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1. Introduction 

 
Recently, distributed signal processing has received a 

Nowadays, nano structures such as nanobeams, nano plates 
and nano membranes, are very attractive field for many 
researchers due to their improvement of the quality 
properties. 

The classical continuum theory is aptly practical in the 
mechanical behavior of the macroscopic structures, but it is 
improperly for the size effect on the mechanical treatments 
on micro- or nano-scale structure. Nevertheless, the 
classical continuum theory need to be extended to factor in 
the nanoscale effects. This problem can be unraveled 
through the nonlocal elasticity model that presented by 
Eringen (2002). According to this model, the stress state at a 
certain point is considered as a function of strain states of 
all points in its area.  

Among of assortment of nano structures, nanobeams 
have more important applications (Daulton et al. 2010, Hu 
et al. 2010). Lots of studies have been performed to 
investigate the size-dependent response of structural 
systems based on Eringen’s nonlocal elasticity theory 
(Ebrahimi and Salari 2015a, b, 2016, Ebrahimi et al. 2015a, 
2016c, Ebrahimi and Nasirzadeh 2015, Ebrahimi and Barati 
, 2016 a,b, c, d, e, f, Ebrahimi and Hosseini 2016 a, b, c) . 

Vibration of carbon nanotubes using nonlocal 
continuum mechanics theory has been surveyed by Wang 
and Varadan (2006). However, Zhang et al. (2009) have 
investigated bending, buckling and vibration of micro and  
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nanobeams by nonlocal beam theory. In addition, on 
bending, buckling and vibration of graphene nanosheets 
based on the nonlocal theory has been presented by Liu et 
al. (2016). Nevertheless, vibration of nanobeams using 
nonlocal theory has been developed with an axial load by Li 
et al. (2010). In addition, Eltaher et al. (2013), have 
presented vibration of Euler-Bernoulli nanobeams by 
employing finite element method. Also, forced vibration 
analysis of viscoelastic nanobeams embedded in an elastic 
medium has been presented by seref and Akbas (2016). In 
addition, Ebrahimi and Shaghaghi (2016) have investigated 
thermal effects on nonlocal vibrational characteristics of 
nanobeams with non-ideal boundary conditions. 
Nonetheless, Murmu and Adhikari (2010) have analyzed the 
nonlocal transverse vibration of double nanobeam system. 
In addition Murmu and Adhikari (2010) have presented 
longitudinal vibration of double nanorod system by using 
nonlocal theory. However, many authors are attracted to 
analyse the micro and nano structures in recent years 
(Akbas 2016) 

Recently, piezoelectric nanostructures, have been 
appealing a great deal of interest from research. These 
distinguished properties make them apt for potential 
applications in micro and nano electro-mechanical systems 
(MEMS & NEMS) such as nano sensors (Wang et al. 
2004), nano actuators (Juang et al. 2007) and nano 
generators (Wang and Song 2006). Analyzing of the 
mechanical behavior of piezoelectric nanostructures such as 
vibration analyze, is an important topic in the design 
process of the nano devices. 

On the static and dynamic stability of beams with an 
axial piezoelectric actuation has been investigated by 
Zehetner and Irschik (2008). In addition, Benjeddou (2009) 
has presented new insights in piezoelectric free-vibrations 
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using simplified modeling and analyses. Also, Simulation 

and experimental analysis of active vibration control of 

smart beams under harmonic excitation has been developed 

by Malgaca and Karagulle (2009). However, 

thermoelectric-mechanical vibration of piezoelectric 

nanobeams has been investigated by Ke and Wang (2012).  

In this paper nonlocal Eringen theory and Timoshenko 

beam model are used. However, dynamics of silicon 

nanobeams with axial motion subjected to transverse and 

longitudinal loads considering nonlocal and surface effects 

has been presented by Shen et al. (2017). In addition, Also, 

Ke et al. (2012) have presented nonlinear vibration of the 

piezoelectric nanobeams based on the nonlocal theory. 

However, vibration behavior of piezoelectric nanobeams 

has been developed by Rahmani and Noroozi (2014). 

Nevertheless, Ke et al. (2014) have evaluated Thermo-

electro-mechanical vibration of piezoelectric nanoshells. 

