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1. Introduction 

 
The most widely used forms of linear damping in the 

modeling of damping systems are viscous damping and 
hysteretic damping. The responses in viscous damping have 
been widely studied while the constant complex stiffness 
has been typically used for the responses of hysteretic 
damping. When such hysteretic properties are kept constant 
regardless of the frequency, the system is taken as a 
constant hysteretic damping system and a constant complex 
number is set as the stiffness. 

An example of a constant hysteretic damping model is a 
layered structure made with viscoelastic materials, in which 
a complex shear factor is used to express the energy 
dissipation through the shear strains of viscoelastic layers 
(Genta and Amati 2010, Zhu et al. 2014, Akbas 2016). This 
concept can be applied to the properties of a variety of 
materials. For the structures with complex stiffness, the 
frequency analysis can be done by numerical methods. 
When constructing the finite element modeling to deduce 
the response of a 3-layered beam with complex stiffness, 
the system’s frequency response can be computed by 
approximating the strain energy of beam with the shape 
functions of displacement (Won et al. 2013, Amichi and 
Atalla 2009). Additionally, the frequency response of the 
beams coated with damping materials can be computed by 
applying the Timoshenko beam model to derive the beam’s 
equivalent complex stiffness (Won et al. 2012). 
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There are many models for hysteretic damping and each 

model uses different definition, but it is important to adopt 
the most appropriate hysteretic damping model for a given 
system. Soroka (2012) defined the system eigenvalue as the 
complex number, which is shown as the complex stiffness, 
and expressed the complex stiffness as a viscous damping 
term. In this case, most of analyses are conducted in the 
frequency domain. 

On the other hand, when analyzing the structural 
impulse problem, it is important to find out the system’s 
maximum displacement in the time domain. Therefore, the 
transient response has to be obtained. As described earlier, 
the complex stiffness is defined in the frequency domain, 
and thus the time response cannot be obtained directly in 
the frequency domain. In such case, the most widely used 
method is to apply the inverse Fourier transform to the 
transfer function defined in the frequency domain to obtain 
the time response (Nashif et al. 1985). For the unit impulse 
response in a single degree of freedom complex coefficient 
(hysteretic) system, Gaul et al. (1985) proposed a method in 
which the complex plane contour integral is used to conduct 
the inverse Fourier transform. There also exists a numerical 
method in which the governing equations of the complex 
stiffness problem are expressed as integral equations in the 
time domain and the time responses are obtained from them 
(Chen and You 1999). In a single degree of freedom 
complex damping system, Laplace transform can also be 
used (Bonisoli and Mottershead 2004, Mohammadi and 
Sedaghati 2012). In such a case, the system’s response has 
non-casual effect (Crandall 1970) 

Despite of these problems, the numerical IFT method 
can be used to obtain the relatively accurate responses when 
the time domain is designated and the excitation forces with 
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appropriate zero extension are applied, so that the periodic 

nature of the discrete Fourier transforms does not appear 

(Bae et al. 2014). Barkanov et al. (2000) used the numerical 

IFT method to obtain time responses of the laminated beam 

with elastic and damping layers which is subjected to 

arbitrary excitation force. A similar numerical method that 

can be applied is the time reversal method (Inaudi and 

Makis 1996, Li et al. 2012, Padois et al. 2012, Wang et al. 

2015). However, the abovementioned two methods have a 

common difficulty in identifying the appropriate initial 

conditions for solving the time responses. If the time 

responses are obtained using the analytical method, then the 

responses to the initial conditions can be obtained. But, this 

method becomes less convenient to use because the time 

responses are expressed in the integral form. 

To resolve the problems associated with the transient 

response in state space and the initial conditions, we in the 

previous study (Bae et al. 2014) separated the governing 

equations of the complex stiffness system, which is defined 

by analytic signals through Hilbert transform, into two 

complex governing equations. In this approach, we applied 

the hypothesis that the free vibration of the system 

converges with the lapse of time due to damping. Henwood 

(2002) did also propose the modeling method using the 

system’s equivalent viscous damping to deal with such 

hysteretic models in the time domain. The purpose of 

current study is to extend our previous study to examine the 

characteristics and to obtain the time response of a mixed 

system with complex stiffness and viscous damping, in the 

state space and the frequency domain. Because the response 

convergence conditions that were used in the previous study 

cannot be applied to obtain the free vibration in state space, 

the current study focuses on the relationship between the 

eigenvalues of the state space and the poles of transfer 

functions. 

