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1. Introduction 

 
The considerable advantages offered by carbon nano-

tube reinforced composites (CNTRCs) rather than other 
composite materials have prompted an increased use of 
sandwich structures with CNTRC face-sheets in nano and 
micro fields (Ghorbanpour Arani et al. 2015). Composite 
materials are basically manufactured from two phases: 
reinforcing phase and matrix phase. Since introduction of 
CNTRC, Some investigations on various aspects of the 
different structures made of these materials have been 
performed (Eltahera et al. 2016, Ghorbanpour Arani et al. 
2014, Ghorbanpour Arani et al. 2016, Ghorbanpour Arani et 
al. 2016, Rabani Bidgoli et al. 2015).  

Li et al. (2015) developed an analytic model of small-
scaled functionally graded (FG) beams for the flexural wave 
propagation analysis based on the nonlocal strain gradient 
theory. The size-dependent wave propagation analysis of 
double-piezoelectric nano-beam-systems (DPNBSs) based 
on Euler–Bernoulli beam model was carried out by 
Ghorbanpour Arani et al. (2014). They concluded that the 
imposed external voltage is an effective controlling  
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parameter for wave propagation of the coupled system. Ma 
et al. (2017) investigated the dispersion behavior of waves 
in magneto-electro-elastic (MEE) nano-beams based on 
Euler model and Timoshenko nano-beam model and 
calculated the cut-off frequency that was function of various 
loads. In the other research, a sandwich beam with periodic 
multiple dissipative resonators in the sandwich core 
material was investigated for broadband wave mitigation 
and/or absorption by Chen et al. (2017). Mitra et al. (2016) 
presented an analytical–numerical method, based on 
wavelet spectral finite elements (WSFE), in order to study 
the nonlinear interaction of flexural waves with a breathing 
crack present in a slender beam. The propagation and 
attenuation properties of waves in ordered and disordered 
periodic composite Timoshenko beams were studied by Wu 
et al. (2016). They considered the effects of axial static load 
and structural damping in aforementioned investigation.  

Also, they assumed that beam is resting on elastic 
foundations and subjected to moving loads of constant 
amplitude with a constant velocity. 

In other hand, Timoshenko beam theory or first order 
shear deformation beam theory (FSDBT) and various high 
order shear deformation beam theories (HOSDBTs) such as 
Reddy beam or parabolic shear deformation beam theory 
(PSDBT), trigonometric shear deformation beam theory 
(TSDBT), exponential shear deformation beam theory 
(ESDBT), hyperbolic shear deformation beam theory 
(HSDBT), and Aydogdu shear deformation beam theory 
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(ASDBT) were presented  by investigators to analyze the 

beams (Ansari et al. 2014, Arvin and Bakhtiari-Nejad 2013, 

Li et al. 2014, Reddy 2007, Simsek and Reddy 2013a, Y. 

Yang and Lim 2012). To improve mechanical and physical 

behaviors of structures, it is proper to use the composite 

materials. carbon nanotube reinforcement composites 

(CNTRCs) can be used to reinforce the polymer composites 

(Esawi and Farag 2007). Developing of these material 

properties makes that the CNTRCs achieve various 

applications in micro and nano systems (Ashrafi and Hubert 

2006). Recently, many researchers focused on the problems 

that concern with FG-CNTRC. For example, some 

researchers investigated on different interesting subjects 

such as thermal stresses analysis; linear and nonlinear 

vibration and dynamic responses of different structures in 

thermal environments (Ghorbanpour Arani et al. 2015, 

Ghorbanpour Arani et al. 2012). Rafiee et al. (2014) carried 

out an investigation on nonlinear stability and resonance 

response of the imperfect plate made of piezoelectric FG-

CNTRC subjected to various combined electrical and 

thermal loads. Mohammadimehr et al. (2015) investigated 

the effects of different patterns and aligning of CNTs in 

height direction of the visco-elastic double-bonded 

polymeric nano-composite plate on dimensionless natural 

frequency. They found that the volume fractional CNTs in 

nano-composite can be used as a main control parameter to 

set the natural frequency of micro/nano electromechanical 

systems. Topic such as wave propagation is of important 

issues in analysis of micro/nano electromechanical systems.     