Also, in this paper various boundary conditions are 

employed. Meanwhile, free vibration of piezoelectric 

nanobeams in framework of a nonlocal Eringen model have 

been presented by Jandaghian and Rahmani (2016). In 

addition, Beni (2016) has investigated size-dependent 

analysis of piezoelectric nanobeams with considering 

electro-mechanical coupling. Moreover, Doroushi et al. 

(2011) have surveyed vibration analysis and transient 

response of an FGPM beam under thermo-electro-

mechanical loads using higher-order shear deformation 

model.  

Recently a new class of composite materials known as 

functionally graded materials (FGMs) (Shen 2016). A 

typical FGM is an inhomogeneous composite that 

composed of different parts such as ceramic and metal. 

Several studies in analysis of FG materials, have been 

significantly presented by many researchers (Li and Hu 

2017, Ebrahimi et al. 2017, Ebrahimi and Rastgoo 2008 a, 

b, c, Ebrahimi 2013, Ebrahimi et al. 2008, 2009a,b, 2016a , 

Ebrahimi and Zia 2015, Ebrahimi and Mokhtari 2015).  

Thermo-mechanical vibration analysis of nonlocal 

temperature-dependent FG nanobeams has been surveyed 

by Ebrahimi and Salari (2015). In this research, various 

boundary conditions are considered. Also Ebrahimi and 

Barati (2016g-v, 2017a,b) and Ebrahimi et al. (2017) 

explored thermal and hygro-thermal effects on nonlocal 

behavior of FG nanobeams and nanoplates. 

Nevertheless, Nazemnezhad and Hosseini-Hashemi 

(2014), have developed nonlinear free vibration of 

functionally graded nanobeams by employing nonlocal 

Eringen theory in their research. In addition, free vibration 

analysis of functionally graded size-dependent nanobeams 

has been surveyed by Eltaher et al. (2012). Meanwhile, free 

flexural vibrational behavior of FG nanobeams employing 

differential transform method has been studied by Ebrahimi 

and Salari (2015). In addition, Ebrahimi and Shafiei (2016) 

have presented application of Eringen`s nonlocal elasticity 

theory for vibration analysis of rotating functionally graded 

nanobeams. Also, Application of the differential 

transformation method for nonlocal vibration analysis of 

functionally graded nanobeams has been developed by 

Ebrahimi et al. (2015). In addition, Ebrahimi and Salari 

(2015) have presented nonlocal thermo-mechanical 

vibration analysis of functionally graded nanobeams in 

thermal environment. Furthermore, a nonlocal higher-order 

shear deformation beam model for vibration analysis of FG 

nanobeams has been investigated by Ebrahimi and Barati 

(2016). In addition, komijani et al. (2016), have been 

presented nonlinear analysis of microstructure-dependent 

functionally graded piezoelectric material actuators. 

Nowadays, considering all the good properties of 

functionally graded (FG) combined piezoelectric materials, 

functionally graded piezoelectric material (FGPM) is a 

material with exceptional properties. Furthermore, with the 

progress of nanotechnology and the procedures of 

combining materials in the nanoscale, a set of FGPM 

nanostructures has been made, which generally includes a 

variety of beam-type structures. Studies conducted to 

investigate electric and mechanical properties of FGPMs 

are not profuse, and they generally use classical continuum 

models which overlook the scale effect. 

Electromechanical bending, buckling, and free vibration 

analysis of functionally graded piezoelectric nanobeams has 

been presented by Beni (2016). However, Ebrahimi and 

Salari (2016), have developed thermo-electrical buckling 

analysis of FG piezoelectric nanobeams. Moreover, 

buckling analysis of nonlocal third-order shear deformable 

FG piezoelectric nanobeams with considering elastic 

foundation. In addition, Hosseini-Hashemi et al. (2014) 

have surveyed Surface effects on free vibration of 

piezoelectric functionally graded nanobeams using nonlocal 

elasticity 

In recent years vibration of curved nanobeams and 

nanorings, have been worked in many empirical 

experiments and dynamic molecular simulations (Wang and 

Duan 2008). Hence some researchers are interested in 

studding of vibration curved nanobeams. 