We fisrt obtain the unit impulse responses in the 

frequency domain through the contour integral. And then, 

among the four eigenvalues which were obtained in state 

space, we determine the effective eigenvalues that affect the 

actual impulse response to obtain the system’s free vibration 

response. After that, the damping properties and the damped 

natural frequencies of the responses are investigated with 

respect to the complex stiffness and viscous damping, and 

their relationship is examined. Finally, the obtained single 

degree of freedom free vibration responses are used to 

obtain the transient time response of a mixed vibration 

system with viscous and hysteretic damping. 

  

 

2. Governing equation of viscous-hysteretic 
damping system 

 

A system with both viscous damping and complex 

stiffness includes both hysteretic damping properties and 

viscous damping   in its material properties. If a structure 

with structural damping properties is installed with a 

viscous damping mount, it can be thought as an example of 

a viscous-complex stiffness system. 

Fig. 1 shows a schematic diagram of a mixed system 

with viscous damping and complex stiffness. According to 

Inaudi and Makis (1996), the equations of motion is given 

by  

(
( ) (

)
) ( ) ( )
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t
f t
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Here, we introduce the Hilbert transform   of , which 

is defined by 

 
 1 x

y t d
t




 






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Then, the Fourier transform of Eq. (2) becomes (Bae et 

al. 2014) 

       sgnFT y t Y i X       (3) 

with ( )X  and ( )Y 
 

being the Fourier transforms of 

( )x t and ( )y t , respectively. Here, the value of  sgni  

is as follows:  ,i 0   0 0 
 

and  0i   .
 

By 

taking Fourier transform to Eq. (1) and using the relation 

(3), one can get 

2 ( ) ( ) ( )

sgn( ) ( ) ( )

mX i cX kX

ik X F

    

   

  

 
 (4) 

Multiplying Eq. (4) by  sgni   and using the relation 

(3), it is not hard to follow that Eq. (4) ends up with 

(Johansson 1999) 

         2 ˆmY i cY kY k X F             (5) 

Where, ˆ ( )F   is the Fourier Transform of the Hilbert 

transform of ( )f t . 

We next define the analytic signal ( )az t  as 

   tiytxza   (6) 

Let us take the inverse Fourier transform to Eqs. (4) and 

(5) and multiply Eq. (5) by the negative imaginary number 

i . After that, combining the resulting two equations ends 

up with the following time-domain governing equation that 

is expressed in terms of the analytic signal ( )az t  in a 

viscous complex-stiffness system 

      m/tfzitz aanna   12 2  (7) 

Here, / (2 )c mk   is the viscous damping ratio, 
 

the loss factor, and /n k m   the undamped natural 

frequency. 

Separating the real and imaginary parts of the governing 

equation of the viscous damping-complex stiffness system, 

Eq. (7) is divided into two differential equations given by 

2 2

2 2

( ) 2 ( ) ( ) ( ) ( ) /

ˆ( ) 2 ( ) ( ) ( ) ( ) /

n n n

n n n

x t x t x t y t f t m

y t y t x t y t f t m
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   
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 (8) 
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Fig. 1 Viscous-hysteretic damped system 

 

 

3. Analytical method using inverse fourier transform 
 

3.1 Complex integration method  
 

When the system of 2nd order differential equations 

given in Eq. (8) is put into the eigen decomposition in state 

space, then four eigenvalues will come out. The unit 

impulse response of the viscous damping-complex stiffness 

system can be obtained by taking the inverse Fourier 

transform of the transfer function ( ) / ( )X F   given in 

Eq. (4), which is given by   

2 2

1
( )

2 (1 sgn( )) 2[ ]

i t

n n

m g t
i i

e
d






    






   (9) 

The poles of transfer function of such a system can be 

obtained by substituting the denominator in Eq. (9) into the 

quadratic formula 

2
Pole 1 sgn( )n ni i          (10) 

One can see that poles are expressed as complex 

numbers in square roots. When the poles are marked on a 

complex plane, as shown in Fig. 2, they can be rewritten as 

    Pole sgn 0 1i b ia        (11) 

Where, a  and b  are 

2 2 2 2(1 ) (1 ) / 2na        
 

2 2 2 2
(1 ) (1 ) / 2

n
b          

(12) 

The poles of transfer function which are expressed in Eq. 