Recently, the influences of the small scale parameters 

were considered by several researchers in nano and micro 

structures. In aforementioned studies in order to incorporate 

the small scales in equations of motions, various theories 

such as the strain gradient theories and Eringen's differential 

nonlocal model were used (Lim et al. 2015). Classical 

continuum models (Shakeri et al. 2006, Zhang and Paulino 

2007), nonlocal continuum theory (Ebrahimy and Hosseini 

2016, Shafiei et al. 2016), strain gradient theory (Gholami 

et al. 2014, Rahmani and Jandaghian 2015), and modified 

couple stress models (Ansari et al. 2014, Nateghi and 

Salamat-talab 2013) were used by researchers for analysis 

of nano/micro systems. In addition, regarding to the strain 

gradient theory, the strain energy is a function of the strain 

and curvature tensors (Yang et al. 2002). As can be seen, 

these mentioned theories express the basic various 

assumptions in order to explain the small-scaled systems.  

Lim et al. (2015) carried out an investigation and 

showed the nonlocal and strain gradient parameters 

basically described two different physical properties of the 

structures in nano and micro scales. They have presented a 

new approach and theory to develop the strain gradient and 

nonlocal theories named the nonlocal strain gradient theory 

(NSGT). Actually, this theory is a combination of the two 

aforementioned theories that incorporated both small scales 

parameters namely nonlocal and strain gradient parameters. 

Based on the NSGT, Liew et al. (2008) analyzed the wave 

propagation in a SWCNT by molecular dynamics 

simulations.  

In present study, the influences of electro-magneto-

thermal environments and various shear deformation 

theories are investigated on wave propagation 

characteristics in sandwich nano-beam with CNTRC face-

sheets using nonlocal strain gradient theory. It is assumed 

that beam rests on a Winkler-Pasternak foundation. Also, to 

align CNTs as symmetric and asymmetric in top and bottom 

face-sheets with respect to natural geometric axis of the 

sandwich nano-beam, various patterns are employed in this 

analysis. Hamilton's principle is used to derive governing 

equations of motion. The small scales parameters are 

included in equations of motion by using the NSGT.  

Afterwards, the analytical method is applied to extract 

solution for phase velocity in terms of important parameters 

of the problem. Our results show the influence of important 

parameters such as length scale parameter, nonlocal 

parameter, various patterns and volume fraction of the 

CNTs in face-sheets, parameters of Pasternak's foundation, 

applied voltage, magnetic intensity field and temperature 

increment on the phase velocity and cut-off frequency of 

sandwich nano-beam. Furthermore, the effect of various 

shear deformation theories is discussed on the 

characteristics of wave propagation in detail.  

 

 

2. Properties of material  
 

In this section, the materials properties of sandwich 

nano-beam are expressed in detail. The schematic of the 

nano-beam and aligning CNTs in its face-sheets in 

symmetric and asymmetric forms is presented in Fig. 1. The 

core and face-sheets of beam are made from piezoelectric 

materials and CNTRC in which matrix is piezoelectric. To 

calculate the effective properties of CNTRC, the Mori–

Tanaka scheme or the rule of mixtures can be used 

(Natarajan et al. 2014). In this investigation to compute the 

effective material properties of face-sheets, the rule of 

mixtures with correction factors is employed. The 

properties of the CNTRC (Young’s modulus ( 𝐸𝑟𝑐 ), 

expansion coefficient (𝛼𝑟𝑐), visco-elastic coefficient (𝜏𝑑
𝑟𝑐) 

and density (𝜌𝑟𝑐) of the reinforced composite) are expressed 

by (Rafiee et al. 2014) 
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In above relations, η1, E11
CN, GCN, α11

CN, τd
CN and ρ11

CN 

are the CNTs efficiency parameter, the Young’s modulus, 

the shear modulus, the expansion coefficient, the visco-

elastic coefficient and density of the CNTs, respectively and 

Em , Gm , αm , τd
m  and ρm  are the corresponding 

properties for the matrix. 