Yan and Jiang (2011) have investigated the 

electromechanical response of a curved piezoelectric 

nanobeam with the consideration of surface effects. In 

addition, a new numerical technique, the differential 

quadrature method has been developed for dynamic 

analysis of the nanobeams in the polar coordinate system by 

Kananipour et al. (2014). However, Ebrahimi and Daman 

(2016) have presented the radial vibration of embedded 

double-curved-nanobeam-systems. However, Ebrahimi and 

Daman (2016) have developed investigating surface effects 

on thermomechanical behavior of embedded circular curved 

nanosize beams. As well as, dynamic modeling of 

embedded curved nanobeams incorporating surface effects 

has been presented by Ebrahimi and Daman (2016). In 

addition, Ebrahimi and Daman (2017) have studied 

analytical investigation of the surface effects on nonlocal 

vibration behavior of nanosize curved beams. However, 

Wang and Duan (2008) have surveyed the free vibration 

problem of nanorings/arches. In this research the problem 

was formulated on the framework of Eringen’s nonlocal 

theory of elasticity according to allow for the small length 

scale effect. Furthermore, Out-of-plane frequency analyze 

of FG circular curved beams in thermal environment has 

been investigated by Malekzadeh et al. (2010). In addition, 

Hosseini and Rahmani (2016) have surveyed free vibration 

of shallow and deep curved functionally graded nanobeam 
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based on nonlocal Timoshenko curved beam model. 

This present research makes the first achievement to 

develop the thermoelectric-mechanical vibration of curved 

functionally graded piezoelectric nanobeams based on 

nonlocal Timoshenko beam theory. Curvature rather exists 

in all of the real beams and nanobeams. Moreover, in 

previous researches in order to streamline of mathematical 

equations, straight beam models have been used, whilst 

curved beam models are more practicable than straight 

ones. To the best of the author’s knowledge, there is no 

record regarding the thermoelectric-mechanical vibration of 

curved FG piezoelectric nanobeams based on nonlocal 

Timoshenko curved beam theory. Therefore, there is a 

strong scientific need to understand the vibration behavior 

of curved FGP nanobeams in thermal environment. In this 

study, the size-dependent formulation is developed for the 

FGPM Timoshenko nanobeam. The thermo-electro-

mechanical material properties of the beam is assumed to be 

graded in the thickness direction based on to the power law 

distribution. The governing equations and boundary 

conditions are derived by employing the Hamilton’s 

principle. Then Navier method is used to solution 

differential equations. Dimensionless natural frequencies 

are obtained respect to the effect of various parameters such 

as angle of curvature, external electric voltage, temperatures 

change, mode numbers, power-law index and nonlocal 

parameter on vibration of curved FGP nanobeams. 

Comparison between results of the present research and 

available data in literature reveals the accuracy of this 

model.  

 

 

2. Problem formulation 
 

2.1 The material properties of curved FGP 
nanobeams 

 
A curved FGP nanobeam made of piezoelectric 

materials involved PZT-4 and PZT-5H with length L in   

direction and uniform thickness h in z direction, and under 

an electric potential  , ,z t   as shown in figure 1 is 

assumed. 

The relation between length of circular curved beam 

   and the angle of curvature of beam    can be 

written as (Setoodeh et al. 2015). 

R   (1) 

The effective material properties of the curved FGPM 

beam are assumed to vary continuously in the thickness 

direction based on a power-law model. According to this 

model, the effective material properties, P, can be defined 

as follow (Komijani et al. 2014). 

u u l lP PV PV   (2) 

where  ,l uP P  are the properties of materials at the 

lower surface and upper surface, respectively, in addition, 

 ,l uV V are the corresponding volume fractions related by 

 

 
Fig. 1 Geometric of curved FGP nanobeam 
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Hence, from equations (2) and (3), the impressive 

material properties of the curved FGP beam can be defined 

as 

   
1

2

p

u l l

z
P z P P P

h

 
    

   

(5) 

where p is the nonnegative variable parameter (power-law 

exponent). Power-law exponent determines the distribution 

profile of material through the thickness of the beam in z 

direction. Based on this distribution, the bottom surface 

 2z h   pure is PZT-5H, whiles the top surface 

 2z h  of curved FGP nanobeam stands for pure PZT-

4. 

 

2.2 Governing equation 
 

Based on Timoshenko beam theory, displacement field 

in a point of the curved beam model can be remarked as 

     , , 1 , ,
z

u z t u t z t
R

    
 

   
   

(6a) 

 

   , , ,zu z t w t 
 

(6b) 

where w and u interpret the radial and tangential 

displacement of curved FGP beam. In addition,    is 

total bending rotation of cross sections of curved FGP 

beam. The strains of Timoshenko curved beam theory may 

be expressed as 

0 w u

R





 
  

(7a) 

 








  

(7b) 
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z

u w

R
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
  
  

(7c) 

Here   denotes shear strain in curved beam model. 