(10) indicate a vertical shift of ( sgn( ))b ia    by i  
along the imaginary-axis on the complex plane. Therefore, 

if i  is larger than ia , then the poles lie on the upper 

half-plane, appearing as if the effective extreme values are 

four. In order to identify the effective poles which are used 

for the integration, we need to define the path of contour 

integral. 

When   is 0 1  , the contour including the 

integration defined in Eq. (9) is defined as two closed 

quarter circles and is identical to the contour for obtaining 

the unit impulse response of a complex stiffness system 

(Bae et al. 2014). Two closed contour integrals are 

represented in Fig. 2, where k
C  refers to the k  th 

integral contour 

When   is a positive number, the poles of the system 

appear on the 1
st
 quadrant and 3

rd
 quadrant or on the 2

nd
 

quadrant (when a  ) of the complex plane. But, since 

  is positive, the effective pole used for the integration is 

located on the 1
st
 quadrant. Similarly, when   is negative, 

the poles lie on the 2
nd

 quadrant and 4
th

 quadrant or on the 

1
st
 quadrant (when a  ). However, in this case, the 

contour integral only includes the effective pole located on 

the 2
nd

 quadrant. Therefore, only the poles located on the 1
st 

( 0  ) and 2
nd 

( 0  ) quadrants are used for integration, 

regardless of   or a . If the contour integration is 

conducted along 0   and 0  , the sum becomes 0 

 

 
 

 

 

10
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0
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C
k
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e dz mg t e dz

F F
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 


     (13) 

according to the Cauchy's integral theorem. In the above 

Eq. (13), the unit impulse response  mg t  is the sum of 

1
C  in each contour. The 

5
C  converges to 0 when r   

on the upper half-plane according to Jordan’s lemma 

(Arfken and Weber 2005). The sums of 
2 4

C C
 

and  
7 9

C C  also become 0 as they are in the opposite 

direction and take the same contour. As for the problem in 

which 1C
 

is not defined at 0  , unlike Eq. (9), 1C
 

can be ignored because the integral value of the transfer 

function comes close to 0 when the two domains become 

very close to 0, when 0  , and when the transfer 

function has a finite value. Therefore, only the contour 

integrals of 
3 6 8 10
, ,  and C C C C  contribute to the 

integration and thus the unit impulse response becomes 

   3 6 8 10I I I Img t       (14) 

according to the residue theorem. Here, Ik  indicates the 

contour integral along the k  th contour. 

The contour integral 3 8I I
 

can be obtained using the 

residue of the poles ( )b i a     on the 1
st
 ( 0   ) and 

2
nd

 ( 0  ) quadrants, which is given by 

 

 

 
Fig. 2 Unit impulse response integral contours for 

viscous-hysteretic damped system 
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Meanwhile, the complex integrations of the remaining 

contours 6 10 and C C  become 

26
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by letting   in Eq. (9) be ir . Thus, the contour integral 

6 10I I
 

becomes the residual which is defined in the form 

of Laplace transform of ( )f r  
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(a) unit impulse response  mg t  

 
(b) residual term 6 10(I +I )  

Fig. 3 The responses of viscous-hysteretic damped 

system obtained by analytic IFT for different    

( 0.2  ) 

 

 

 
(a) unit impulse response  mg t  

 
(b) residual term 6 10(I +I )  

Fig. 4 The responses of viscous-hysteretic damped 

system obtained by analytic IFT for different    

( 0.2  ) 

 

 

In Eq. (17), the power ratio of the numerator and 

denominator terms in the integral is to the fourth power, so 

it is guaranteed to have a relatively higher level of 

convergence. But, the value of 
6 10

I I  is smaller than 

3 8
I I . The above analytical solutions (15) and (16) in the 

form of Laplace transform can be calculated by applying 

the numerical integration to their discretized equations for 

each integration segments. 