It is noted that superscripts rc  and m  denote the 

reinforcement composite (used in face-sheets) and matrix, 

respectively. In addition, 𝑉CN and 𝑉m  characterize volume 

fractions of the CNTs and matrix. 𝑉CN and 𝑉m  are related 

by VCN + Vm = 1  (Shen and Zhang 2012). The 

distribution of the CNTs along the face-sheets are given by 
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Fig. 1 Sandwich nano-beam with CNTRC face-sheets 

and attached coordinate system 
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(2) 

In which 𝑉𝐶𝑁
𝑡  and 𝑉𝐶𝑁

𝑏  represent the volume fractions of 

the CNTs in top and bottom face-sheets, respectively. 𝑡0 

and 𝑡3 are 𝑧̅ coordinate of top and bottom face of the 

beam and also 𝑡1  and 𝑡2  are 𝑧̅ coordinate of interface 

between top/bottom face-sheets and core of the beam, 

respectively. Furthermore, 𝑉𝐶𝑁
∗  can be calculated as 

* CN
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(3) 

In which, 𝑤𝐶𝑁 is the mass fraction of the CNTs. 

 

 

 

3. Formulation 
 

The displacement field based on higher order shear 

deformation beam theory (HSDBT) is expressed as: 
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In which, 𝑢̅  and 𝑤̅  are axial and transverse 

displacement components, 𝑢0  and  𝑤0  are axial and 

transverse displacement of mid-surface. In addition 𝜑(𝑧̅) is 

a function of 𝑧̅ that presents the transverse shear and stress 

distribution along the thickness of the beam (Simsek and 

Reddy 2013b). Selection of 𝜑(𝑧̅) is performed based on 

various beam theories as follows (Li et al. 2014) 
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(5) 

Also in Eq. (4) 𝛾(𝑥̅, 𝑡̅) is the transverse shear strain of 

any point on the neutral axis (Simsek and Reddy 2013a) and 

is specified as 
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In above equation, 𝜙(𝑥̅, 𝑡̅) is the total bending rotation 

of the cross sections at any point on the neutral axis. The 

strain-displacement relation considering the thermal strain 

is expressed as 
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 (7) 

In which, ∆T is the temperature increase that is equal to 

 ∆T = T − T0. Where, 𝑇0 is the initial temperature. In the 

present study, it is assumed that the electric potential is the 

sum of cosine function and a linear function. Then the 

electric potential can be written as (Arefi and Zenkour 

2016, Arefi and Zenkour 2016) 
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x z t z x t

h
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In above equation, 𝛽 =
𝜋

ℎ
 and also Φ̅(𝑥̅, 𝑡̅)  is the 

spatial and time variation of the electric potential in the x-

direction (Ke et al. 2010); 𝑉0  is the external electric 

voltage (Liew et al. 2003). It is noted that Φ̅(𝑥̅, 𝑡̅) must 

satisfy the electric boundary conditions. According to Eq. 

(8), the electric fields can be defined as 
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The strain-stress constitutive relations for face-sheets 

made of CNTRC are defined as (Li et al. 2015) 
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Superscripts p and f are employed for description of 

properties of core and face-sheets respectively. Taking into 

account the voltage applied on piezoelectric core layer, the 

constitutive relations of the core are expressed as 
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In which, 𝐷𝑥̅  and 𝐷𝑧̅  represent the electric 

displacement. In addition, 𝑒31 , 𝑒15  are the piezoelectric 

strain constants and also 𝑘11 , 𝑘33  are the dielectric 

constants (Liew et al. 2003, Rafiee et al. 2013). In order to 

extract the governing equations of motion, the Hamilton's 

principle is used as the following form (Komijani et al. 

2014) 

 
0

0

T

s fT U U W dt        (12) 

Where  𝛿𝑈𝑠 ,  𝛿𝑈𝑓 ,  𝛿𝑇  and 𝛿𝑊  are the variations of 

strain energy, foundation reaction, kinetic energy and 

external works, respectively. Variation of strain energy 𝛿𝑈 

is calculated as 
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Variation of kinetic energy is represented as 
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Variations of work done by the external forces and the 

elastic foundation are written as (Ghorbanpour Arani et al 

.2012, Kanani et al. 2014, Komijani et al. 2014) 
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Where F and Q are the axial and transverse forces per 

unit length respectively and 𝑁𝑥̅0
 is the normal loading 

induced by the external magnetic potential  𝐻𝑥 , external 

electric potential and temperature change  Δ𝑇 (Ma et al. 

2017). Also,  𝐾̅𝑤  and 𝐾𝑠  are linear spring constant 

(Winkler coefficient) and shear coefficient (Pasternak 

coefficient) of foundation, respectively. Substituting Eqs. 