 E Cos z

 


 

 
  

   

(8a) 

 

  02 i t

z

V
E Sin z e

z h


   

    
  

(8b) 

 

 0 z    
 

(9) 

The energy method (Hamilton’s principle) can be 

employed to derive the governing equations as follow 

 
0

0
t

s extU T W     (10) 

where sU ,T  and extW  are strain energy, kinetic energy 

and work done by external exerted loads, respectively. The 

first variation of strain energy sU  can be determined as 

 s z z z z
V

U D E D E dV                
(11) 

By inserting Eqs. (6) and (7) in Eq. (10), first variation 

of strain energy can be obtained as 

   

0

2

0
2

L

s

h
L

h z

u w u w
U N M Q d

R R

D Sin z D Cos z dzd

    
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  


    




         
            

        

 
  

 



 
 

(12) 

Here M, N, and Q define bending moment of cross 

section, axial force, and shear force, respectively. These 

stress resultants existing in Eq. (12) may be expressed as 

A
N dA   

 A
M zdA    

shear z
A

Q K dA   

(13) 

where ShearK  expresses the shear correction factor. In 

addition, Kinetic energy of Timoshenko curved beam can 

be calculated as 

 
2 2

0

1

2

L
z

A

u u
T z dAd

t

 


     
         
 

 

(14) 

Hence, first variation of kinetic energy can be calculated 

as 

1 2

0 0 2

2

1 2

2I Iu u w w
I I

t t R t tR
T d

I w w
I I

R t t t t t t

 

 
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      
     

       
        
      

          

(15) 

where mass moments of inertias  0 1 2, ,I I I  are 

calculated as follows 

    2

0 1 2, , 1, ,
A

I I I z z z dA 
 

(16) 

Whereas the work done by the external loads is defined 

by extW   

 
0

1

2

L

ext E T

w w
W N N d  

 

 
 
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(17) 

where EN  and TN  are the external electric voltage 0V

and temperature changes T , which can be given as 

2
11 1

2

h

hTN c Tdz 
 

02
31

2

2

h

hE

V
N e dz

h
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(18) 

By inserting u , w ,   and   coefficients 

equal to zero, following equation of motions can be 

determined for curved FGP nanobeam 

2

0 2

N Q u
I

R t

 
 
   

(19a) 
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(19b) 
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0

h h

h h z

D
Cos z dz D Sin z dz   


 


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 
 

(19d) 

Boundary conditions that are related to equation of 

motions are considered as 

0N   or 0w   at 0   and L   (20a) 

 

0Q   or 0u   at 0   and L   (20b) 

 

0M   or 0   at 0   and L   (20c) 
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 2

2

0

h

h D Cos z dz    or 

0   at 0   and L   

(20d) 

2.3 The nonlocal elasticity model for curved FG 
nanobeam 

 
Despite the fundamental equations in classic elasticity 

theory, Eringen’s nonlocal model [1] explains that the stress 

at a certain point x in a body is assumed as a function of 

strains of all points x′ in the near realm. This supposition 

is very good agreement with experiments of atomic model 

and lattice dynamics in phonon scattering in which for a 

nonlocal piezoelectric materials. The basic equations with 

zero body force can be given as (Ke et al. 2012). 

 
   

 ,
ijkl kl kij k

ij
V

ijkl kl

C x e E x
x x dV x

C T


  



   
    

   
  (21a) 

 

 
 

 
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ikl kl

i
V

ik k i

e x
D x x dV x

k E x p T


 

 
    

    


 (21b) 

where 
ij , 

ij , iD  and iE  are the stress, strain, 

electric displacement and electric field components, 

respectively; T  and kl   are the temperature changes 

and thermal expansion coefficient, respectively; ijklC , kije

, ikk  and ip  are elastic, piezoelectric, dielectric and 

pyroelectric constants, respectively;  ,x x    is the 

nonlocal kernel function and x x   is the nonnegative 

distance. 0e a l  is given as size coefficient. 