 

3.2 Example of unit impulse response analysis 
 

The unit impulse response ( )m g t
 

of a viscous 

damping-complex stiffness system can be obtained by 

summing Eqs. (15) and (17) and by adding a negative 

symbol. Fig. 3 represents the unit impulse response ( )m g t  

and the residual 6 10(I +I )  with respect to the viscous 

damping ratio  , in which the loss factor   is set by 

0.2.  

It can be shown that the larger the damping ratio, the 

smaller the amplitude of unit impulse response and the 
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shorter the time taken for the first waveform to reach the 

peak value. The residual also increases gradually as the 

viscous damping ratio increases. Fig. 4 shows the unit 

impulse response ( )m g t
 

and the residual 6 10(I +I )
 

with respect to the loss factor   when the viscous 

damping ratio   is fixed by 0.2. As the loss factor 

increases, the waveform shrinks in size, and the width of 

decrease is sensitive to the change of loss factor. The peak 

value of the residual increases in proportional to the loss 

factor, and the width of increase is sensitive to the change 

of loss factor. From the comparison of Figs. 3 and 4, it is 

found that the viscous damping ratio has larger effect on the 

unit impulse response, while the loss factor gives more 

effect on the residual. 

 

 

4. Approximation using effective eigenvalues 

 
4.1. State space analysis 
 

This section describes the behavior of the real and 

imaginary parts of the time-invariant equation of motion in 

Eq. (7) and demonstrates the use of state space for more 

simplified handling of the initial value problem that could 

not be considered in the numerical inverse transform. Eq. (8) 

which was derived from the Hilbert transform relationship 

between ( )x t  and ( )y t  can be expressed in the matrix 

form using the state space techniques as following 

 p Ap w  (18) 
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 

w  

(19) 

with w  being the external force vector. The matrix 

equation system (18) can be converted into the independent 

coordinates in state space through the eigen decomposition. 

When the mode decomposition is applied to Eq. (18), the 

system’s eigenvalue   and eigenvector V  can be 

obtained. There are a total of four system eigenvalues in 

state space and a 4 4 mode matrix.  

When an ordinary matrix is mode decomposed, a 

conjugate relationship is satisfied between the eigenvalue 

and the eigenvector. As well, the mode vector and the 

eigenvalue form a complex conjugate relationship. 

Substituting the eigenvector V obtained from the 

eigenvalue problem into Eq. (18) and rewriting in the mode 

coordinates q ( p Vq ), together with VAV  , one 

can get four orthogonalized ordinary differential equations 

given by 

 p Ap w  (20) 

with 
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0 1 0 0

0 0 2 0

0 0 0 2
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   
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  
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V

 

1
V w   

(21) 

Where, 1 ,a ib     2 a ib     and 

n
   when 0 1  , while 1 ib   and 

2 2 ib     when 2  . Here,   is the external 

force vector in the mode coordinates. The real and 

imaginary parts of the computed eigenvalues   are 

expressed in terms of the loss factor  , viscous damping 

ratio  , and eigen frequency n . The four eigenvalues 

obtained from Eq. (20) directly reflect the extreme values of 

the system which is defined in the previous transfer 

function in Eq. (9). Here, in the similar manner for 

obtaining the unit impulse responses by the inverse Fourier 

transform in Section 3.1 using only two of four extreme 

values, we carry out the approximation for integration in the 

state apace using only 2  and 2  which influence the 

actual response transfer functions, in order to obtain the unit 

impulse responses. 