(4)-(7) and Eq. (9) into Eqs. (13)-(15) and consequently into 

Eq. (12), yields the governing equations of motions as 
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Where, 𝑁𝑥̅0
 is the axial constant pretention and also 𝑁𝑥̅ , 

𝑄𝑥𝑧̅̅̅̅ , 𝑀𝑥̅  and 𝑀𝑥̅
ℎ  are the resultants of forces and the 

moments. They are expressed as 
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(17) 

The integration constants presented in Eq. (16) can be 

presented as 
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(18) 

 

In according to nonlocal strain gradient theory (Li and 

Hu 2016), the constitutive relations are expressed as 
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In above equation, 𝛻2 = 𝜕2/𝜕𝑥̅2  is the Laplacian 

operator, 𝑒̅0𝑎̅  represents the nonlocal parameter to 

consider the significance of nonlocal elastic stress field, and 

𝑙𝑚̅ is the strain gradient length scale parameter. In present 

structure, the nonlocal strain gradient constitutive relation in 

Eq. (19) can be written in an explicit form as follows 
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(20) 

 

Based on defined mechanical and electrical relations, 

the resultant of them can be calculated as follows 
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(21) 

Where superscripts 𝑇  and 𝐸  represent thermal and 

electrical loads and 𝑁𝑇 , 𝑁𝐸 ,   𝑀̅𝑇1, 𝑀̅𝑇2, 𝑀̅𝐸1 and 𝑀̅𝐸2 are 

calculated as 
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 (22) 

It is noted that, 𝐴𝑥 , 𝐵𝑥  and 𝐷𝑥  in Eq. (21) are the 

stretching stiffness, stretching-bending coupling stiffness 

and bending stiffness coefficients , respectively, which can 

be obtained as 
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(23) 

To obtain the equations of motion, Eq. (21) should be 

substituted into Eq. (16). Therefore, four coupled equations 

of motion are obtained: 
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(24) 

In which, 𝐸15, 𝐸2
31, 𝐸3

31, 𝑘𝑥̅𝑥̅  and 𝑘𝑧̅𝑧̅  are calculated 

as the following form 

 
 

 

   

 

 

15

15

31

2 31

31

2 31

2

11

2 2

33

cos

sin

sin

cos

cos

A

A

A

xx

A

zz

A

z
E e z dA

z

E e z z dA

E e z z dA

k k z dA

k k z dA




 

  



 
























 

(25) 

Regarding to dimensionless variables defined as the 

following form 
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The final dimensionless equations of motion are 

obtained as 
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4. External magnetic field 

 

The Maxwell's equation is expressed as 

 

,
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,
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h
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U
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h U H
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   
 
 

  

 

(28) 

In above equations, ℎ⃗̅ is the disturbing vectors of 

magnetic field, 𝐽 ̅ presents the current density, 𝑒̅  represents 

the strength vectors of electric field and 𝑈⃗⃗  characterizes 

the vector of displacement. In addition, Hamilton arithmetic 

operator ( ∇ ) is  ∇=
𝜕

𝜕𝑥̅
𝑖̅ +

𝜕

𝜕𝑥̅
𝑗̅ +

𝜕

𝜕𝑥̅
𝑘̅ . The magnetic 

permeability is indicated by  𝜂 . Herein, the longitudinal 

magnetic field vector applying on the carbon nanotube is 

specified as 𝐻⃗⃗  =  (𝐻𝑥̅ , 0,0). If the displacement vector is 

defined as U = U (u, v, w), hence 
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 (29) 

Therefore, the components of the Lorentz force in 𝑥̅, 𝑦̅ 

and 𝑧̅ directions are specified by the following form 
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(30) 

According to the defined displacement field in Eq. (3) 

and with attention to Eq. (30), only Lorentz force which 

applied on the carbon nano-tube embedded in sandwich 

nano-beam is specified as 
2

2 0

2z x

w
f H

x


 
  

 
 (31) 

 

 

5. Wave propagation analysis 
 

In order to Wave propagation analysis in sandwich 

nano-beam, the harmonic solution is considered for Eq. (27) 

as the following form (Ghorbanpour Arani et al. 2014) 