However, the relations in Eq. (21) causes the elasticity 

problems difficult to solve, in addition to possible lack of 

determinism. Eringen [1] presented in detail properties of 

non-local kernel  x x    and evaluated that when a 

kernel takes a Green’s function of linear differential 

operator 

   L x x x x    
 

(22) 

By matching the scattering curves with lattice models, 

Eringen [1] supposed a nonlocal theory with the linear 

differential operator L  expressed as follow 

 
2 2

01L e a  
 

(23) 

where 
2   is the Laplacian operator. Therefore, the 

fundamental relations given by Eq. (21) for nonlocal 

elasticity may be rewritten by differentiable form as 

 
2 2

0ij ij ijkl kl

kij k ijkl kl

e a C

e E C T

  



  
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 (24a) 

 

 
2 2

0i i ikl kl

ik k i

D e a D e

k E p T

  
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 (24b) 

The parameter 0e a  is the scale coefficient disclosing 

the nano scale effect on the responses of structures of 

nanoscale. The nonlocal parameter,  0e a   is 

experimentally determined for different materials. 

For a curved FGPM nanobeam under thermo-electro-

mechanical loading in the one dimensional case, the 

nonlocal fundamental relations (24(a)) and (24(b)) can be 

streamlined as 
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Calculating Eqs. (25) by integrating over cross-section 

area of the curved beam, force–strain and moment–strain of 

nonlocal curved FGP Timoshenko beam model will be 

determined as 
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where ShearK  defined as correction factor and assumed  

that equal 5/6 . Consequently, coefficients are obtained as 
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By inserting Eqs. (27) into Eqs. (19), nonlocal 

governing equations of curved FGP Timoshenko nanobeam 

in terms of displacement can be calculated as 
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3. Solution method 
 

In this section, analytical Navier method has been 

developed to solve the governing equations of curved FGP 

in regard to find out free vibrational of a simply supported 

curved FGP nanobeam. However, to define the 

displacement functions, product of unknown factors and 

known trigonometric functions has been employed to 

satisfy the governing equations and boundary conditions at 

0, L   ends. The displacement fields are assumed to be 

as follows 
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where nW , nU , n  and n  are the unknown Fourier 

factors to be obtained for each n value. The boundary 

conditions for simply supported curved FGP nanobeam can 

be given as 

 0 0w  ,   0
w

L
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
,    0 0u u L    
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 

 
 

 
,    0 0L    

(30) 

Inserting Eq. (29) into Eqs. (28) respectively, leads to 

Eqs. (30) 
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By inserting the determinant of the coefficient matrix of 

the Eqs. (30), the nontrivial analytical method may be 

determined from the Eq. (32) 
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(32) 

Here  K  and  TK  are stiffness matrix and 

coefficient matrix of temperature change, respectively. And 

 M  is the mass matrix. By equaling the obtained 

determinant from coefficient matrix of above equations, 

which is a polynomial for 
2

n , to zero, n  is obtained. 

 

 
4. Results and discussion 
 

In regard to investigate the nano size effect on the 

thermos-electro vibration of curved nanobeams, the 

amounts of nonlocality for the curved FGP nanobeams is 

considered as constant in the numerical results. To this 

purpose, the properties materials of curved FGP nanobeam 

made of PZT-4 and PZT-5H, are listed in Table 1. The 

beam’s material composition varies from pure PZT-5H at 

the bottom surface to pure PZT-4 at the top surface. To 

validate the results, thermal effect is eliminated and Simply-

Simply supported boundary conditions are considered. In 

addition, material properties are assumed as metal and 

ceramic for FG curved nanobeams. 

The nondimensional fundamental frequencies of the 

nonlocal FG curved nanobeam without consideration of the 

piezoelectric properties are compared to the results 

presented by Hosseini and Rahmani (2012) are listed in 

Tables 2 and 3 for different power-law index and opening 

angles. 

It is observed that the present results agree very well 

with the given by Ref [45] and that increasing the 

nonlocality parameter tends to decrease the natural 

frequency. The reason is that the presence of the nonlocal 

effect tends to decrease the stiffness of the nanostructures 

and hence decrease the values of natural frequencies. 

In this section, the effect of voltage on dimensionless 

natural frequency with investigating different values of 

nonlocality and aspect ratio can be seen in Fig. 2. Thus, figure 

2 clearly demonstrates that with increasing voltage between -

0.1 to 0.1, dimensionless natural frequency decreases. 