The free vibration response solution ( )x t  in the 1st 

order ordinary differential equation (where 0 ) is 

expressed in the following form of exponential function 

1
1 1( ) tq t c e  (22) 

Using Eq. (20) (i.e., the response in the mode 

coordinates) and Eq. (22) (i.e., the free vibration response in 

first-order differential equation), the responses in the 

generalized coordinates are as follows 

  1 1 2 2
1 1 1 1 3 3 3 3

t t t tt C e C e C e C e      p V V V V  (23) 

Here, 
n

V
 

refers to the n
th

 column vector in the mode 

matrix V and 1 1 2
C c ic  , 3 3 4

C c ic   are complex 

constants. From Eq. (23), if we select the eigenvalue to be 

used, then the resulting system response becomes (Bae et 

al. 2014) 

2 2

3 3
( )

t t
t C e C e

 
 

3 3
p V V  (24) 

Using the Euler theorem to convert Eq. (24) into the 

form of trigonometric function and rearranging the equation 
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leads to 

( )

3 4

4 3

( ) [Re[ ](2 cos( ) 2 sin( ))

Im[ ](2 cos( ) 2 sin( ))]

a t
t e c bt c bt

c bt c bt
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p V

V
 (25) 

E q .  ( 2 5 )  b e c o m e s 
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x x y y c c  
3 3

p V V   a t  0t  ,  f r o m 

which four unknowns (i.e., 3 4 0, ,c c y  and 0y ) can be 

determined in terms of the given real initial conditions 

0 0,x x  and the three constants ,a  and b  in 2  (Bae 

e t  a l .  2014 ) .  B y sub st i tu t ing 3c  and  4c  i n to  

Eq. (25) and arranging with respect to the real and 

imaginary initial conditions, one can get 
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         

p  (26) 

with the determined imaginary initial conditions 
2 2

0 0 0 0 0 0
( ( )) / ( (( ) ) ( )) /andy x x a b y x a b x a b          

. The real and imaginary parts in Eq. (26) form a Hilbert 

transform relationship and a Kramers-Kronig relationship 

(Feldman, 2011). 

 

 
(a) for constant 0.2   

 
(b) for constant 0.2   

Fig. 5 Comparison of the unit impluse responses 

between IFT and the state space (S.S.) analysis using 

effective eigenvalues ( 500 /
n

rad s  ) 

 

The above Eq. (26) is in the form of a viscous damping 

free vibration response and constitutes an approximation of 

the system in the form of viscous damping using the 

effective eigenvalues. When using the free vibration 

response to obtain the unit impulse response  g t , the 

initial conditions are set by (0) 0, (0) 1x x   and the 

results are given by 

( )1
( ) sin( )a tg t e bt

b

   (27) 

The unit impulse response ( )g t  contains two 

exponential terms 
t

e


 and ate . The former is the 

viscous damping, while the latter is a combination of 

hysteretic damping and viscous damping. The unit impulse 

response vibrates at the damped eigen frequency b  which 

represents the imaginary number part of the state space 

eigenvalue. Meanwhile, the forced vibration response can 

be obtained by the convolution integral of the unit impulse 

response and external force. When the free vibration 

response is added, the general time response is expressed by 

         0 0
0

cos sin
t

x t f g t d x t y t         (28) 

When Eq. (28) is numerically integrated through 

discretization, the time responses to ordinary excitation 

forces can be obtained. The reader may refer to our 

previous paper (Bae et al. 2016) for the details of the 

numerical integration method. 

 

4.2 Example of unit impulse response analysis 
 

The unit impulse responses obtained by IFT using Eq. 

(14) in the frequency domain and those approximated in 

state space using Eq. (27) are compared in Fig. 5. The 

natural frequency of the responses is 500 rad/s. In Fig. 5(a), 

  is fixed by 0.2 while   is varying to compare the unit 

impulse responses. In this case, it is observed that both 

cases show similar unit impulse responses when 
 

is 

small. But, it is also shown that the difference between two 

methods increases in proportion to  . Meanwhile, Fig. 5(b) 

compares the unit impulse responses when   is fixed by 

0.2 while   is varying. Similar to Fig. 5(a), the 

discrepancy between two methods increases in proportion 

to  . But, the level of discrepancy between two methods is 

shown to be larger, when compared with Fig. 5(a). This is 

because when the unit impulse response of a viscous 

damping system is approximated in state space, the system 

becomes closer to a hysteretic damping system than it does 

to a viscous damping system, as the damping coefficient 

increases. Therefore, the approximation of system using 

state space becomes more accurate when the viscous 

damping is larger than the structural damping or when the 

system is a low damping system. 