   
0 0, , , , ,

i kx t
d x t d e d u w


 


   (32) 

In above equation,  𝑘  and 𝜔  are wave number and 

frequency, respectively (Ghorbanpour Arani et al. 2016, 

Ghorbanpour Arani et al. 2015). Consequently, replacing 

Eq. (32) into Eq. (27) produces the following matrix 

equations for high order shear deformation sandwich nano-

beam 
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11 12 13 14
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41 42 43 44
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  

 (33) 

In which, 𝐶𝑖𝑗,(𝑖,𝑗=1,…,4) are calculated as following form 
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In order to obtain a nontrivial solution, it is necessary to 

set the determinant of the coefficient matrix in Eq. (33) 

equal to zero (Ghorbanpour Arani et al. 2014, Ghorbanpour 

Arani et al. 2016, Ghorbanpour Arani et al. 2015). The cut-

off frequency of the sandwich nano-beam can be calculated 

by setting 𝑘 → ∞. In other words, at a certain frequency, the 

flexural wave number tends to infinite and the 

corresponding wave velocity tends to zero at that frequency, 

this frequency is called as cut-off frequency (Ghorbanpour 

Arani et al. 2015). Furthermore, the complex phase velocity 

C of flexural waves can be obtained as

 

C
k


  (35) 

 

 

6. Numerical results and discussion 
 

In this section, a parametric study is implemented to 

Table 1 The material properties of the constituent material of the sandwich FG beam (Ke et al. 2010, Rafiee et al. 2013, 

Schoeftner et al. 2016) 

materials Young's modulus 

(GP) 
Expansion 

coefficient(1/Co) 
e31 e15 d31 k11 k33 

piezoelectric 63 0.9e(-6) -4.1 14.1 2.54e(-10) 
5.841e-9 

 
7.124e-9 

 

CNT 5.65e+3 3.4584e(-6)      
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indicate the effects of applied voltage, the magnetic field, 

the Pasternak foundation, small scale parameters and the 

volume fraction on wave propagation characteristics in 

sandwich nano-beam with CNTRC face-sheets. The 

material properties of the sandwich nano-beam are 

presented in Table 1. To demonstrate the accuracy of the 

equations derived in present study, comparison was done 

between our results and other results existing in other 

references. Table 2 presented the comparison between 

results obtained by DQM in present study and results 

calculated by exact solution and Multiple Times Scales 

method for Euler-Bernoulli beams in other references 

(Gheshlaghi and Hasheminejad 2011, Nayfeh and Mook 

2008). 

According to these comparisons it is deduced that the 

present results are in good agreement with the obtained 

results presented in aforementioned references represented 

in Table 2. Therefore it is concluded that the extracted 

governing equation in present study have acceptable 

accuracy. It is worthy noted that an exact comparison of the 

results obtained for wave propagation in this work with 

existing experimental results is impossible. However, the 

present work could be partially validated based on 

investigation presented by Li et al. (2015; 2016). As can be 

seen in Fig. 2, in both study (present investigation and 

works accomplished by Li et al.), small scale have the same 

effects on phase velocity behavior of wave propagation. In 

aforementioned results the parameter values that are used to 

obtain the results are equal to μ2  =  0.2 and μ1  =  0.1 

for nonlocal strain gradient theory (NSGT); μ1  = μ2  =
 0 for classical elasticity theory (CET); μ2  =  0  and 

μ1  =  0.1 for strain gradient theory (SGT); μ2  =  0.2 and 

μ1  =  0  for nonlocal elasticity theory (NET); and also 

VCN
∗  =  0.17 , η =  0.142 , H̅x = 1E + 07 ,  E0 = 3.3E −

03. 

Real and imaginary parts of non-dimensional phase 

velocity of the wave propagation versus non-dimensional 

wave number are indicated in Fig. 3 for various non-

dimensional nonlocal parameters. It can be seen that the real 

part is starting to increase when the imaginary part becomes 

zero. This fact shows that imaginary part has damping 

characteristic for wave propagation of the sandwich nano-

beam. In addition, increasing nonlocal parameter causes 

that the phase velocity increases/ decreases in very small 

wave numbers range/in large wave numbers range. 

