
(ky k) alh P _Theory

Akavci (2014) Hosseini-Hashemi et al. (2010) Mantari (2014) Present

0, 0) 20 0 0.02393 0.02392 0.02393 0.02397
0.25 0.02309 0.02269 0.02312 0.02315

1 0.02202 0.02156 0.02217 0.02220

5 0.02244 0.02180 0.02260 0.02262

0 0.02056 0.02046 0.02057 0.02060

10 0 0.09203 0.09188 0.09207 0.09224
0.25 0.08895 0.08603 0.08909 0.08925

1 0.08489 0.08155 0.08549 0.08564

5 0.08576 0.08171 0.08638 0.08651

0 0.07908 0.07895 0.07911 0.07927

5 0 0.32471 0.32284 0.32498 0.32583
0.25 0.31531 0.31003 0.31591 0.31670

1 0.30152 0.29399 0.30349 0.30425

5 0.31860 0.29099 0.29990 0.30053

0 0.27902 0.27788 0.27925 0.28001

(250, 25) 20 0 0.03422 0.03421 0.03417 0.03419
0.25 0.03312 0.03285 0.03309 0.03311

1 0.03213 0.03184 0.03220 0.03222

5 0.03277 0.03235 0.03283 0.03285

0 0.02940 0.02937 0.02936 0.02939

10 0 0.13375 0.13365 0.13302 0.13315
0.25 0.12959 0.12771 0.12895 0.12907

1 0.12585 0.12381 0.12557 0.12568

5 0.12778 0.12533 0.12755 0.12764

0 0.11492 0.11484 0.11430 0.11443

5 0 0.50044 0.49945 0.48945 0.49020
0.25 0.48594 0.48327 0.47535 0.47610

1 0.47298 0.46997 0.46401 0.46468

5 0.47637 0.47400 0.46838 0.46880

0 0.43000 0.43001 0.42057 0.42129

25

0 10 20 30 40 50 60 70 80 90 100
Gradient index (p)

Fig. 1 Variation of non-dimensional fundamental frequency Z}:(a)azlh),/pC/Ec of Al/Al,O; FG square plates with
gradient index
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0.0 0.5 1.0 1.5 2.0 25

Fig. 2 Variation of non-dimensional fundamental frequency 73 =(wa’/h) |p. 1 E, of Al/AL,O;3 FG square plates versus
aspect ratio (a/h=10)

0.50

0.45 — ky=10", kg=0
- - ky=10% kg=0

0.40 s

—x— k=103, k=0

0.35 —o— ky=10"  kg=10"
k=102, kg=10"
0.30 { _ kw=103 ks 2101

0 10 20 30 40 50 60 70 80 90 100
Gradient index (p)

Fig. 3 Variation of non-dimensional fundamental frequency S =wh,/p./E_ of Al/Al,O3; FG square plates resting on
elastic foundation with gradient index (a/h=5)

increment ratio decreases for high values of ““K . the variation of natural frequency of FG plates versus
For but the high values of the gradient index ““K the aspect ratio ““@/b > for different values of
and thesame thickness ratio ““a/h*’, the natural gradient index “K . From these results, it can be

frequency does not change too much. Fig. 2 presents observed that for a given value of “a@/b” as the
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Fig. 4 Variation of non-dimensional fundamental frequency B =wh,/p, /E_ of Al/Al,O; FG square plates resting on

elastic foundation versus aspect ratio (a/h=10, p=1)
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Fig. 5 Variation of non-dimensional fundamental frequency @ =(wa’/h),/p, /E, of Al/ZrO, FG square plates

resting on elastic foundation versus the Winkler parameter (k, =10, p=1)

gradient index ““K > increases, the natural frequency
decrease. It can be also seen that for a fixed value

of the gradient index “K ”, as the aspect ratio “a/b”
increases, the nominal frequency increases.

Fig. 3 indicates the variation of non-dimensional natural
frequency of FG plates resting on elastic foundation versus

the gradient index ** K ” for different values of *“ K, ” and *
ks ”. From this figure, it can be observed that for a given

value of “ K ” and one coefficient of Pasternak, as the other

coefficient increase, the natural frequency increase. Again,
it can be noticed that for high values of the gradient index

K ” the natural frequency does not change too much. Fig. 4
presents the variation of the natural frequency versus the

aspect ratio “a/b” of FG plate (kK =1) for different
values of foundation parameters kw , kS >, It can be
observed that for a given value of aspect ratio “ a/b ” and

Winkler coefficient “ K, », as the Parameter coefficient



Free vibration of functionally graded plates resting on elastic foundations... 519

/h=5
16 a
—e—a/h=10 )
—a— a/h=20 — |
14 - v - alh=50
/
12 /

0 10 20 30 40 50 60 70 80 90 100

Pasternak parameter (k)

Fig. 6 Variation of non-dimensional fundamental frequency @ =(wa’/h),/p, /E, of Al/ZrO, FG square plates

resting on elastic foundation versus the Pasternak parameter (k, =10, p=1)
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Fig. 7 Variation of non-dimensional fundamental frequency @ =(wa”/h)./p,,/E,, of different functionally
graded square plates versus the gradient index (a/h=10, p=1): (a8 k,=k, =0, (b) k, =100, k, =0, (c)

k, =0, k, =100and (d) k, =100, k, =100

“ k5 ” increases, the natural frequency increases. Also it is

observed that for small values of “a/b” and ¢ kW ”

constant, the curves tend to approach to the same value, this
can be seen more clearly for large values of * kW . When “

ks ” is constant for a given value of “a/b ”, as the value

of the Winkler coefficient kw ” increases, the value of

natural frequency increases. It is also remarked that the
curves approach each other as the ratio ““ a/b * increases.
Figs. 5 and 6 present the variation of the natural

frequency versus the Winkler parameter “K_ > and the

w
Pasternak parameter kS ”, respectively. In Fig. 5 can be
observed that the natural frequency vary linearly with the
Winkler parameter kW ”. The curves presented in Fig. 6

have a greater slope than the curves in Fig. 5, i.e., the

Pasternak parameter kS ” has greater effect in the natural

EX)

frequency than the Winkler parameter kW

The non-dimensional frequency-gradient index plots of
FG plates are shown in Figs. 7(a)-(d) for different FGMs
and different values of foundation parameters. It can be
seen the foundation coefficients have a great effect on
vibration response of FG plate. Also,

4. Conclusions

This work presents a dynamic analysis for FG plates
resting on elastic foundation by employing a new quasi-3D
hybrid type HSDT. The theory is developed by making
further simplifying assumptions to the existing HSDTSs, with
the incorporation of an undetermined integral term. The
number of variables and equations of motion of the
proposed quasi-3D hybrid type HSDT are reduced by one,
and hence, make this theory simple and efficient to use. The
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equations of motion are obtained through the Hamilton’s
principle. These equations are solved by utilizing Navier’s
procedure, subsequently the fundamental frequencies are
found by solving the corresponding after eigenvalue
problem. The results were compared with the solutions of
several theories. The results determined by the proposed
theory can be summarized as follows:

e It has been noticed that the proposed formulation
can accurately predict fundamental frequencies of
FG plates resting on two-layer elastic foundations.

e The fundamental frequencies of FG plate decrease
with the increase of gradient index.

e In the presence of elastic foundation, increasing
value of Winkler and Pasternak coefficients causes
to increase in the fundamental frequency of FG
plate.

e The Pasternak modulus coefficient of foundation
has more significant effect on increasing natural
frequency of FG plate than the Winkler modulus
coefficient.

e Increasing value of gradient index increases the
effect of elastic foundation on natural frequency.
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