 
 

268



 

Transient response of vibration systems with viscous-hysteretic mixed damping using Hilbert transform… 

 

 

 
(a) A half-sine impulse force 

 
(b) the system forced vibration without initial conditions 

 
(c) the system free response with initial conditions 

 
(d) the system response when both the impulse force 

and the initial conditions are applied. 

Fig. 6 The state space (S.S.) force vibration analysis 

using effective eigenvalues 

 

 
4.3 Example of forced vibration response analysis 

 

The forced vibration response, the initial condition 

response and the response by considering both the forced 

vibration and the initial conditions were obtained for a 

single degree of freedom complex stiffness-viscous 

damping system. The system mass is 2m kg , the spring 

constant is 51 10 /k N m  , the loss factor is  =0.05, 

and the viscous damping coefficient is c=100Ns/m. Fig. 6(a) 

shows a half-sine impulse force, while Fig. 6(b) compares 

the forced vibration responses to the impulse force between 

the convolution integral method (28) and IFT when the 

initial conditions are not specified. Fig. 6(c) shows the free 

vibration response of system when the initial conditions of 

(0)x  10
-4

m and (0)x  0.5m/s are specified. The final Fig. 

5(d) represents the response when both the impulse force 

and initial conditions are applied. In order to verify the 

present convolution integral method (28), the comparison 

was made as shown in Fig. 6(b), where the plot labeled by 

IFT was obtained by superposing the unit impulse responses 

obtained through the inverse Fourier transform (Bae et al. 

2014). It is clearly observed that the present method is in an 

excellent agreement with IFT. Furthermore, from Figs. 6(c) 

and 6(d), it is found that this method can accurately 

implement the initial conditions and solve the forced 

vibration response by specifying the initial conditions. Thus, 

it has been justified that this method can provide the 

accurate transient response of viscous-hysteretic mixed 

damping system. 

Next, the forced vibration response of a cantilever Euler 

beam shown in Fig. 7 with complex stiffness-viscous 

damping is considered. The length L  is 0.25 m and the 

dimensions of beam cross-section are b=0.04 m and  

h=0.02 m, while the density   and the Young’s modulus 

E are 2,705 kg/m
3
 and 69.0 10

9 
N/m

2
, respectively. The 

neutral axis of beam is uniformly divided into five elements 

and five active nodes. The total degrees of freedom (DOFs) 

are 10 because each node has two DOFs (i.e., x  (w, dw/dx). 

Hermite basis functions are used for the spatial 

approximation of the vertical displacement w(x,t) of beam.  

A double half-sine impulse force f(t) shown in Fig. 8(a) 

is applied to node 3, and the real part of initial conditions 

are set by    0 0 0w w  .  

With twenty effective complex eigenvalues and 

eigenvectors, the ten nodal transient responses of 

 , /w dw dx  were approximated using the state space 

analysis method introduced in Section 4.1. Fig 8(b) 

compares the transient responses of the vertical 

displacement w  at node 2 between the present method 

and the inverse Fourier transform. 

An excellent agreement is clearly observed, which 

justifies that the proposed method does also provides the 

accurate transient response of MDOF viscous-hysteretic 

mixed damping system. 
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5. Damping properties 
 

Next, we investigate the characteristics of damping and 

damped frequency. Figs. 7(a) and 7(b) represent the contour 

plots of non-dimensional real and imaginary parts of 

complex eigenvalue 
 

in Eq. (21) with respect to the 

viscous damping ratio 
 

and the loss factor  . Referring 

to Fig. 7(a), the real value  a   of complex eigenvalue 

which shows the damping of system increases in proportion 

to 
 

and  . As   is a part of the damping value, it can 

be seen that   plays a big role, even for  = 0. By 

examining the contour lines, one can find out that those are 

in the relation of 0.5 total    . This fact becomes more 

clear when   and   approach to 0, while total
 

represents the system’s total damping. In order to justify  

 

 

 

 

such a relation, let us take Maclaurin series expansion of the 

real part a  in Eq. (12) of complex eigenvalue. Then, we 

have 

0 ,0 0 ,0

2 2 2

2 2

0 ,0 0 ,0 0 ,0

( , ) (0, 0)

1
2

2

a a
a a

a a a

   
 

  
  

 
  

 

  
   