 

 

 
Fig. 2 Comparison of phase velocity of wave propagation 

in sandwich nano-beam obtained using different elasticity 

theories 

 

 

 

 
(a) real part 

 
(b) imaginary part 

Fig. 3 Non-dimensional Phase Velocity of the wave 

propagation in terms of various nonlocal parameters, 

𝑉𝐶𝑁
∗  =  0.17 , η =  0.142 , H̅x = 1E + 07 ,  E0 =

3.3E − 03. 

 

 

 
(a) real part 

 
(b) imaginary part 

Fig. 4 Non-dimensional Phase Velocity of the wave 

propagation in terms of various strain gradient 

parameters; a: real part b: imaginary part, VCN
∗  =  0.17, 

η =  0.142, H̅x = 1E + 07, E0 = 3.3E − 03 

 

 

The influences of non-dimensional strain gradient 

parameter on phase velocity are investigated in Fig. 4. 

Regarding to results, the phase velocity of wave 

propagation decreases with increasing strain gradient 

parameter in small wave numbers range.  
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Unlike to above condition, increasing strain gradient 

parameter causes that phase velocity enhances in large wave 

numbers range. Also, phase velocity is equal to zero until 

wave number about 15 hereafter it started to increase up to 

wave number about 28 then begins decreasing. Fig. 5 

represents non-dimensional phase velocity of wave 

propagation in sandwich nano-beam for different symmetric 

CNTs distributions in top and bottom face-sheets. 
According to this figure, phase velocity of wave 

propagation relative to UU pattern is larger than Phase 

velocity of wave propagation corresponding to VA and AV 

patterns in large wave numbers range, respectively. Whilst, 

phase velocity corresponding to VA pattern is greater than 

other patterns in wave numbers range about 15 to 22. This 

is a main point; AV pattern has less phase velocity in the 

whole range of wave number. The effects of the CNTs 

volume fraction on the phase velocity are investigated in 

Fig. 6 for two UU and AV patterns. In both aforementioned 

patterns, increasing the volume fraction causes that phase 

velocity of wave propagation in the sandwich nano-beam 

enhances. Therefore, this result indicates CNTs have 

important effects to control wave propagation in sandwich 

nano-beam. 

 

 

 

Fig. 5 Non-dimensional Phase Velocity of wave 

propagation in sandwich nano-beam for different 

symmetric CNTs Patterns; 𝜇1  =  0.01 , 𝜇2  =  0.1 , 

𝑉𝐶𝑁
∗  =  0.17, η =  0.142, H̅x = 1E + 07, E0 = 3.3E −

03 

 

 

 

 

Fig. 7 indicates non-dimensional phase velocity of wave 

propagation in sandwich nano-beam for different 

asymmetric CNTs patterns in top and bottom face-sheets 

with respect to natural geometric axis. Regarding to the 

obtained results, UA and UV patterns approximately have 

same phase velocity in whole range of wave number. As can 

be seen, phase velocity has a sudden and large increase in 

non-dimensional wave number equal to about 25 and phase 

velocity has a decreasing continuous curve in the other 

wave number values. In entire wave numbers range except 

in the range of 15 to 25, Phase velocity is equal to zero. 

 

 

 

 
(a) UU Pattern 

 
(b) AV Pattern 

Fig. 6 Non-dimensional Phase Velocity of wave 

propagation in sandwich nano-beam for different 

volume fractions of CNTs; 𝜇1  =  0.01 , 𝜇2  =  0.1 , 

𝐻𝑥 = 1𝐸 + 07, 𝐸0 = 3.3𝐸 − 03 

 

Table 2 The comparison between obtained results in present work and results yielded from exact solution and MTS 

method in Ref.(Gheshlaghi and Hasheminejad 2011, Nayfeh and Mook 2008) 

μ2 DQM Exact solution error 
 

DQM MTS Method error 

0.2 9.88 9.88 0.02% 
 

9.88 9.88 0.001% 

0.18 9.89 9.9 0.08% 
 

9.9 9.89 0.004% 

0.16 9.93 9.95 0.19% 
 

9.93 9.93 0.007% 

0.14 9.98 10.01 0.33% 
 

9.98 9.98 0.010% 

0.12 10.04 10.09 0.51% 
 

10.04 10.04 0.010% 

0.1 10.11 10.18 0.72% 
 

10.11 10.11 0.004% 

0.08 10.19 10.29 0.97% 
 

10.19 10.20 -0.012% 

0.06 10.29 10.42 1.24% 
 

10.29 10.30 -0.040% 

0.04 10.40 10.56 1.54% 
 

10.40 10.41 -0.085% 

0.02 10.52 10.72 1.86% 
 

10.52 10.54 -0.149% 
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Fig. 7 Non-dimensional Phase Velocity of wave 

propagation in sandwich nano-beam for different 

asymmetric CNTs Patterns; μ1  =  0.01 , μ2  =  0.1 , 

VCN
∗  =  0.17, η =  0.142, H̅x = 1E + 07, E0 = 3.3E −

03 

 