However, with the increase the nonlocal parameter 
2  

between 0 and 4 (nm)
2
 the natural frequency decreases 

significantly. In addition, Fig. 2 also reveals that the 

discrepancy between the different values of nonlocality curves 

decreases when the aspect ratio becomes greater, disclosing 

that the effect of the aspect ratio is more remarkable in the case 

of curved FGP nanobeams. Hence the results show that the 

nonlocal effect is tending to decrease the stiffness of 

nanobeams and thus decreases the dimensionless natural 

frequencies.  
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In order to clarify the effect of the opening angle parameter 

and applied electric voltage on the vibration analysis, Fig. 3 

intuitively exhibit the variations of the dimensionless natural 

frequency of nonlocal curved FGP beam with respect to 

uniform thermal loadings for different values of opening angles 

and external electric voltages at constant slenderness ratio 

5L h  . 

Due to the Fig. 3, it obviously can be seen that, the 

dimensionless natural frequency reduce with high pace while 

the power exponent in realm between 0 and 2 than that while 

power exponent in realm from 2 to 10. Whereas, the mentioned 

results determined also demonstrate that the natural frequency 

of the nonlocal curved FGP nanobeams are always lower than 

those of the nonlocal functionally graded piezoelectric straight 

beam model. With the increase the opening angle from 6  

to 3  the natural frequency decreases significantly. In 

addition, it clearly can be observed that the positive electric 

voltage decreases the dimensionless natural frequencies.  

Whereas, the negative electric voltage increases the  

 

 

 

 

dimensionless natural frequencies. The reason is that 

compressive and tensile inplane loads are generated in the 

graded nanobeams by exerting positive and negative voltages, 

respectively. 

In this section, the effect of the small scale parameter and 

external electric voltage on the frequency analysis of nonlocal 

FGP curved beam, is demonstrated in Fig. 4 at constant 

slenderness ratio 5L h  .  It can be undoubtedly deduced 

that, the dimensionless natural frequency reduces with high 

pace while the power exponent in realm between 0 and 2 than 

that while power exponent in realm from 2 to 10. In addition, 

the mentioned results obtained also show that the natural 

frequency of the curved FGP nanobeam model are evermore 

lower than those of the classical graded piezoelectric curved 

beam model. With the increase the nonlocality 
2  between 0 

and 4 (nm)
2
 the natural frequency decreases substantially. The  

results show that the nonlocal effect is tending to decrease the 

stiffness of nanobeams and hence decreases the dimensionless 

natural frequencies. 

Table 1 constants of material properties (Doroushi et al. 2011) 

Properties PZT-4 PZT-5H 

 11c Pa  981.3 10  
960.6 10  

 55c Pa  925.6 10  
923 10  

 231
Ce

m
 10  16.604  

 215
Ce

m
 40.3248  44.9046  

 11
F

m
  80.6712 10  

81.5027 10  

 33
F

m
  81.0275 10  

82.5540 10  

 3

Kg
m

  7500  7500  

 1
1

K
  50.2 10  

51 10  

Table 2 Comparison of dimensionless natural frequencies of S-S curved FG nanobeams for different amounts of 

slenderness, mode number and nonlocality where 0p   and 3   

2 4   
 2 3   

 2 2   
 2 1   

 2 0    n   L
h

  

Present Hosseini 

and 

Rahmani 
2016 

 Present Hosseini 

and 

Rahmani 
2016 

 Present Hosseini 

and 

Rahmani 
2016 

 Present Hosseini 

and 

Rahmani 
2016 

 Present Hosseini 

and 

Rahmani 
2016 

  

6.9425 6.9425  7.2020 7.2020  7.4929 7.4929  7.8222 7.8222  8.1991 8.1991 1n   10 

22.2576 22.2576  24.1855 24.1855  26.7204 26.7204  30.2666 30.2666  35.7451 35.7451 2n    

36.2732 36.2732  40.4308 40.4308  46.4500 46.4500  56.3256 56.3256  77.3993 77.3993 3n    

7.0205 7.0205  7.2829 7.2829  7.5771 7.5771  7.9101 7.9101  8.2912 8.2912 1n   20 

23.2180 23.2180  25.2291 25.2291  27.8733 27.8733  31.5725 31.5725  37.2875 37.2875 2n    

39.5156 39.5156  44.0449 44.0449  50.6022 50.6022  61.3605 61.3605  84.3180 84.3180 3n    