  

 
 
 

 (29) 

If   and   are sufficiently small, then we have 

, 0

lim ( , ) 0.5
n

a
 

     (30) 

Reminding that n
 

 
from Eq. (21), it has been 

 
Fig. 7 A 10-DOF Euler beam model with complex stiffness-viscous damping 

  
(a) (b) 

Fig. 8 (a) A double half-sine impulse force and (b) Comparison of the transient responses of vertical displacement 

w  at node 2 

Table 1 Six sets of four complex eigenvalues for lowest six undamped natural modes 

Values 
Undamped natural modes 

1st 2nd 3rd 4th 5th 6th 

Real 

4.74 47.24 85.80 148.79 266.38 393.96 

4.74 47.24 85.80 148.79 266.38 393.96 

12.95 -4.20 -58.60 -136.47 -207.08 -392.61 

12.95 -4.20 -58.60 -136.47 -207.08 -392.61 

Imaginary 

-163.91 -1028.31 -2889.71 -5708.57 -9474.76 -15740.48 

163.91 1028.31 2889.71 5708.57 9474.76 15740.48 

-163.91 -1028.31 -2889.71 -5708.57 -9474.76 -15740.48 

163.91 1028.31 2889.71 5708.57 9474.76 15740.48 
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justified that the non-dimensional damping   /
n

a    

 

 

satisfies the above relation 0.5
total

   
 

when   

and   are sufficiently small. But, it can be seen from Fig. 

9(a) that the contour lines deviate from the linear relation as 

  and   increase. 

On the other hand, one can find a contour satisfying the 

relation of 2   from Fig. 9(b), and there is no change 

in the damped frequency b
 

along this contour. However, 

it can be seen that the damped frequency becomes higher or 

lower when the contours deviate from 2  . In general, 

the mass-spring-viscous damping system shows a decrease 

in damped frequency when damping is applied. However, 

when the complex stiffness (expressing hysteretic damping) 

is included, the damped frequency goes up or down 

depending on the values of complex stiffness and viscous 

damping. But, since the variance of damped frequency with 

respect to   and   ( 0 , 0.5   ) is small, when 

compared with the total damping ratio  , the effect of the 

damped frequency b  on the response of system is 

negligible. 

 

 

6. Conclusions 

 

In this study, the unit impulse response of a vibration 

system with mixed hysteretic and viscous damping was 

obtained by Fourier integration, and the concept for 

determining the effective poles in a viscous-complex 

stiffness system was presented. And, using the effective 

poles, an equation for the unit impulse responses was 

derived by combining the vibration term and the residual 

term. It was observed that the non-causal phenomenon 

occurs because the sum of the initial value of vibration term 

and the residuals does not vanish. It was verified that this 

phenomenon occurs due to the discontinuity in the damping 

term of the hysteretic system in the frequency domain. It 

was also found that when the hysteretic damping   and  

 

 

the viscous damping   exist simultaneously, the damping 

properties are not expressed as a linear combination. Also, 

both the residual and the non-causal phenomenon, which 

are usually observed only in the hysteretic damping systems, 

vary depending on the value of viscous damping  , while 

the system’s complex eigenvalues become different for 

different magnitudes of both damping coefficients   and 

 . But, when the individual damping coefficients are small, 

both the damping coefficients can be switched each other 

according to the relation of 2  , which was consistent 

with the earlier studies on the hysteretic damping (Crandall 

1970, Henwood 2002). 

This study also presented an approximation method to 

obtain the time response of system using Hilbert transform. 

The system governing equation in the time domain was 

separated into a real part and an imaginary part and 

transformed into the state space, to which the concept of 

effective pole was applied to obtain the time response. 

Using this approximation method, both the imaginary initial 

conditions and the forced vibration response can be  

obtained more simply than the conventional analytical 

method. However, for high damping systems in which the 

influence of the residual becomes larger and the non-causal 

phenomena increases, it is more desirable to use the 

analytical response equation presented in this paper because 

the state space method which restructures the vibration term 

becomes less accurate.  
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(a) non-dimensional damping   / na   (b) non-dimensional damped natural frequency / nb   

Fig. 9 Contour plots with respect to   and   
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