 

 

Fig. 8 Non-dimensional Phase Velocity versus Non-

dimensional Wave Number for various non-symmetric 

CNTs Pattern; μ1  =  0.01 , μ2  =  0.1 , VCN
∗  =  0.17 , 

η =  0.142, H̅x = 1E + 07, E0 = 3.3E − 03 

 

 

 

Fig. 9 Non-dimensional Phase Velocity of wave 

propagation in sandwich nano-beam for different 

asymmetric thicknesses of the face-sheets corresponding 

to UU pattern; μ1  =  0.01 , μ2  =  0.1 , VCN
∗  =  0.17 , 

η =  0.142, H̅x = 1E + 07, E0 = 3.3E − 03 

 

 

The influences of face-sheets to core thickness ratio on 

phase velocity are investigated in Fig. 8. According to 

presented results, decreasing ratio of face-sheet thickness to 

core thickness leads to decrease phase velocity of wave 

propagation in all of the wave numbers.  

According to results presented in Fig. 9 it can be 

concluded that the thickness of the face-sheets have 

significant effects on phase velocity. As the thickness of the 

face-sheets (in this figure bottom face-sheet) is becoming 

smaller, the phase velocity becomes less and for some 

values of wave number becomes zero. 

Phase velocity of wave propagation in the sandwich 

nano-beam is plotted versus corresponding wave numbers 
in Fig. 10 for different HSDBTs. According to these results, 

it can be deduced that phase velocity of wave propagation 

has approximately same values for all of the HOSDBTs in 

large wave numbers range whilst the difference between 

values of the phase velocity calculated for different 

HSDBTs is significant in small wave number range. Also 

among various HSDBTs, ESDBT and ASDBT exactly have 

the same values in whole wave number range and possess 

large phase velocity in lower value of the wave number 

with respect to other theories. 

Phase velocity versus wave frequency is presented in 

Fig. 11 for different FG-CNTs patterns. As can be seen in 

this figure, the phase velocity leads to zero at a certain 

frequency when the wave number leads to large value. Its 

value can be called cut-off frequency (Ghorbanpour Arani 

Kolahchi et al. 2014). UU and VA patterns have the same 

cut-off frequency but AV pattern has the lower value with 

respect to them.   

 

 

(a) FSDBT, TSDBT and PSDBT 

 

(b) FSDBT, HSDBT, ESDBT and ASDBT 

Fig. 10 Non-dimensional Phase Velocity of wave 

propagation in sandwich nano-beam for different beam 

theories; μ1  =  0.01 , μ2  =  0.1 , VCN
∗  =  0.17 , 

η =  0.142, H̅x = 1E + 07, E0 = 3.3E − 03 

 

 

Fig. 11 Non-dimensional Phase Velocity of wave 

propagation versus Non-dimensional Wave Frequency 

for different CNTs patterns; μ1  =  0.01 , μ2  =  0.1 , 

VCN
∗  =  0.17, η =  0.142, H̅x = 1E + 07, E0 = 3.3E −

03 
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Fig. 12 illustrated phase velocity versus wave number in 

order to investigate effect of the Winkler and Pasternak 

coefficients. They have same effects on the phase velocity 

of wave propagation in sandwich nano-beam. According to 

the results, increasing aforementioned parameters causes 

the phase velocity increases in small wave numbers range 

whilst they have no effects in large wave numbers range. 