7.0429 7.0429  7.3061 7.3061  7.6012 7.6012  7.9353 7.9353  8.3177 8.3177 1n   50 

23.5159 23.5159  25.5527 25.5527  28.2309 28.2309  31.9776 31.9776  37.7658 37.7658 2n    

40.6359 40.6359  45.2935 45.2935  52.0367 52.0367  63.1000 63.1000  86.7084 86.7084 3n    
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Table 3 Comparison of dimensionless natural frequency of S-S curved FG nanobeams for different amounts of 

slenderness, mode number and nonlocality where 1p   and 2     

2 4  
2 3  

2 2  
2 1  

2 0   n  L
h

  

Present Hosseini 

and 

Rahmani 

2016 

Present Hosseini 

and 

Rahmani 

2016 

Present Hosseini 

and 

Rahmani 

2016 

Present Hosseini 

and 

Rahmani 

2016 

Present Hosseini 

and 

Rahmani 

2016 

  

3.8612 3.8612 4.0055 4.0055 4.1673 4.1673 4.3504 4.3504 4.5601 4.5601 1n   10 

14.7808 14.7808 16.0611 16.0611 17.7444 17.7444 20.0993 20.0993 23.7375 23.7375 2n   

24.9704 24.9704 27.8325 27.8325 31.9762 31.9762 38.7745 38.7745 53.2817 53.2817 3n   

3.9522 3.9522 4.0999 4.0999 4.2655 4.2655 4.4530 4.4530 4.6675 4.6675 1n   20 

15.5694 15.5694 16.9179 16.9179 18.6911 18.6911 21.1716 21.1716 25.0039 25.0039 2n   

27.3356 27.3356 30.4689 30.4689 35.0050 35.0050 42.4472 42.4472 58.3285 58.3285 3n   

3.9972 3.9972 4.1466 4.1466 4.3142 4.3142 4.5038 4.5038 4.7208 4.7208 1n   50 

15.9008 15.9008 17.2780 17.2780 19.0889 19.0889 21.6223 21.6223 25.5362 25.5362 2n   

28.3067 28.3067 31.5512 31.5512 36.9551 36.9551 43.9551 43.9551 60.4005 60.4005 3n   

  

15L
h
  20L

h
  

 

25L
h
  

Fig. 2 Variations of the fundamental dimensionless natural frequencies of the curved FGP nanobeam respect to the 

voltage with different values of nonlocality and aspect ratio  6, 250, 0T p      
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Effects of different values of aspect ratios  L h  on the 

free vibration treatment of curved FGP nanobeam for various 

amounts of nonlocality are presented in Fig. 5. In all figures, 

results are developed for  4   regardless of the external 

electric voltage and temperature changes, it may be noted that  

 

 

the amounts of dimensionless natural frequencies increase with 

the increasing amounts of the slenderness at a constant material 

distribution. However, with the increase the nonlocality 2  m 

from 0 to 4 (nm)
2
 the natural frequency decreases obviously.  

 

 

0 0.1V    

 

0 0V   

 

0 0.1V   

Fig. 3 Variations of the fundamental natural frequency of the curved FGP nanobeam respect to power-law exponent for 

different amounts of curvatures and external electric voltage  25, 2, 0L h T    . 
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0 0V   

 

0 0.1V   

Fig. 4 Variations of the fundamental natural frequency of the curved FGP nanobeam respect to power-law exponent for 

different amounts of nonlocality and external electric voltage  5, 4, 0L h T      
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2 0   
2 1   

  
2 2   

2 3   

 
2 4   

Fig. 5 Variations of the fundamental natural frequency of the curved FGP nanobeam respect to power-law exponent for 

different amounts of aspect ratio and nonlocality  04, 0, 0V T     . 
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2 3   

 
2 4   

Fig. 6 Variations of the fundamental natural frequency of the curved FGP nanobeam respect gradient index for 

different amounts of temperature changes and nonlocality  050, 4, 0,L h V     

Table 4 Variation in the fundamental frequency of the S-S curved FGP nanobeams for various amounts of 

temperature changes, nonlocality, external electric voltage and power-law exponent 6   , 20L h    