 

 

 

(a) Winkler Coefficient 𝐾𝑤 

 

(b) Shearing Coefficient 𝐾𝑠 

Fig. 12 Non-dimensional Phase Velocity of wave 

propagation in sandwich nano-beam for different 

Winkler and Pasternak coefficients 

 

 

 

(a) Real part of the phase velocity for different Thermal 

Loads (Nt) 

 

(b) Real part of the phase velocity for different 

Electrical  Loads (Ne) 

Fig. 13 Non-dimensional Phase Velocity of the wave 

propagation in sandwich nano-beam 

 

 

 

Fig. 14 Non-dimensional Phase Velocity of the wave 

propagation versus Non-dimensional Wave Frequency 

for different Magnetic loads 𝐻𝑥 

 

 

The effects of the axial force established by temperature 

change and constant applied voltage on phase velocity are 

studied in Fig. 13. It is can be concluded that the applied 

voltage and rise temperature have the different influences 

on phase velocity. Regarding to results, increasing the 

applied voltage leads to enhance the phase velocity. It is 

worthy noted that aforementioned effect enhances in lower 

wave numbers range. 

Regarding to results obtained in Fig. 14, the Enhancing 

magnetic field causes phase velocity of wave propagation 

increases in small wave numbers range. 

 

 

7. Conclusions 
 

Analysis of the wave propagation of the sandwich nano-

beams with FG-CNTs face-sheets was implemented in this 

investigation. For first time, the different HSDBTs were 

employed to investigate propagation wave of the sandwich 

nano-beams with FG-CNTs face-sheets. Also the applied 

voltage, temperature rising, magnetic field, pretension and 

the nonlocal strain gradient theory to involve the nonlocal 

and strain gradient parameters was considered in deriving 

the equations of motion. Then, the governing equations 

were solved by the analytical method and the non-

dimensional phase velocity for wave propagation was 

obtained. The effects of some parameters such as length 

scale parameters, different distribution pattern of CNTs in 

face-sheets, parameters of elastic-Pasternak foundation, 

applied voltage, different HSDBTs and other important 

parameters in designing and controlling the phase velocity 

were studied in detail. The most important results of this 

study are presented as: 

1. Patterns of the CNTs in face-sheets have significant 

effects on cut-off frequency as UU and VA patterns 

possess the same cut-off frequency value but AV 

pattern has the lower value with respect to them.  

2. Volume fraction of the CNTs in face-sheets can 

strongly change the non-dimensional phase velocity in 

sandwich nano-beam. The results indicate that phase 

velocity for different HSDBTs is increased with 

increasing the volume fraction of CNTs. Also it is 

deduced that the phase velocity of wave propagation 

relative to UU pattern is larger than phase velocity 

corresponding to AV and VA patterns.  
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3. The small scale parameters have significant effects on 

the phase velocity of the sandwich nano-beam with FG-

CNTRC face sheets. It is observed that increasing 

nonlocal parameter causes phase velocity increases in 

very small wave numbers range whilst phase velocity 

decreases in larger wave numbers range. In addition, 

Increasing strain gradient parameter leads to enhance 

phase velocity in a large wave numbers range whilst 

increasing strain gradient causes phase velocity 

decreases in small wave numbers range.  

4. Investigation on the effect of the elastic-Pasternak 

foundation parameters on the wave propagation of the 

sandwich nano-beam leads to important conclusions. 

Increasing the Winkler ( 𝐾𝑤 ) and shearing ( 𝐾𝑠 ) 

coefficients caused that the phase velocity increases in 

lower wave number and also they have no effects in 

larger wave number range.  

5. According to obtained results, the constant applied 

voltage, longitudinal magnetic field and increment 

temperature have important influences on phase 

velocity. Enhancing the longitudinal magnetic field 

intensity and applied voltage leads to increase phase 

velocity of wave propagation. In addition, temperature 

rising causes phase velocity decreases in small wave 

numbers range. 

6. According to results, the phase velocity of wave 

propagation calculated for different HSDBTs 

approximately has the same values in large wave 

numbers range. In small wave numbers range, 

difference between phase velocities for various high 

order theories is significant. Also among various 

HSDBTs, ESDBT and ASDBT exactly have the same 

values in whole wave number range and possess large 

phase velocity in lower value of the wave number with 

respect to other theories. 

 

 

8. Abbreviation 
 

FG functionally graded 

CNTs carbon nanotubes 

MTS Multiple Times Scale 

UD uniform distribution 

SWCNT single-walled carbon nanotube 

CNTRCs carbon nanotube-reinforced composites 
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