  0T     250T    500T   

2    0V v   Gradient index  Gradient index  Gradient index 

  0 0.5 1  0 0.5 1  0 0.5 1 

 -0.1  11.3734 11.3295 11.3611  11.3463 11.2723 11.2915  11.3191 11.2147 11.2214 

0 0 9.9183 9.4816 9.3266  9.8857 9.4089 9.2356  9.8531 9.3354 9.1434 

 +0.1 8.1185 6.9990 6.4660  8.0768 6.8936 6.3241  8.0348 6.7864 6.1785 

 -0.1   10.9749 10.9622 11.0054  10.9469 10.9034 10.9341  10.9189 10.8441 10.8621 

1 0 9.4623 9.0458 8.8978  9.4282 8.9695 8.8024  9.3939 8.8923 8.7056 

 +0.1  7.5496 6.3860 5.8165  7.5045 6.2696 5.6572  7.4591 6.1507 5.4926 

 -0.1 10.6301 10.6448 10.6982  10.6013 10.5846 10.6253  10.5725 10.5239 10.5517 

2 0 9.0640 8.6649 8.5232  9.0283 8.5852 8.4235  8.9925 8.50461 8.3223 

 +0.1  7.0385 5.8229 5.2097  6.9898 5.6942 5.0298  6.9408 5.5621 4.8426 

 -0.1 10.3283 10.3673 10.4298  10.2988 10.3058 10.3555  10.2693 10.2439 10.2804 

3 0 8.7120 8.3285 8.1923  8.6750 8.2455 8.0885  8.6377 8.1615 7.9830 

 +0.1  6.5732 5.2970 4.6307  6.5208 5.1542 4.4258  6.4680 5.0069 4.2101 

 -0.1 10.0615 10.1223 10.1928  10.0314 10.0597 10.1172  10.0012 9.9965 10.0408 

4 0  8.3981 8.0284 7.8971  8.3597 7.9423 7.7894  8.3210 7.8550 7.6797 

 +0.1  6.1448 4.7977 4.0654  6.0885 4.6385 3.8285  6.0316 4.4732 3.5750 
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The fundamental dimensionless frequency as a function of 

gradient index and temperature changes is presented in Fig.  6 

for the curved FGP nanobeam. Similarly, it is disclosed that for 

a simply-simply curved FGP nanobeam increasing gradient 

index, temperature change, and nonlocality, leads to reduce the 

nondimensional natural frequency. 

Finally, the vibration of nano-size curved FGP beam under 

uniform loading temperature changes for different slenderness 

parameter, nonlocal coefficients, power-law exponent, three 

cases of electrical loading and first three mode numbers are 

tabloid in Tables 4 and 5. The similar conclusions are extracted 

from this table for the effect of the electric voltage parameter 

on the dimensionless natural frequencies. It can be noted, from 

Tables 4 and 5 that the dimensionless natural frequency 

decreases while the gradient index increases. From another  

perspective, these tables disclose that the dimensionless natural  

frequency amplifies with the decrease of the power-law 

exponent parameter. It can also be observed that the natural 

frequency decreases while temperature change increasing. 

In addition, it can be emphasized that the natural frequency 

decreases by increasing value of external voltage loading. As it 

can see in Table 5, these situations are evaluated for first three 

dimensionless natural frequencies. 

 

 

5. Conclusions 
 
In this study, the Thermo-electro-mechanical frequency 

of curved FG piezoelectric (FGP) nanobeams based on 

nonlocal Timoshenko curved beam model is studied with 

various opening angles in the thermal environment, using 

the nonlocal elasticity model for the first time. Hamilton's 

principle is implemented to derive the governing equations 

and related boundary conditions. Next, the analytically 

exact solution is used to solve the governing equations for 

simply supported curved FGP nanobeam. Thermo-electro-

mechanical properties of the curved FGP nanobeams are 

considered to be function of thickness direction via power-

law model. Effects of eminent parameters such as external  

 

 

 

 

voltage loading, uniform temperature changes, nonlocality, 

slender, mode numbers, angle of curvature and gradient 

index are investigated specifically. It is clearly observed 

that by increasing temperature changes, power-law index, 

opening angle, voltage value and nonlocal parameter, the 

dimensionless natural frequencies tend to decrease. In other 

hand, results are shown that natural frequencies increase 

with increasing aspect ratio and mode numbers. In addition, 

results revealed that the curvature angle plays an important 

role in thermos-electro vibration behavior of FGP 

nanobeams. 
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